
CHAPTER 3

APPLICATIONS TO PROTOALGEBRAIC

AND ALGEBRAIZABLE LOGICS

One of the most important classes of sentential logics from the point of view of
their algebraization is the class of the protoalgebraic logics. As defined in Blok
and Pigozzi [1986], a sentential logic is protoalgebraic when for any Γ ∈ ThS,
any two formulas equivalent modulo ΩFm(Γ ) are also S-interderivable modulo
Γ ; that is, when for any Γ ∈ ThS and any ϕ,ψ ∈ Fm,

if 〈ϕ,ψ〉 ∈ ΩFm(Γ ) then Γ, ϕ `S ψ and Γ, ψ `S ϕ,

or, in our notation, when for any Γ ∈ ThS , ΩFm(Γ ) ⊆ ΛS(Γ ).
This class of logics was defined and thoroughly studied in Blok and Pigozzi

[1986]. Independently, it was considered in Czelakowski [1985], with a different
definition and under the name of non-pathological logics; the equivalence of the
two definitions was proved in Blok and Pigozzi [1992]. From the results in these
and subsequent works (such as Blok and Pigozzi [1991], Czelakowski [2001a]
and Czelakowski and Dziobiak [1991]) one can reach the conclusion that these
logics are precisely the ones whose matrix semantics is particularly well-behaved
from the point of view of universal algebra. Among several interesting charac-
terizations of this notion, let us mention that a logic S is protoalgebraic iff the
Leibniz operator ΩFm on ThS is monotone with respect to ⊆. This is also
equivalent to saying that for any algebra A, the operator ΩA is monotone on
FiSA (see Blok and Pigozzi [1986] Theorem 2.4); this property is called the
Compatibility Property. Let us look more closely into what this property says:
Being monotone means that for any A and any F,G ∈ FiSA, if F ⊆ G then
ΩA(F ) ⊆ ΩA(G). Observe that ΩA(F ) ⊆ ΩA(G) is equivalent to saying
thatΩA(F ) is compatible with G, that is, that G is a union of equivalence classes
moduloΩA(F ); if we consider the canonical projection π : A→ A/ΩA(F ), an-
other way of expressing the compatibility property is to say that G = π−1

[
π[G]

]
for all G ∈ FiSA such that F ⊆ G. Taking Proposition 1.19 into account,
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we see that then π[G] ∈ FiS
(
A/ΩA(F )

)
and moreover the correspondence

G 7→ π[G] establishes a lattice isomorphism between the lattices (FiSA)F and(
FiS

(
A/ΩA(F )

))π[F ]
. This fact, a special case of the so-called Correspondence

Theorem of Blok and Pigozzi [1986], will be used later on in this chapter. Also
note that ΩA is monotone if and only if it commutes with arbitrary intersections,
that is, if and only if ΩA

(⋂
{Fi : i ∈ I}

)
=
⋂
{ΩA(Fi) : i ∈ I} for any family

{Fi : i ∈ I} ⊆ FiSA.
An important subclass of protoalgebraic logics is that of algebraizable logics,

introduced in Blok and Pigozzi [1989a]; in this monograph several characteri-
zations are given for this notion, from different points of view. In the present
chapter we will establish some properties of algebraizable logics concerning the
notions we have introduced in the preceding chapter. Instead of the definition
of algebraizable logic, it will be enough for the reader to know Theorem 13.15
of Blok and Pigozzi [1992], which says that a sentential logic S is algebraiz-
able iff for every algebra A, the Leibniz operator ΩA is monotone, injective
and continuous on FiSA; continuity means that for any upwards directed family
{Fi : i ∈ I} ⊆ FiSA it holds that ΩA

(⋃
{Fi : i ∈ I}

)
=
⋃
{ΩA(Fi) : i ∈ I}.

With each algebraizable logic S one can associate a unique quasivariety K, called
the equivalent quasivariety semantics of S, having several very close relation-
ships with S; one of them is that there are two elementary definable and struc-
tural translations between (sets of) formulas and (sets of) equations in such a way
that the consequence `S of the logic becomes equivalent to the equational con-
sequence |=K associated with the class K (see Definition 4.13). Another charac-
terization, of special interest here, is that for any algebra A, the Leibniz operator
ΩA is an isomorphism between the lattices FiSA and ConKA; a logic having
this property relative to a quasivariety K must be algebraizable, and the class K

is its equivalent quasivariety semantics. We will see in this chapter that a non-
algebraizable logic can also have this property relative to a class K, but it will not
be a quasivariety. And we will relate this class K with the class Alg∗S and with
the class AlgS.

Since we always have that ΩA(∅) = A×A, it follows from the definition that
the only protoalgebraic logic without theorems is the one satisfying ϕ `S ψ for
all ϕ,ψ ∈ Fm, that is, the logic characterized by ThS = {∅, Fm}; this logic is
called almost inconsistent in Czelakowski [2001a], and appears as a counterex-
ample or as the only pathological case in a variety of situations. The compatibil-
ity property also yields the following characterizations of protoalgebraic logics,
which use the Tarski congruence:
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PROPOSITION 3.1. For any sentential logic S the following conditions are
equivalent:

(i) S is protoalgebraic.
(ii) For anyA and any closure system C ⊆ FiSA ,

∼
ΩA(C) = ΩA

(
C(∅)

)
.

(iii) For anyA and any F ∈ FiSA ,
∼
ΩA

(
(FiSA)F

)
= ΩA(F ).

(iv) For any Γ ∈ ThS , ∼Ω(SΓ ) = ΩFm(Γ ).

PROOF. (i)⇒(ii) Since C ⊆ FiSA, the compatibility property implies thatΩA
is also order-preserving on C; then, using this and 1.2 we have

∼
ΩA(C) =

⋂
{ΩA(T ) : T ∈ C} = ΩA

(⋂
{T : T ∈ C}

)
= ΩA

(
C(∅)

)
.

(iii) is a particular case of (ii), and (iv) is a particular case of (iii).

(iv)⇒(i) Let Γ, Γ ′ ∈ ThS with Γ ⊆ Γ ′. This implies that Γ ′ ∈ ThSΓ and
thus by 1.2, ∼Ω(SΓ ) ⊆ ΩFm(Γ ′). Then the assumption gives ΩFm(Γ ) ⊆
ΩFm(Γ ′), that is,ΩFm is order-preserving on ThS, which proves S is protoal-
gebraic. a

In particular, observe that if for any algebra A we denote the least S-filter on
A by F0, then if S is protoalgebraic it satisfies that ∼ΩA(FiSA) = ΩA(F0). As
a consequence, we obtain:

PROPOSITION 3.2. If S is a protoalgebraic logic, then AlgS = Alg∗S; and if
S is algebraizable, then AlgS is its equivalent quasivariety semantics.

PROOF. By Proposition 2.24 we have in general that Alg∗S ⊆ AlgS. Now let
A ∈ AlgS and put F0 for its least S-filter; then ΩA(F0) = ∼

ΩA(FiSA) = IdA,
which means that 〈A, F0〉 ∈ Matr∗S, that is, A ∈ Alg∗S. This proves the
first assertion. If moreover S is algebraizable, then by Corollary 5.3 of Blok and
Pigozzi [1989a] we know that its equivalent quasivariety semantics is the class
Alg∗S; but every algebraizable sentential logic is also protoalgebraic (see Blok
and Pigozzi [1989a] p. 35), and so we can apply the first part of this proof and
obtain that the equivalent quasivariety semantics of S is the class AlgS. a

The preceding result is an important step on the way to justifying the adequacy
of considering AlgS as the algebraic counterpart of an arbitrary logic S: Pro-
toalgebraic logics are precisely those whose matrix semantics behaves reasonably
well (see Blok and Pigozzi [1986], and especially Blok and Pigozzi [1992] and
Czelakowski [2001a] to confirm this), and we see that in this case, the class of
algebras ordinarily associated with a logic using matrix semantics, that is, Alg∗S,
coincides with our general algebraic counterpart of S. In particular, we see that if
S is algebraizable, in which case its relationship with a distinguished class of al-
gebras (its equivalent quasivariety semantics) is very strong, then this class equals
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AlgS. Proposition 3.2 also justifies our use of terms and notations originally used
in the literature for restricted classes of logics, as discussed on page 36.

The converses of the two implications of Proposition 3.2 are not true in gen-
eral: Take any consistent but not almost inconsistent algebraizable (thus a for-
tiori protoalgebraic) logic S, and then consider its “purely inferential” version
Wójcicki [1988, pp. 41 ff], here denoted as S∅, which is defined just by ThS∅ =
ThS ∪ {∅}. It is straightforward to check that this defines a sentential logic
which is not protoalgebraic; nevertheless AlgS∅ = AlgS = Alg∗S = Alg∗S∅.
Another non-trivial example can be found in Section 5.4.1 on relevance logics.
In Corollary 2.25 we saw that the equality Alg∗S = AlgS is also true whenever
Alg∗S is a quasivariety. The results of 2.25 and 3.2 are not related, since there
are protoalgebraic logics S such that Alg∗S is not a quasivariety (Herrmann’s LJ
logic in [1993b] is an example) while there are non-protoalgebraic logics S such
that Alg∗S is a variety (S∅, where S is classical logic, is but one example; a less
artificial one is the logic WR described in Section 5.4.1).

We have already seen in Proposition 3.1 that the notion of protoalgebraicity
can be characterized in terms of the Tarski congruence of the closure systems
(FiSA)F for F ∈ FiSA. We will study the behaviour of the mapping F 7−→
(FiSA)F on FiSA, and will solve specifically two questions:

– When do all full models have the form
〈
A, (FiSA)F

〉
for some F ∈ FiSA?

– When will all the abstract logics having this form be full models ?

First notice that the full models of protoalgebraic logics are determined by their
theorems:

LEMMA 3.3. Let S be a protoalgebraic logic. If L1 and L2 are two full models
of S on the same algebra with C1(∅) = C2(∅) then L1 = L2.

PROOF. We can apply Proposition 3.1(ii) and write
∼
ΩA(L1) = ΩA

(
C1(∅)

)
= ΩA

(
C2(∅)

)
= ∼
Ω(L2)

and then by Theorem 2.30 it follows that L1 = L2. a

The following characterization of protoalgebraicity answers the first of the two
questions just raised.

THEOREM 3.4. Let S be any sentential logic. Then S is protoalgebraic if and
only if all full models of S have the form

〈
A, (FiSA)F

〉
for some algebraA and

some F ∈ FiSA.

PROOF. (⇒) Let L = 〈A,C〉 be any full model of S, and take F = C(∅); then
obviously C ⊆ (FiSA)F . Since S is protoalgebraic, ∼Ω(L) = ΩA(F ) and thus
the projection π : A → A/ΩA(F ) is a bilogical morphism between 〈A, C〉
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and
〈
A/ΩA(F ), C/ΩA(F )

〉
, but since L is a full model of S, C/ΩA(F ) =

FiS
(
A/ΩA(F )

)
. Now take any G ∈ (FiSA)F . Since F ⊆ G and S is protoal-

gebraic,ΩA(F ) is compatible with G, so G = π−1
[
π[G]

]
, therefore by Proposi-

tion 1.19 π[G] is an S-filter on the quotient; now this implies that π−1
[
π[G]

]
∈ C,

that is, G ∈ C. This proves that L =
〈
A, (FiSA)F

〉
.

(⇐) Let F, F ′ ∈ FiSA with F ⊆ F ′ and considerΩA(F ): Since by Proposition
2.24 Alg∗S ⊆ AlgS, we know that ΩA(F ) ∈ ConAlgSA, and by Theorem 2.30
there is some full model of S on A, L = 〈A, C〉, such that ΩA(F ) = ∼

Ω(L).
Since L is a full model of S, this implies that π : A → A/ΩA(F ) is a bilogical
morphism from L = 〈A, C〉 to

〈
A/ΩA(F ),FiS

(
A/ΩA(F )

)〉
; and since always

F = π−1
[
π[F ]

]
, F ∈ C. But by assumption there is a G ∈ FiSA such that

C = (FiSA)G; therefore, F ⊇ G and as a consequence also F ′ ⊇ G, that is,
F ′ ∈ C, and this implies that ΩA(F ) = ∼

Ω(L) = ∼
ΩA(C) ⊆ ΩA(F ′). We have

proved thatΩA is monotone on FiSA, that is, S is protoalgebraic. a

In general, for any logic S and any algebraA we can consider

FiF
SA =

{
F ∈ FiSA :

〈
A, (FiSA)F

〉
is a full model of S

}
,

which is a subfamily of FiSA. As a consequence of the above result we get an
interesting property of protoalgebraic logics:

PROPOSITION 3.5. If S is a protoalgebraic logic then for any A the Leib-
niz operator ΩA is a lattice isomorphism between FiF

SA and ConAlg∗SA =
ConAlgSA.

PROOF. The mapping F 7→
〈
A, (FiSA)F

〉
always maps FiF

SA to FModSA,
is one-to-one, and satisfies that

〈
A, (FiSA)F

〉
6
〈
A, (FiSA)G

〉
if and only if

F ⊆ G. If moreover S is protoalgebraic, then Theorem 3.4 tells us that it is sur-
jective; therefore it is an order-isomorphism between FiF

SA and FModSA. But
by Theorem 2.30 the lattice FModSA is isomorphic, through the Tarski operator,
to ConAlgSA, thus the composition of the two mappings is F 7→ ∼

ΩA
(
(FiSA)F

)
and is an order-isomorphism between FiF

SA and ConAlgSA; using again the
fact that S is protoalgebraic, this mapping is the same as the mapping F 7→
ΩA(F ), that is, it is the Leibniz operator. Finally, since S is protoalgebraic,
we can use Proposition 3.2 and conclude that Alg∗S = AlgS; thus ConAlgSA =
ConAlg∗SA. a

We will now see how the S-filters in FiF
SA can be characterized independently
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of the notion of full model of S21. To this end, for any sentential logic S and any
A we consider the following binary relation on FiSA (actually, the kernel of the
Leibniz operator):

F ∼ F ′ ⇐⇒ ΩA(F ) = ΩA(F ′).

Obviously Proposition 3.5 implies that when S is protoalgebraic at most one filter
in each equivalence class belongs to FiF

SA; we will characterize it. Observe
that when S is protoalgebraic each equivalence class has a minimum: If for any
F ∈ FiSA we denote its equivalence class by [F ], then

⋂
[F ] ∈ FiSA and

ΩA
(
[F ]
)

=
⋂{
ΩA(G) : G ∈ [F ]

}
= ΩA(F ), that is,

⋂
[F ] ∈ [F ]. This is the

filter we look for:

PROPOSITION 3.6. Let S be a protoalgebraic logic. Then for any A and any
F ∈ FiSA the following conditions are equivalent:

(i) F ∈ FiF
SA, that is,

〈
A, (FiSA)F

〉
is a full model of S;

(ii) F is the minimum of its equivalence class under ∼; and
(iii) F/ΩA(F ) is the least S-filter onA/ΩA(F ).

PROOF. (ii)⇒(iii): If G ∈ FiS
(
A/ΩA(F )

)
consider F ′ = π−1[G] ∩ F ∈

FiSA, where π : A → A/ΩA(F ). Then F ′ = π−1[G] ∩ π−1
[
π[F ]

]
=

π−1
[
G∩π[F ]

]
, thus F ′ is a union of equivalence classes, that is,ΩA(F ) is com-

patible with F ′, which impliesΩA(F ) ⊆ ΩA(F ′); but on the other hand F ′ ⊆ F
and since S is protoalgebraic, ΩA(F ′) ⊆ ΩA(F ), so finally ΩA(F ) = ΩA(F ′).
Thus F ∼ F ′ and the assumption on F implies F ⊆ F ′, so F = F ′. Therefore
F ⊆ π−1[G] which implies F/ΩA(F ) = π[F ] ⊆ G. Therefore F/ΩA(F ) is the
least S-filter onA/ΩA(F ).

(iii)⇒(i): If S is protoalgebraic, we know that for any F ∈ FiSA the natu-
ral projection π : A → A/ΩA(F ) establishes a lattice isomorphism between
(FiSA)F and

(
FiS

(
A/ΩA(F )

))F/ΩA(F )
; see page 60. Now the assumption in

(iii) means that this last family is equal to FiS
(
A/ΩA(F )

)
; taking into account

that ∼ΩA
(
(FiSA)F

)
is ΩA(F ), this means that

〈
A, (FiSA)F

〉
∈ FModSA,

that is, F ∈ FiF
SA.

(i)⇒(ii): Let F ∈ FiF
SA, and let G be the minimum of the equivalence class of

F under ∼ (such a minimum exists because of the protoalgebraicity of S). Using
the two preceding parts of the proof we conclude that LG =

〈
A, (FiSA)G

〉
∈

FModSA, and by assumption LF =
〈
A, (FiSA)F

〉
∈ FModSA. But then

21These filters and their properties in protoalgebraic logics have been more extensively studied
in Font and Jansana [2001], where the term Leibniz filter was adopted, and in Jansana [2003]. See
also Font, Jansana, and Pigozzi [2001] for the application of this notion in other investigations in
abstract algebraic logic.
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∼
ΩA(LF ) = ΩA(F ) = ΩA(G) = ∼

ΩA(LG) and by Theorem 2.30 this implies
LF = LG, that is, F = G. Therefore F is the minimum of its own equivalence
class under ∼. a

One of the properties of the Leibniz operator which has an important role in
some characterizations of algebraizable logics is injectiveness; in this respect the
following observation may be of some interest:

PROPOSITION 3.7. Let S be a protoalgebraic logic. Then FiF
SA = FiSA

(that is, for every F ∈ FiSA, the abstract logic
〈
A, (FiSA)F

〉
is a full model of

S) if and only if the Leibniz operator ΩA is injective on FiSA.

PROOF. The equality FiF
SA = FiSA means that each S-filter is the only

member of its own equivalence class under ∼, and this is equivalent to saying
thatΩA(F ) = ΩA(G) implies F = G. a

Now we can round up these results, together with some of the previous chapter,
to obtain several characterizations of the sentential logics whose full models can
be completely “identified” with their filters in a natural way:

THEOREM 3.8. For any sentential logic S the following conditions are equiv-
alent:

(i) S is protoalgebraic and for every A and every F ∈ FiSA , F/ΩA(F ) is
the least S-filter onA/ΩA(F );

(ii) For everyA, the Leibniz operator ΩA is monotone and injective on FiSA;
(iii) For every A, the mapping F 7→

〈
A, (FiSA)F

〉
is a bijection (and as a

consequence a lattice isomorphism) between FiSA and FModSA;
(iv) For everyA,ΩA is a lattice isomorphism between FiSA and ConAlgSA;
(v) For everyA,ΩA is a lattice isomorphism between FiSA and ConAlg∗SA .

PROOF. (i)⇐⇒(ii) comes from Propositions 3.6 and 3.7.

(i)⇒(iii): The mapping F 7→
〈
A, (FiSA)F

〉
is always injective; by Proposition

3.6 the second assumption implies that for every F ∈ FiSA its image falls in
FModSA, and Theorem 3.4 tells us that it is surjective. Therefore it is a bijec-
tion between FiSA and FModSA. Since by definition both this mapping and its
inverse are trivially order-preserving, the mapping is a lattice isomorphism.

(iii)⇒(iv): In particular the mapping F 7→
〈
A, (FiSA)F

〉
is onto FModSA,

thus by Theorem 3.4 S is protoalgebraic. On the other hand, the composition of
this isomorphism with that of Theorem 2.30 gives us an isomorphism from FiSA
to ConAlgSA, which now is F 7→ ∼

Ω
(〈
A, (FiSA)F

〉)
= ΩA(F ) by part (iii) of

Proposition 3.1, that is, it is the Leibniz operator.

(iv)⇒(v): We always have that ConAlg∗SA ⊆ ConAlgSA, and also that for any
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F ∈ FiSA , ΩA(F ) ∈ ConAlg∗SA. But by the isomorphism of (iv), each ele-
ment of ConAlgSA is of the form ΩA(F ) for some F ∈ FiSA, and this implies
the equality ConAlg∗SA = ConAlgSA, and we get (v).

(v)⇒(ii) is trivial. a

The slight difference between items (iv) and (v) may be of some interest if one
needs to use them for some logic S before proving that it is protoalgebraic; the
reason is that until one proves this one cannot assume that the classes AlgS and
Alg∗S are in fact the same.

The sentential logics satisfying the conditions appearing in the last Theorem
deserve a name of their own:

DEFINITION 3.9. A sentential logic S is weakly algebraizable when for any
A, the Leibniz operator ΩA is monotone and injective on FiSA .

As Theorem 3.8 shows, these logics have the outstanding property (iii) that
there is a natural lattice isomorphism between their filters and their full mod-
els on a given algebra. They have been studied mainly in Czelakowski and
Jansana [2000] and Czelakowski [2001a]; in addition to the behaviour of the Leib-
niz operator, they can be characterized by the existence of an equational logic to
which they are equivalent by means of elementary definable structural translations
with parameters. An example of a sentential logic which is weakly algebraizable
but not algebraizable in the stronger sense of Blok and Pigozzi is due to Andréka
and Németi, and appears in Appendix 2 of Blok and Pigozzi [1989a]. From the
definition of weakly algebraizable logics, it follows that to be algebraizable they
only lack the condition of continuity for ΩA. From this fact we will obtain a
new characterization of algebraizability in terms of the Tarski operator; to this
end we say that, for some algebraA, the Tarski operator ∼ΩA is continuous (over
FModSA) when for any upwards directed family {Li : i ∈ I} ⊆ FModSA we
have

∼
ΩA

(
sup
i∈I
Li
)

=
⋃
i∈I

∼
ΩA(Li);

where directedness and the “sup” operation refer to the natural ordering between
abstract logics, that is, the natural ordering between closure operators, or the in-
verse one between closure systems, as defined in page 18. We then have:

THEOREM 3.10. Let S be a weakly algebraizable sentential logic. Then the
following conditions are equivalent:

(i) S is algebraizable;
(ii) The class AlgS is a quasivariety;



PROTOALGEBRAIC AND ALGEBRAIZABLE LOGICS 67

(iii) For anyA, the Leibniz operator ΩA is continuous on FiSA; and
(iv) For anyA, the Tarski operator ∼ΩA is continuous on FModSA .

PROOF. It is well-known that (ii) follows from (i), and taking (ii) into account,
the isomorphism established in part (iv) of Theorem 3.8 implies (i) by the char-
acterization of algebraizability of Theorem 5.1 of Blok and Pigozzi [1989a]. The
equivalence between (i) and (iii), given Theorem 3.8, is contained in Theorem
13.15 of Blok and Pigozzi [1992]. So we have only to prove the equivalence be-
tween (iii) and (iv). If for any F ∈ FiSA we put Φ(F ) =

〈
A, (FiSA)F

〉
, we

know that ΩA = ∼
ΩA ◦ Φ (because S is protoalgebraic) and thus that ∼ΩA =

ΩA ◦ Φ−1 (because Φ is a bijection, by Theorem 3.8). Now assume that ΩA
is continuous and let {Li : i ∈ I} ⊆ FModSA be any directed family; if we
put Fi = Φ−1(Li) and G =

⋃
{Fi : i ∈ I}, then it is clear that {Fi : i ∈

I} ⊆ FiSA is also a directed family and thus G ∈ FiSA; therefore Φ(G) =〈
A, (FiSA)G

〉
∈ FModSA. Since clearly (FiSA)G =

⋂{
(FiSA)Fi : i ∈ I

}
,

it easily follows that Φ(G) = sup
i∈I
Li and then

∼
ΩA(sup

i∈I
Li) =

(
ΩA ◦Φ−1

)(
Φ(G)

)
= ΩA(G) =

⋃
i∈I
ΩA(Fi) =

⋃
i∈I

∼
ΩA(Li)

which proves that ∼ΩA is continuous. Conversely, if we assume that ∼ΩA is con-
tinuous and {Fi : i ∈ I} ⊆ FiSA is directed, clearly the family {Φ(Fi) : i ∈ I}
is also directed and

ΩA(
⋃
i∈I

Fi) = ∼
ΩA

(
Φ(
⋃
i∈I

Fi)
)

= ∼
ΩA(sup

i∈I
Li) =

⋃
i∈I

∼
ΩA(Li) =

⋃
i∈I
ΩA(Fi)

which shows thatΩA is continuous. a

COROLLARY 3.11. For any sentential logic S the following conditions are
equivalent:

(i) S is algebraizable;
(ii) S is weakly algebraizable and AlgS is a quasivariety; and

(iii) For every A the mapping F 7→
〈
A, (FiSA)F

〉
is a bijection between the

sets FiSA and FModSA, and the Tarski operator ∼ΩA is continuous over
FModSA . a

Therefore we see that the logics which are weakly algebraizable but not alge-
braizable in the sense of Blok and Pigozzi [1989a] must be such that their associ-
ated class of algebras AlgS is not a quasivariety. Moreover, the bijection between
filters and full models of S established by the mapping F 7→

〈
A, (FiSA)F

〉
con-

firms a feature of algebraizable logics that had been empirically observed earlier



68 CHAPTER 3

(and which we now know is characteristic of a larger class of logics); we will
make some use of these facts later on.

Now we introduce another distinct class of sentential logics:

DEFINITION 3.12. A sentential logic S is called Fregean when for any Γ ∈
ThS, the abstract logic SΓ has the congruence property; i.e., when ΛS(Γ ) =
∼
Ω(SΓ ) for all Γ ∈ ThS 22.

It is easy to check that every two-valued logic (i.e., every logic defined by a
matrix on any two-element algebra) is Fregean. In view of the expression (1.6) of
page 29, we see that S is Fregean when for any Γ ∈ ThS and any ϕ,ψ ∈ Fm it
holds that

if Γ , ϕ a`S Γ , ψ then for any γ(p, ~q ) ∈ Fm,
Γ , γ(ϕ, ~q ) a`S Γ , γ(ψ, ~q ) .

(3.10)

So we see that these logics enjoy a very strong property of replacement of equiv-
alents. Moreover, from (3.10) it follows that any Fregean logic satisfies the
so-called Suszko’s rules (cf. Czelakowski [1981] Theorem II.1.2 and Rauten-
berg [1993]): For any ϕ,ψ, γ(p, ~q ) ∈ Fm it holds that

ϕ ,ψ , γ(ϕ, ~q ) `S γ(ψ, ~q ).

From this and expression (1.1) on page 16 one can easily obtain:

PROPOSITION 3.13. If S is a Fregean logic then the filter of each of its reduced
matrices is either empty or a one-element subset. a

The above observations suggest that attaching the name of Frege to these logics
may be a reasonable choice; in Rautenberg [1981] they are called “congruential”,
but this term has also been used with other meanings in the literature (see for
instance Blok and Pigozzi [1992]). The subclass of Fregean protoalgebraic log-
ics has been independently introduced and studied by Pigozzi and Czelakowski
(in unpublished notes23) in relation to the class of Fregean varieties of algebras

22This definition has been complemented in later literature, starting with Babyonyshev [2003]
and Font [2003b], with that of the class of the fully Fregean logics. These are the logics S such that
for every full model L = 〈A, C〉 of S and every T ∈ C, the abstract logic LT =

˙
A , CT

¸
has the

congruence property, that is,ΛL(T ) =
∼
Ω

`
LT

´
. The now called Frege hierarchy is the classification

scheme of sentential logics under the four classes defined in terms of congruence properties: the
selfextensional ones, the fully selfextensional ones, the Fregean ones and the fully Fregean ones.
Some results in this and the next chapters are the first steps in the clarification of the structure of the
Frege hierarchy and its relations with the Leibniz hierarchy. See also Font [2006], Section 3.4.

23Their results have been subsequently published in Czelakowski and Pigozzi [2004a], [2004b];
see also Chapter 6 of Czelakowski [2001a].
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considered in Pigozzi [1991]; such logics can be characterized in a very simple
way:

PROPOSITION 3.14. A sentential logic S is Fregean and protoalgebraic if and
only if for any Γ ∈ ThS,ΩFm(Γ ) = ΛS(Γ ).

PROOF. By Definition 3.12 and Proposition 3.1, if S is both Fregean and pro-
toalgebraic, we have that for any Γ ∈ ThS , ΛS(Γ ) = Λ(SΓ ) = ∼

Ω(SΓ ) =
ΩFm(Γ ). Conversely, if for every Γ ∈ ThS we have the equalities Λ(SΓ ) =
ΛS(Γ ) = ΩFm(Γ ), then on the one hand ΩFm is order-preserving on ThS,
that is, S is protoalgebraic, and on the other hand Λ(SΓ ) is a congruence for
every Γ ∈ ThS, that is, S is Fregean. a

From the definition it trivially follows that any Fregean logic is a fortiori self-
extensional. That the class of Fregean logics is strictly smaller than the class of
the selfextensional ones will be shown in Chapter 5 through several examples. At
the end of this chapter and in Chapter 4 we will find some relationships between
the class of Fregean logics and the class of the strongly selfextensional ones.

If we consider the mapping F 7→
〈
A, (FiSA)F

〉
in the particular case where

A = Fm, we obtain the mapping Γ 7→ SΓ . We will see that this mapping also
has an interesting behaviour when S is Fregean and has theorems:

PROPOSITION 3.15. If S is a Fregean logic with theorems, then the mapping
Γ 7→ SΓ is an order-preserving embedding of ThS into FModSFm .

PROOF. Observe that if Γ ∈ ThS then Γ is the set of theorems of the abstract
logic SΓ ; as a consequence, the mapping Γ 7→ SΓ is one-to-one, and obvi-
ously order-preserving. It remains only to show that SΓ ∈ FModSFm, that is,
putting θ = ∼

Ω(SΓ ) = ΛS(Γ ) = Λ(SΓ ), we have to show that (ThSΓ )/θ =
FiS(Fm/θ). One half is always true, because θ is compatible with all Γ ′ ∈
ThSΓ and therefore Γ ′/θ ∈ FiS(Fm/θ). Now let F be any S-filter on Fm/θ;
then π−1[F ] is also an S-filter on Fm, that is, π−1[F ] ∈ ThS, and we have only
to show that it contains Γ : Since we are assuming that S has theorems, we can
always take any ϕ ∈ Γ and any ψ ∈ Γ ∩ π−1[F ]. Then 〈ϕ,ψ〉 ∈ ΛS(Γ ) = θ, so
π(ϕ) = π(ψ) ∈ F which implies ϕ ∈ π−1[F ]; that is, Γ ⊆ π−1[F ]. This shows
that π−1[F ] ∈ ThSΓ , therefore F ∈ (ThSΓ )/θ as was to be proved. a

The assumption that S has theorems cannot be dropped from this result. The
reason is the fact that if S does not have theorems, then no full model of S can
have them; as a consequence, for any non-empty theory Γ , the abstract logic
SΓ cannot be a full model of S. At this point one could conjecture that the
mapping Γ 7→ (SΓ )∅ (using the notation introduced in page 62) would solve this
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problem, but we have found a proof only in a very restricted case: A sentential
logic, or more generally an abstract logic, is called pseudo-axiomatic (Łoś and
Suszko [1958]) when it has no theorems but has a smallest non-empty theory.
Then:

PROPOSITION 3.16. If S is a pseudo-axiomatic Fregean logic, then the map-
ping Γ 7→ (SΓ )∅ is an order-preserving embedding of ThS into FModSFm.

PROOF. Very similar to that of Proposition 3.15. Observe that if Γ ∈ ThS
then (SΓ )∅ is also pseudo-axiomatic and Γ is its smallest non-empty theory. The
mapping is obviously one-to-one and order-preserving. We have to show that
(SΓ )∅ ∈ FModSFm. If Γ = ∅ this is trivially true since then (SΓ )∅ = S, so
let us suppose that Γ is non-empty. Observe that ∼Ω

(
(SΓ )∅

)
= ∼
Ω(SΓ ); thus

we can take θ = ∼
Ω(SΓ ) = ΛS(Γ ) = Λ(SΓ ), and show that Th

(
(SΓ )∅

)
/θ =

FiS(Fm/θ). One half is always true, because θ is compatible with all non-empty
Γ ′ ∈ Th

(
(SΓ )∅

)
and therefore Γ ′/θ ∈ FiS(Fm/θ); while by assumption the

empty set is in FiS(Fm/θ). The converse is proved with the same construction
as in the proof of 3.15, because for a non-empty F ∈ FiS(Fm/θ), the set Γ ∩
π−1[F ] is also non-empty, because it contains the least non-empty theory of S,
and everything works similarly. The case F = ∅ is trivial. a

However, pseudo-axiomatic logics are rather unnatural, and so this result is of
not much help. There are Fregean logics without theorems satisfying the con-
clusion of Proposition 3.16, but at present it seems that an ad-hoc proof using
particular characterizations of their full models is needed in every case; see for
instance in Section 5.1.1 the case of CPC∧∨, the {∧,∨}-fragment of CPC.

If moreover the sentential logic S is protoalgebraic, then we can say more about
the mapping initially considered:

PROPOSITION 3.17. If S is a Fregean protoalgebraic logic with theorems,
then the mapping Γ 7→ SΓ is an isomorphism between the lattices ThS and
FModSFm .

PROOF. In view of Proposition 3.15, we need only to show that the mapping
Γ 7→ SΓ is onto FModSFm. But this is a consequence of the assumption that
S is protoalgebraic, by Theorem 3.4 applied to the caseA = Fm . a

In this case, the assumption that S has theorems can be substituted by the as-
sumption that S is not the almost inconsistent logic, since it is known that the
latter is the only protoalgebraic logic without theorems. And this is also an ex-
ception to the conclusion: If ThS = {∅, Fm} then the mapping Γ 7→ SΓ is not
into FModSFm, since SFm, which is the inconsistent logic, does not belong to
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FModSFm, because it has theorems while S does not. Actually, the full models
of the almost inconsistent logic are all abstract logics 〈A, C〉 with C = {∅, A}.

Note that the isomorphism proved in Proposition 3.17 is a particular case of
the one obtained in part (iii) of Theorem 3.8 under different assumptions. As
a consequence we find an alternative proof of the following result contained in
Czelakowski [1992]24. A sentential logic is regularly algebraizable if it is al-
gebraizable and the filter of any of its reduced matrices is a one-element subset.
These logics have also been studied in Herrmann [1993b], [1993a] under the name
of 1-equivalential logics.

THEOREM 3.18 (Czelakowski, Pigozzi). Every Fregean protoalgebraic logic
with theorems is regularly algebraizable.

PROOF. By Proposition 3.1, ΩFm(Γ ) = ∼
Ω(SΓ ) for every Γ ∈ ThS; there-

fore the composition of the isomorphisms of Theorems 3.17 and 2.30 results to be
the mapping ΩFm, which becomes an isomorphism from ThS to ConAlgSFm.
By Proposition 3.14,ΩFm = ΛS , the Frege operator, which by Proposition 2.38
always preserves unions of directed families of theories. So ΩFm, on ThS, is
injective, order-preserving, and preserves unions of directed families. This is ex-
actly the “first intrinsic characterization” of algebraizability found in Theorem 4.2
of Blok and Pigozzi [1989a]; therefore we conclude that S is algebraizable. Now
let 〈A, F 〉 be a reduced matrix for S. Since S has theorems, F is non-empty,
and then Proposition 3.13 tells us that F is a singleton. Therefore S is regularly
algebraizable. a

This result shows the strength of being Fregean: these logics must be regularly
algebraizable, or else they cannot be even protoalgebraic, leaving the almost in-
consistent logic aside. So in particular we see that the only Fregean logic which
is equivalential or finitely equivalential without being algebraizable is the almost
inconsistent one. This confirms one of the claims made in Font [1993] concerning
the classification of sentential logics outlined there.

As an application of this theorem the relationship between strongly selfexten-
sional and Fregean sentential logics is partly clarified in the following results.

PROPOSITION 3.19. Every Fregean protoalgebraic logic is strongly selfexten-
sional.

PROOF. If S does not have theorems, then it is the almost inconsistent logic; as
we observed before, its full models are 〈A, C〉 with C = {∅, A}, and hence they
have the congruence property, that is, the logic S is strongly selfextensional. Now

24This has been subsequently published as Theorem 6.2.2 of Czelakowski [2001a], and as Theorem
2.18 of Czelakowski and Pigozzi [2004a].
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let us assume that S has theorems. Then we can use the result of Corollary 5.5 of
Czelakowski [1992], which, expressed in our notation, says that, under the same
assumptions, for any A and any F ∈ FiSA , ΩA(F ) = Λ

(
(FiSA)F

)
. This

implies that the abstract logic
〈
A, (FiSA)F

〉
has the congruence property. But

from Theorem 3.4 it follows that all the full models of S have this form, for some
F ∈ FiSA. Therefore, all the full models of S have the congruence property,
that is, S is strongly selfextensional. a

PROPOSITION 3.20. Let S be a strongly selfextensional sentential logic. Then
the following conditions are equivalent:

(i) S is Fregean, protoalgebraic, and has theorems.
(ii) S is algebraizable.

(iii) S is weakly algebraizable.
PROOF. Part (i)⇒(ii) is contained in Theorem 3.18, and part (ii)⇒(iii) is triv-

ial, so let us prove (iii)⇒(i): If S is weakly algebraizable, thenΩFm is monotone
and injective on ThS, thus in particular S is protoalgebraic. If we takeA = Fm

in Theorem 3.8, we find that every axiomatic extension of S is a full model of S.
Hence if S is strongly selfextensional, these axiomatic extensions have the con-
gruence property, that is, S is Fregean. Finally, since ΩFm(∅) = ΩFm(Fm) =
Fm × Fm and ΩFm is injective on ThS, we have that ∅ /∈ ThS, therefore S
has theorems. a

From the preceding results we highlight two things: First, that among strongly
selfextensional logics, being weakly algebraizable implies being algebraizable in
the stronger sense of Blok and Pigozzi [1989a]. Second, by combining Proposi-
tion 3.19 and Proposition 3.20, we find:

COROLLARY 3.21. Let S be any weakly algebraizable sentential logic. Then
S is strongly selfextensional if and only if S is Fregean. a

The coincidence of strongly selfextensional and Fregean logics holds a fortiori
inside the class of algebraizable logics. On the other hand, the assumption of weak
algebraizability cannot be dropped from 3.21: in Sections 5.3, 5.4.4 and 5.4.3 we
present some examples of protoalgebraic logics that are strongly selfextensional
but not Fregean; and in Sections 5.1.2, 5.1.3 and 5.4.1 several non-protoalgebraic
logics being strongly selfextensional but not Fregean are presented.

Concerning these classifications we can highlight:

OPEN PROBLEM. Is there a logic that is Fregean but not strongly selfexten-
sional ?25

25Such an example is presented in Babyonyshev [2003].



PROTOALGEBRAIC AND ALGEBRAIZABLE LOGICS 73

Note that by Proposition 3.19 a logic of this kind should be non-protoalgebraic.
As a consequence of Theorem 4.28 in the next chapter, such a logic cannot have
a conjunction, either.




