
CHAPTER 1

GENERALITIES ON ABSTRACT LOGICS

AND SENTENTIAL LOGICS

In this chapter we include the main definitions, notations, and general proper-
ties concerning logical matrices, abstract logics and sentential logics. Most of the
results reproduced here are not new; however, those concerning abstract logics
are not well-known, so it seems useful to recall them in some detail, and to prove
some of the ones that are new. Useful references on these topics are Brown and
Suszko [1973], Burris and Sankappanavar [1981] and Wójcicki [1988].

Algebras

In this monograph (except in Chapter 5, where we deal with examples) we
will always work with algebras A = 〈A, . . . 〉 of the same, arbitrary, similarity
type; thus, when we say “every/any/some algebra” we mean “of the same type”.
By Hom(A,B) we denote the set of all homomorphisms from the algebra A
into the algebra B. The set of congruences of the algebra A will be denoted by
ConA. Many of the sets we will consider have the structure of a (often complete,
or even algebraic) lattice, but we will not use a different symbol for the lattice
and for the underlying set, since no confusion is likely to arise. Given any class
K of algebras, the set ConKA = {θ ∈ ConA : A/θ ∈ K} is called the set
of K-congruences of A; while this set is ordered under ⊆, in general it is not a
lattice. This set will play an important role in this monograph.

Formulas, equations, interpretations

We will denote by Fm = 〈Fm, . . . 〉 the absolutely free algebra of the simi-
larity type under consideration generated by some fixed but unspecified set Var,
which we assume to be countably infinite. Fm is usually called the algebra of
formulas (or the algebra of terms), and the elements of Var the variables, or
atomic formulas. The letters p, q, . . . will denote variables, and the formulas will
be denoted by lowercase Greek letters such as ϕ,ψ, ξ, η, . . . , while uppercase
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Greek letters such as Γ ,∆ will denote sets of formulas. The equations of the
similarity type are pairs 〈ϕ,ψ〉 of formulas, which we write as ϕ ≈ ψ; the set of
all equations will be denoted by Eq(Fm).

Let A be any algebra of the same similarity type as Fm. An interpretation
in A is any h ∈ Hom(Fm,A), that is, any homomorphism (in the ordinary,
algebraic, sense) from Fm into A; because of the freeness of Fm any such
interpretation is completely determined by its restriction to Var. Therefore for any
ϕ ∈ Fm, the value h(ϕ) is determined by the values of those p ∈ Var that appear
in ϕ. We will often use the convention of writing ϕ(p, q, r, . . . ) to mean that the
variables appearing in ϕ are among those in {p, q, r, . . . }; then given elements
a, b, c, . . . ∈ A we put ϕA(a, b, c, . . . ) for h(ϕ) whenever h(p) = a , h(q) =
b , h(r) = c , . . . ; we will also use the vectorial notations ~q and ~a for sequences
of variables and of elements of A, and write ϕ(~q) and ϕA(~a), respectively. These
conventions are extended to sets of formulas: if Γ ⊆ Fm then ΓA(~a) stands
for h[Γ ] where h is any interpretation such that h(pi) = ai, and the variables
appearing in Γ are among the pi. A substitution is any homomorphism from the
formula algebra into itself.

Matrices

A matrix or logical matrix is a pair M = 〈A, F 〉 where A is an algebra
and F ⊆ A; F is sometimes referred to as the filter of the matrix. Given any
θ ∈ ConA we can construct the quotient matrix M/θ = 〈A/θ , F/θ 〉, where
A/θ is the ordinary quotient algebra and F/θ = {a/θ : a ∈ F}. Making this
quotient is reasonable in this context only when θ ∈ ConA is compatible with
F : This means that for any 〈a, b〉 ∈ θ it happens that a ∈ F if and only if
b ∈ F , that is, θ does not identify elements inside F with elements outside F ;
in such a case one also says that θ is a matrix congruence ofM; the set ConM
of all these congruences is a principal ideal (and hence a sublattice) of the lattice
ConA; its maximum element is called the Leibniz congruence of the matrix, and
is denoted byΩA(F ). The reason for naming it after Leibniz is clearly explained
by its inventors Blok and Pigozzi in their [1989a] pp. 10–11, and is related to
the following characterization (see Czelakowski [1980] Theorem 3.2, and also
Wójcicki [1988] Lemma 3.1.10): If a, b ∈ A, then

〈a, b〉 ∈ ΩA(F ) ⇐⇒ ∀ϕ(p, ~q ) ∈ Fm , ∀~c ∈ Ak ,

ϕA(a,~c ) ∈ F ⇐⇒ ϕA(b,~c ) ∈ F .
(1.1)

The natural number k is the length of ~q ; it obviously depends on ϕ.
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The mapping F 7→ ΩA(F ) is called the Leibniz operator of the algebra A. A
matrix is reduced when its only matrix congruence is the identity relation, that
is, ΩA(F ) = IdA. For any matrix M = 〈A, F 〉, the quotient matrix M∗ =
M/ΩA(F ) =

〈
A/ΩA(F ) , F/ΩA(F )

〉
is reduced, and is called the reduction

ofM. Given any class of matrices M, we put M∗ = {M∗ :M∈M}.

Abstract logics

By a closure operator on a set A we mean, as is usual, a mapping C : P (A)→
P (A), where P (A) is the power set of A, such that for all X,Y ⊆ A ,

(C1) X ⊆ C(X) ,
(C2) If X ⊆ Y then C(X) ⊆ C(Y ) , and
(C3) C

(
C(X)

)
= C(X) .

By a closure system on a set A we understand a family C of subsets of A such
that A ∈ C and C is closed under arbitrary intersections. Given a closure operator
C on A, the family C = {X ⊆ A : C(X) = X} of its closed sets is a closure
system, and conversely given a closure system C on A, the function defined by
X 7−→ C(X) =

⋂
{T ∈ C : X ⊆ T} is a closure operator; and these two cor-

respondences are inverse to one another. A closure operator is finitary whenever
it satisfies C(X) =

⋃
{C(F ) : F ⊆ X , F finite } for any X ⊆ A; an equivalent

statement is that the closure system C is inductive, i.e., closed under unions of
upwards directed subfamilies (the union of the empty family is taken to be A).

An abstract logic is a pair L = 〈A,C〉 where A is an algebra, and C is a clo-
sure operator on A. The elements of C(∅) are called the theorems of L. With any
abstract logic we associate the closure system C = ThL of its closed sets (also
called theories); given the duality existing between closure operators and closure
systems, we will also present abstract logics as pairs L = 〈A, C〉 where C is a clo-
sure system on A. Some kind of “typographical correspondence” between pairs
of associated closure operators and closure systems, like C · · · C , F · · · F , etc.,
will be used without notification; likewise, when super- or subscripting an abstract
logic, we will suppose that, unless otherwise specified, the super- or subscripts are
also applied to the corresponding algebra, closure operator and closure system.
Sometimes it will be convenient to write L = 〈AL,CL〉 and L = 〈AL, CL〉. We
use the customary abbreviations C(a) for C

(
{a}
)
, C(X, a) for C

(
X ∪ {a}

)
and

so on.
It will be useful to remember that all closure systems are complete lattices

(where the infimum of any family of closed sets is its intersection while its supre-
mum is the closure of its union), and that any complete lattice is isomorphic to a
closure system; see for instance Burris and Sankappanavar [1981] Section I.5.
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Abstract logics on the same algebra are ordered according to the corresponding
closure operators: We say that L is weaker than L′, and that L′ is stronger than
L, in symbols L 6 L′, when C 6 C′, that is, when for any X ⊆ A , C(X) ⊆
C′(X); this is equivalent to the reverse order among closure systems: L 6 L′ iff
C′ ⊆ C. In case C′ ⊆ C we say that C is finer than C′. It is easy to see that the
set of all abstract logics on the same algebra A equipped with this ordering is a
complete lattice, dually isomorphic to the complete lattice of all closure systems
on A ordered under ⊆. When L 6 L′ we also say that L′ is an extension of L.

If C is a closure system on A then for any T ⊆ A, the family of all closed sets
containing T is also a closure system, denoted by CT = {S ∈ C : T ⊆ S}. We
will often use this construction, which associates with any abstract logic L and
any T ⊆ A the abstract logic LT = 〈A, CT 〉 or 〈A,CT 〉, called the axiomatic
extension of L by T ; since for any X ⊆ A , CT (X) = C(T ∪X), this extension
is the same for all T ⊆ A having the same closure under C, and we often restrict
its use to the T ∈ C.

With any abstract logic L = 〈A,C〉 we can associate the family or “bundle” of
matrices

{
〈A, T 〉 : T ∈ C

}
. Conversely, any bundle of matrices having the same

algebra reduct originates an abstract logic, whose closure system is generated
by the family of filters of the matrices in the bundle. Bundles of matrices have
sometimes been referred to also as generalized matrices; see Wójcicki [1973],
and also our Proposition 2.7 and subsequent comments.

Logical congruences

If L = 〈A,C〉 is an abstract logic, then a congruence θ ∈ ConA is a logical
congruence of L when 〈a, b〉 ∈ θ implies C(a) = C(b); or, equivalently, when
θ is compatible with every T ∈ C. We denote by ConL the set of all logical
congruences of L; from the preceding observation it follows that

ConL =
⋂
T∈C

Con〈A, T 〉 . (1.2)

It is easy to see that this set, ordered by ⊆, is a complete lattice, and a princi-
pal ideal of the lattice ConA. Actually, its generator turns out to be the most
important tool in our theory:

DEFINITION 1.1. If L = 〈A,C〉 is an abstract logic, the Tarski congruence
of L is

∼
Ω(L) = max ConL,
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i.e., the greatest logical congruence of L. For every algebra A, the Tarski oper-
ator onA is the mapping

∼
ΩA : L 7−→ ∼

Ω(L),

that is, the mapping L 7→ ∼
Ω(L) restricted to abstract logics onA.

Given an algebraA, for every closure operator C on A we can consider the ab-
stract logic L = 〈A,C〉; therefore it is natural to extend the notations introduced
above and write ∼ΩA(C) for ∼Ω

(
〈A,C〉

)
; similarly, if C is a closure system on A,

we write ∼ΩA(C) for ∼Ω
(
〈A, C〉

)
. The mapping C 7→ ∼

ΩA(C) will be identified,
for practical purposes, with the Tarski operator on A. From the definition it fol-
lows that ConL =

{
θ ∈ ConA : θ ⊆ ∼

Ω(L)
}

; moreover one can prove, using
(1.2), the following:

PROPOSITION 1.2. For any abstract logic L , ∼Ω(L) =
⋂
{ΩA(T ) : T ∈ CL};

that is, ∼ΩA(C) =
⋂
{ΩA(T ) : T ∈ C} for any algebraA and any closure system

C on A. a

As a consequence of this and of (1.1), it follows that for any abstract logic
L = 〈A,C〉, the Tarski congruence of L can be characterized as:

〈a, b〉 ∈ ∼Ω(L) ⇐⇒ ∀ϕ(p, ~q ) ∈ Fm , ∀~c ∈ Ak ,

C
(
ϕA(a,~c )

)
= C

(
ϕA(b,~c )

) (1.3)

Thus the notions of the Tarski congruence/operator are, in some sense, ex-
tensions of the notions of the Leibniz congruence/operator; actually they were
called “extended Leibniz congruence/operator” in Font [1993], where the notions
of Tarski congruence/operator were introduced. The reason for naming them af-
ter Tarski is that this relation is the one Tarski took when he factored the formula
algebra of classical logic to find a Boolean algebra for the first time; in this case
the relation had the particular form: ϕ ≡ ψ ⇐⇒ ` ϕ↔ ψ; it is interesting to
note that the relation expressed by the Tarski congruence in the case of sentential
logics (in the form of expression (1.6) of page 29) was already considered in Smi-
ley [1962], where it is called “synonymity” and is presented as the true general
notion of equivalence of formulas, of which Tarski’s ≡ is but a particular form
suitable for classical logic (due to the Deduction Theorem).

From Proposition 1.2 follows at once:

PROPOSITION 1.3. On every algebraA, the Tarski operator ∼ΩA is order-pre-
serving, in the sense that, if L,L′ are abstract logics onA such that L 6 L′, then
∼
Ω(L) ⊆ ∼

Ω(L′). a
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Bilogical morphisms and logical quotients

Given two abstract logics L and L′, an homomorphism h ∈ Hom(A,A′) is a
logical morphism from L into L′ when h−1[T ] ∈ C for any T ∈ C′. An abstract
logic L = 〈A, C〉 is said to be projectively generated from a family {Li : i ∈ I}
of abstract logics by a family of homomorphisms {hi ∈ Hom(A,Ai) : i ∈
I} when L is the strongest abstract logic such that each of the hi is a logical
morphism; that is, when the closure system C is the smallest one including the
sets h−1

i [T ] for all T ∈ Ci and all i ∈ I . We will deal almost exclusively with
the particular case where the generating families reduce to one abstract logic and
one homomorphism; in this case L is projectively generated from L′ by h when
C = {h−1[T ] : T ∈ C′}. A mapping h is a bilogical morphism from L onto L′

(or between L and L′) when it is an epimorphism and projectively generates L
from L′.

These notions were introduced in Brown and Suszko [1973]. The main prop-
erties of bilogical morphisms that we will need are summarized in the next two
propositions; they are mainly due to Brown, Suszko and Verdú.

PROPOSITION 1.4. Let L and L′ be two abstract logics, and h ∈ Hom(A,A′)
be an epimorphism. Then the following properties are equivalent:

(i) h is a bilogical morphism between L and L′.
(ii) ∀X ⊆ A , C(X) = h−1

[
C′
(
h[X]

)]
; that is, a ∈ C(X) iff h(a) ∈

C′
(
h[X]

)
.

(iii) ∀X ⊆ A , h
[
C(X)

]
= C′

(
h[X]

)
, and kerh ∈ ConL.

(iv) ∀Y ⊆ A′ , C′(Y ) = h
[
C
(
h−1[Y ]

)]
, and kerh ∈ ConL.

(v) C′ =
{
h[T ] : T ∈ C

}
and kerh ∈ ConL.

(vi) C =
{
h−1[S] : S ∈ C′

}
. a

Note that what the condition “kerh ∈ ConL” says is just that for any a, b ∈
A , h(a) = h(b) implies C(a) = C(b). This condition is usually easily verifiable,
and actually items (iii) and (iv) are two of the most useful characterizations of the
notion of bilogical morphism.

PROPOSITION 1.5. Let L and L′ be two abstract logics, and h ∈ Hom(A,A′)
be an epimorphism. Then h is a bilogical morphism from L onto L′ if and only
if their lattices of theories C and C′ are isomorphic under the correspondence
induced by h. In particular for all T ∈ C , h−1

[
h[T ]

]
= T , and for all S ∈

C′ , h
[
h−1[S]

]
= S. a

This very strong relation between the lattices of theories of two abstract logics
when there is a bilogical morphism between them has several consequences:
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COROLLARY 1.6. Let L1 and L2 be abstract logics, and let h be a bilogical
morphism between them. Then the mapping C 7→ {h[X] : X ∈ C} is an isomor-
phism between the lattice of all abstract logics onA1 extending L1 and the lattice
of all abstract logics onA2 extending L2. a

In the next statement we use the following notation: If h : A → B is any
mapping and R ⊆ B×B, then h−1[R] =

{
〈x, y〉 ∈ A×A :

〈
h(x), h(y)

〉
∈ R

}
.

PROPOSITION 1.7. Let h be a bilogical morphism between the abstract logics
L1 = 〈A1,C1〉 and L2 = 〈A2,C2〉. Then for any T ∈ C2 , h−1

[ ∼
Ω(LT2 )

]
=

∼
Ω
(
Lh
−1[T ]

1

)
; in particular we have that

∼
Ω(L1) = h−1

[ ∼
Ω(L2)

]
.

PROOF. Using the characterization (1.3) of the Tarski congruence and bearing
in mind that h is a bilogical morphism and so an epimorphism, it is easy to check
that, for any a, b ∈ A1 ,

〈a, b〉 ∈ h−1
[ ∼
Ω(LT2 )

]
iff
〈
h(a), h(b)

〉
∈ ∼
Ω(LT2 )

iff ∀ϕ(p, ~q ) ,∀~c ∈ Ak2 , CT2
(
ϕA2(h(a),~c )

)
= CT2

(
ϕA2(h(b),~c )

)
iff ∀ϕ(p, ~q ) ,∀ ~d ∈ Ak1 , CT2

(
h
(
ϕA1(a, ~d )

))
= CT2

(
h
(
ϕA1(b, ~d )

))
iff ∀ϕ(p, ~q ) ,∀ ~d ∈ Ak1 , h

[
Ch
−1[T ]

1

(
ϕA1(a, ~d )

)]
= h

[
Ch
−1[T ]

1

(
ϕA1(b, ~d )

)]
iff ∀ϕ(p, ~q ) ,∀ ~d ∈ Ak1 , Ch

−1[T ]
1

(
ϕA1(a, ~d )

)
= Ch

−1[T ]
1

(
ϕA1(b, ~d )

)
iff 〈a, b〉 ∈ ∼Ω

(
Lh
−1[T ]

1

)
.

By taking T = C2(∅) we obtain the second part. a

Two abstract logics L and L′ are isomorphic (and we write L ∼= L′) when
there is a bijective logical morphism between them whose inverse is also a logical
morphism. This is equivalent to saying that there is a bilogical morphism between
them which is an isomorphism betweenAL andAL′ , and also to saying that there
is an isomorphism betweenAL andAL′ such that CL′ = {h[T ] : T ∈ CL}.

If L = 〈A, C〉 is an abstract logic and θ ∈ ConA, an abstract logic can be ob-
tained on the quotient algebraA/θ by defining C/θ = {S ⊆ A/θ : π−1

θ [S] ∈ C},
where πθ is the natural epimorphism or projection ofA ontoA/θ; we put L/θ =
〈A/θ, C/θ〉, call this the logical quotient of L by θ, and denote the corresponding
closure operator by C/θ. Then obviously πθ is a logical morphism between L and
L/θ. If in addition θ is a logical congruence of L, then C/θ = {πθ[T ] : T ∈ C}
and πθ becomes a bilogical morphism between L and L/θ.
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The following results lead us to conclude that the roles of logical congruences
and bilogical morphisms in the theory of abstract logics, and the relationships
between them, are parallel to those of congruences and epimorphisms in universal
algebra, and especially similar to those of matrix congruences and “strict” matrix
epimorphisms (also called “strong”, “reductive” or “contractive” in the literature)
in the theory of logical matrices, as developed for instance in Blok and Pigozzi
[1986], [1992], Czelakowski [1980], or Wójcicki [1988].

THEOREM 1.8 (Homomorphism Theorem). If h is a bilogical morphism be-
tween the abstract logics L and L′, then L/ kerh ∼= L′ by means of a unique
isomorphism g such that h = g◦π, where π is the projection fromL ontoL/ kerh.

PROOF. See Brown and Suszko [1973] Theorem VIII.7. a

THEOREM 1.9 (Second Isomorphism Theorem). If L is an abstract logic and
θ, θ′ ∈ ConL are such that θ ⊆ θ′, then θ′/θ ∈ Con(L/θ) and (L/θ)

/
(θ′/θ) ∼=

L/θ′, where the isomorphism is given in the customary way by (a/θ)
/

(θ′/θ) 7→
a/θ′.

PROOF. From the Second Isomorphism Theorem of Universal Algebra we
know that the mapping h : (A/θ)

/
(θ′/θ) → A/θ′ given by h(a/θ)

/
(θ′/θ) =

a/θ′ is an isomorphism between the two algebras such that the following diagram
commutes,

A
π′ - A/θ′

A/θ

π

?

π′′
- (A/θ)

/
(θ′/θ)

h

6

where π, π′ and π′′ are the natural projections. By construction we know that
π and π′ are also bilogical morphisms between the corresponding abstract logics.
On the other hand, one can check that θ′/θ ∈ Con(L/θ), using that θ, θ′ ∈ ConL.
Thus π′′ is also a bilogical morphism between L/θ and (L/θ)

/
(θ′/θ). Using all

this, it is straightforward to check that

(C/θ)
/

(θ′/θ) =
{
h−1[S] : S ∈ C/θ′

}
and as a consequence h, which we know is an algebraic isomorphism, is at the
same time a bilogical morphism, that is, h is a logical isomorphism. a
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THEOREM 1.10 (Correspondence Theorem). If L is an abstract logic then for
any θ ∈ ConL, the segment

[
θ ,
∼
Ω(L)

]
of ConL is isomorphic to the lattice

Con(L/θ) by the mapping θ′ 7→ θ′/θ.

PROOF. By Theorem 1.9 we know that if θ ⊆ θ′ ⊆ ∼
Ω(L), then θ′/θ ∈

Con(L/θ). Taking into account the Correspondence Theorem of Universal Al-
gebra, it suffices to prove that, if θ ⊆ θ′ ∈ ConA and θ′/θ ∈ Con(L/θ) then
θ′ ∈ ConL: If 〈a, b〉 ∈ θ′ then 〈a/θ, b/θ〉 ∈ θ′/θ and therefore C/θ(a/θ) =
C/θ(b/θ), but since the projection is a bilogical morphism between L and L/θ
this implies C(a) = C(b). This holds for any a, b ∈ A, so θ′ ∈ ConL. a

COROLLARY 1.11. Let L be an abstract logic, and let θ ∈ ConL . Then
∼
Ω(L/θ) = ∼

Ω(L)/θ. a

Thus for any L , ∼Ω
(
L/ ∼Ω(L)

)
= ∼
Ω(L)/ ∼Ω(L) is the identity on A/ ∼Ω(L).

This makes the following definition inevitable and natural:

DEFINITION 1.12. An abstract logic L = 〈A,C〉 is reduced when it has only
one logical congruence, that is, when ∼Ω(L) = IdA.

Given any abstract logic L, we will put L∗ = L/ ∼Ω(L), and will call the abstract
logic L∗ the reduction of L.

If L is a class of abstract logics, then we will also put L∗ = {L∗ : L ∈ L }.

If L is an abstract logic, then Corollary 1.11 tells us that L∗ is always reduced.
If L is already reduced, then it is trivially isomorphic to its reduction L∗, and one
can simply identify both abstract logics. Given an abstract logic L = 〈A,C〉,
if we do not consider any other abstract logic on A, then there is no possible
confusion if we write A∗ = A/

∼
Ω(L) with universe A∗ = A/

∼
Ω(L), and also

C∗ = C/ ∼Ω(L) and C∗ = C/ ∼Ω(L), in order to write L∗ = 〈A∗,C∗〉; the
projection will be π(a) = a∗ = a/

∼
Ω(L). These notational conventions will be

used extensively throughout the monograph. The most elementary properties of
this process of reduction follow (but see also Theorems 2.36 and 2.44):

PROPOSITION 1.13. Assume that L is an abstract logic, and that θ ∈ ConL.
Then (L/θ)∗ ∼= L∗.

PROOF. Just consider the chain of equalities

(L/θ)∗ = (L/θ)
/ ∼
Ω(L/θ) = (L/θ)

/
( ∼Ω(L)/θ) ∼= L/ ∼Ω(L) = L∗ ,

where we have used Corollary 1.11 and Theorem 1.9. a

PROPOSITION 1.14. If there is a bilogical morphism between two abstract log-
ics L and L′ then their reductions are isomorphic, that is, L∗ ∼= (L′)∗.
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PROOF. Let h be any bilogical morphism between L and L′. By Theorem 1.8
we know that L/ kerh ∼= L′. Since by Proposition 1.7 any logical isomorphism
between two abstract logics puts their Tarski congruences into correspondence,
their reductions are also isomorphic. That is, (L/ kerh)∗ ∼= (L′)∗. Moreover
we know that kerh ∈ ConL, therefore we can apply Proposition 1.13 to obtain
(L/ kerh)∗ ∼= L∗, and as a consequence L∗ ∼= (L′)∗. a

Therefore, the only possible bilogical morphisms between two reduced abstract
logics are logical isomorphisms. The following result, which we will use in Chap-
ter 2, is analogous to Theorem VIII.5 of Brown and Suszko [1973].

PROPOSITION 1.15. Let L, L′ and L′′ be abstract logics, let f be a logical
morphism from L to L′ and let g be a bilogical morphism from L onto L′′ such
that ker g ⊆ ker f . Then there is a unique logical morphism h from L′′ into L′

such that h ◦ g = f . Moreover, f projectively generates L from L′ if and only if
h projectively generates L′′ from L′.

PROOF. Let h be the unique homomorphism fromA′′ intoA′ such that h◦g =
f ; its existence is guaranteed by the condition that ker g ⊆ ker f . If T ∈ C′
then g−1

[
h−1[T ]

]
= f−1[T ] ∈ C since f is a logical morphism; but since g is a

bilogical morphism, this implies that h−1[T ] ∈ C′′, and thus we see that h is also a
logical morphism. If, moreover, f projectively generatesL fromL′, then Theorem
VIII.5 of Brown and Suszko [1973] proves that h also projectively generates L′′

from L′. If, conversely, h projectively generates L′′ from L′, then using that g is
a bilogical morphism, we have C = {g−1[S] : S ∈ C′′} = {g−1

[
h−1[T ]

]
: T ∈

C′}, that is, C = {f−1[T ] : T ∈ C′} which says that f projectively generates L
from L′. a

It is a well-known result of Universal Algebra that any algebra is isomorphic to
a quotient of a formula algebra constructed from a large enough set of variables.
This fact extends to abstract logics in the following sense:

PROPOSITION 1.16. Let L be an abstract logic and κ an infinite cardinal num-
ber, κ > cardAL. If we denote by Fmκ the algebra of formulas with κ variables,
then there is an abstract logic Lκ on Fmκ and a congruence θ ∈ ConLκ such
that L is isomorphic to Lκ/θ.

PROOF. Let h : Fmκ → AL be any epimorphism. We can consider the ab-
stract logic Lκ projectively generated from L by h; then h is a bilogical morphism
from Lκ onto L, and by Proposition 1.4 kerh ∈ ConLκ; therefore the Homomor-
phism Theorem 1.8 tells us that Lκ/ kerh ∼= L. a
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Since it seems clear that logical morphisms are one of the right kind of “mor-
phisms” between abstract logics, and that bilogical morphisms determine some
kind of “equivalence” between abstract logics, it is important to determine which
properties are preserved under bilogical morphisms. It turns out that many typical
metalogical properties of closure operators, like the Deduction Theorem or the
Property of Disjunction, satisfy this requirement, see Section 2.4. We prove here
a very basic one:

PROPOSITION 1.17. If h is a bilogical morphism between two abstract logics
L and L′, then one of them is finitary if and only if the other one is finitary.

PROOF. Just use the following two facts, already established in Proposition
1.4: that C(X) = h−1

[
C′
(
h[X]

)]
and that C′(X) = h

[
C
(
h−1[X]

)]
. a

Note that this property cannot be proved by using Proposition 1.5 alone, be-
cause the lattice isomorphism induced by h between the corresponding closure
systems might not preserve unions of directed families; thus the proof published
in Verdú [1987] is erroneous. Indeed, while it is true that if C is an inductive
closure system then the lattice 〈C,⊆〉 is algebraic, it is interesting to note that
the converse might not be true: if for some closure system C the lattice 〈C,⊆〉
is algebraic, then it is isomorphic to the closure system of closed sets of some
finitary closure operator, but this operator might not be the original one; this fact
has been recognized recently by Herrmann in the context of his generalization of
Blok and Pigozzi’s theory of algebraizable logics to non-finitary ones, see Her-
rmann [1993b] and Herrmann and Wolter [1994].

Sentential logics

It is customary to define a sentential logic as a pair of the form S = 〈Fm,`S〉
where Fm is a formula algebra, and `S ⊆ P (Fm)×Fm is a relation satisfying
the following five properties, for all Γ,∆ ⊆ Fm and all ϕ ∈ Fm (as usual we
write Γ `S ϕ for 〈Γ , ϕ〉 ∈ `S ):

(S1) If ϕ ∈ Γ then Γ `S ϕ .
(S2) If Γ `S ϕ and Γ ⊆ ∆ then ∆ `S ϕ.
(S3) If Γ `S ϕ and for every γ ∈ Γ , ∆ `S γ then ∆ `S ϕ.
(S4) If Γ `S ϕ then there is a finite Γ0 ⊆ Γ such that Γ0 `S ϕ.
(S5) If Γ `S ϕ then e[Γ ] `S e(ϕ) for all substitutions e ∈ Hom(Fm,Fm).

Note that property (S2) is a consequence of properties (S1) and (S3). In general, a
relation satisfying properties (S1) to (S3) is called a consequence relation, while
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property (S4) is called finitarity, and condition (S5) is called structurality12; thus
in this monograph we define a sentential logic as a finitary and structural conse-
quence relation on a formula algebra13.

The notation Γ `S ∆ means that Γ `S δ holds for all δ ∈ ∆; remark that
this notation has nothing to do with “multiple-conclusion” consequences. The
notation Γ a`S ∆ means that both Γ `S ∆ and ∆ `S Γ hold.

In order to present sentential logics as a particular kind of abstract logics, we
can equally say that a sentential logic is an abstract logic S = 〈Fm,CnS〉 on an
algebra of formulas such that the closure operator CnS is finitary and structural;
for a closure operator to be structural means that, for every e ∈ Hom(Fm,Fm),
if ϕ ∈ CnS(Γ ) then also e(ϕ) ∈ CnS

(
e[Γ ]

)
. The equivalence between the two

definitions is easily established by setting:

ϕ ∈ CnS(Γ ) ⇐⇒ Γ `S ϕ (1.4)

The closed sets of the operator CnS are called the theories of the sentential logic,
and the closure system they form is denoted by ThS; the property of being struc-
tural can be formulated in terms of theories by saying that the family ThS is
closed under inverse substitutions, i.e., if Γ ∈ ThS then e−1[Γ ] ∈ ThS for any
substitution e. In informal remarks we often refer to a sentential logic as a logical
system or simply as a logic.

Since we treat a sentential logic as a special kind of abstract logic, all previ-
ous notions and results concerning finitary abstract logics apply to them; but in
addition a sentential logic is also structural. This implies that the set of theorems
CnS(∅) is closed under substitutions. However, note that an arbitrary theory need
not be so; therefore, whenever we consider axiomatic extensions SΓ of S by some
Γ ∈ ThS in the sense defined on page 18, we are referring to the abstract logic
〈Fm,SΓ 〉, but this one will be structural (i.e., a sentential logic) if and only if Γ
is closed under substitutions; this is for instance the case whenever Γ is the the-
ory generated by a set of additional axioms closed under substitutions (sometimes
called axiom schemes), which is the most common situation.

12Condition (S5) is also called, equally often, substitution invariance.
13In other, more comprehensive studies in the general theory of abstract algebraic logic (such

as Czelakowski [2001b]) the property of finitarity is not incorporated into the definition of a sentential
logic, but is rather one of its possible properties subject to investigation.
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S-filters and S-matrices

Given a sentential logic S and an algebra A of the same similarity type, a
subset F ⊆ A is an S-filter14 iff for any Γ ∪ {ϕ} ⊆ Fm and any interpretation
h ∈ Hom(Fm,A),

if Γ `S ϕ and h[Γ ] ⊆ F then h(ϕ) ∈ F .

Observe that another, often practical way of saying the same thing is that for
any h ∈ Hom(Fm,A), the set h−1[F ] is a theory of S. A matrix 〈A, F 〉 is
a matrix for S, or an S-matrix, when F is an S-filter on A; the class of all S-
matrices will be denoted by MatrS, and the class of all reduced S-matrices by
Matr∗S. The set of all S-filters on a given algebraA is denoted byFiSA; this set
is an inductive closure system, thus it is also an algebraic, and hence complete,
lattice, ordered by ⊆. The associated closure operator will be denoted by FiAS ;
that is, for any X ⊆ A , FiAS (X) is the least subset of A containing X which is
“closed under the inferences of S” in the sense that it is closed under the images
of these inferences under any interpretation; more precisely, one has the following
characterization, which will be useful at several points in the monograph:

LEMMA 1.18. For all X ⊆ A , FiAS (X) =
⋃
{Xn : n ∈ ω} where the sets

Xn are defined as follows: X0 = X , and for any n ∈ ω , Xn+1 = {x ∈
A : There are ϕ ∈ Fm and a finite Γ ⊆ Fm such that Γ `S ϕ and there is
h ∈ Hom(Fm,A) with h[Γ ] ⊆ Xn and h(ϕ) = x} . a

The following facts will be used later on:

PROPOSITION 1.19. Let h : A→ B be an (algebraic) homomorphism. Then,
for any S-filter G onB , h−1[G] is an S-filter onA; and if moreover h is surjec-
tive then for any G ⊆ B, if h−1[G] is an S-filter on A then also G is an S-filter
onB.

PROOF. IfG is an S-filter onB, taking the comment that follows the definition
of S-filter into consideration it is easy to see that h−1[G] is an S-filter onA. Now,
if G ⊆ B is such that h−1[G] is an S-filter, and Γ `S ϕ, let g ∈ Hom(Fm,B)
be such that g[Γ ] ⊆ G. By the Axiom of Choice, there is f ∈ Hom(Fm,A)
such that h ◦ f = g. Therefore, f [Γ ] ⊆ h−1[G]; so f(ϕ) ∈ h−1[G] and hence,
g(ϕ) ∈ G. This proves that G is an S-filter on B. a

14In some cases, especially where the notion of S-filter coexists with a purely algebraic notion of
filter (such as lattice filters in any kind of algebras having a lattice reduct), the terms logical filter and
deductive filter are also used for emphasis; the latter originates in Rasiowa [1974], p. 200.
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PROPOSITION 1.20. If F ∈ FiSA and θ ∈ ConA, then θ is compatible with
F , that is, θ ⊆ ΩA(F ), if and only if F = π−1

θ [G] for some G ∈ FiS(A/θ),
where πθ is the projection fromA ontoA/θ.

PROOF. If θ ∈ ConA is compatible with F ∈ FiSA, then π−1
θ

[
πθ[F ]

]
= F .

Therefore, by Proposition 1.19, G = πθ[F ] is the required S-filter. Conversely, if
F = π−1

θ [G] for some G ∈ FiSA, 〈a, b〉 ∈ θ and a ∈ F , then πθ(b) = πθ(a) ∈
G. So, b ∈ F , and thus we see that θ is compatible with F . a

PROPOSITION 1.21. Let h : A → B be an epimorphism. Then the following
conditions are equivalent:

(i) h is a bilogical morphism between the abstract logic 〈A,FiSA〉 and the
abstract logic 〈B,FiSB〉.

(ii) h induces an isomorphism between the lattices FiSA and FiSB.
(iii) For any F ∈ FiSA , h[F ] ∈ FiSB, and kerh ∈ Con〈A,FiSA〉.

PROOF. Clearly (i) implies (ii), and also (ii) implies (iii) since if a, b ∈ A sat-
isfy h(a) = h(b) and a ∈ F ∈ FiSA then b ∈ h−1

[
h[F ]

]
= F . Now suppose

that (iii) holds; then by assumption h[F ] ∈ FiSB for all F ∈ FiSA, and con-
versely for every G ∈ FiSB we know that h−1[G] ∈ FiSA and G = h

[
h−1[G]

]
because h is surjective. Then 1.4.(v) shows that h is a bilogical morphism. a

PROPOSITION 1.22. If h is a bilogical morphism from 〈A,FiSA〉 onto 〈B, C〉
then C = FiSB. In particular, (FiSA)∗ = FiS(A∗). Moreover, if two abstract
logics L = 〈A,C〉 and L′ = 〈A′,C′〉 are isomorphic, then C = FiSA if and
only if C′ = FiSA′.

PROOF. By Proposition 1.19 C ⊆ FiSB; on the other hand if F ∈ FiSB it
is always true that h−1[F ] ∈ FiSA, but since h is a bilogical morphism, F =
h
[
h−1[F ]

]
∈ C. The last part can be proved by applying the first one both to h

and to h−1. a

The classes Alg∗S and KS

If M = 〈A, D〉 ∈ MatrS and θ ∈ ConA is compatible with D, then
also M/θ = 〈A/θ,D/θ〉 ∈ MatrS, because π−1

θ [D/θ] = D; in particular
M∗ ∈ Matr∗S and it is then easy to show that Matr∗S is the closure under
isomorphisms of the class (MatrS)∗. We will denote by Alg∗S the class of all
algebra reducts of all matrices in Matr∗S. This is the class of algebras usually
associated with any sentential logic; for instance if S is algebraizable in the sense
of Blok and Pigozzi [1989a], then Alg∗S is the equivalent quasivariety semantics



ABSTRACT LOGICS AND SENTENTIAL LOGICS 29

of S. In Rasiowa [1974], for the systems there considered (which are all alge-
braizable), the algebras in Alg∗S are called “S-algebras”; in Chapter 2 we will
extend this term to cover more cases; see also the comments on page 36 after
Definition 2.16. Note specially that the class Alg∗S is not the result of applying
the reduction process to any other class of algebras: in general we apply the star
notation to classes of matrices and of abstract logics to indicate the result of the
reduction process, but the class of “S-algebras” that will be introduced in Section
2.2, and which will be denoted by AlgS, will bear a different relation to Alg∗S;
however, in choosing the notation Alg∗S we have preferred to follow the standard
practice.

Note that for any F ∈ FiSA , ΩA(F ) ∈ ConAlg∗SA. In Blok and Pigozzi
[1992] the authors characterize several kinds of sentential logics15 by the be-
haviour of the Leibniz operatorΩA with respect to the lattice structures of FiSA
and of ConAlg∗SA for an arbitrary algebra A, a trend already advanced in Blok
and Pigozzi [1986], [1989a]. Some of their results will be used in this monograph.

Due to the fact that S is structural, the S-filters on the formula algebra are
exactly the S-theories; and the characterization (1.1) of the Leibniz congruence
on page 16 takes the following simpler form onFm, already found in Łoś [1949]:
If Γ ⊆ Fm then for every ϕ,ψ ∈ Fm,

〈ϕ,ψ〉 ∈ ΩFm(Γ ) ⇐⇒ ∀γ(p, ~q ) ∈ Fm ,

γ(ϕ, ~q ) ∈ Γ iff γ(ψ, ~q ) ∈ Γ.
(1.5)

As a consequence, the characterization (1.3) of the Tarski congruence on page 19,
becomes in the case of a sentential logic

〈ϕ,ψ〉 ∈ ∼Ω(S) ⇐⇒ ∀γ(p, ~q ) ∈ Fm , γ(ϕ, ~q ) a`S γ(ψ, ~q ) (1.6)

(this characterization appears already in Smiley [1962] and in Wójcicki [1988]
p. 59, although with different terminology and notation).

As we have already commented on page 19, in the case of a sentential logic
S the Tarski congruence ∼

Ω(S) is actually the one normally used to obtain the
so-called Lindenbaum-Tarski algebra of S, which is Fm∗ = Fm/

∼
Ω(S); ac-

cordingly, one can call the abstract logic S∗ =
〈
Fm∗,CnS/

∼
Ω(S)

〉
the Lin-

denbaum-Tarski quotient of S . We will denote by KS the variety generated by
the Lindenbaum-Tarski algebra Fm∗. This variety is sometimes considered to
be the class of algebras canonically associated with S, as in Rautenberg [1991].
However, there are examples in the literature where the class Alg∗S, associated
with S in the general theory of matrices, is not a variety but a quasivariety, or

15The classes of logics that result and the relations between them form what has been called later
on the Leibniz hierarchy; see Font, Jansana, and Pigozzi [2003], page 49, for a picture.
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even a non-elementary class. It is well-known (see Wójcicki [1988] Lemma 1.7.4)
that ∼Ω(S) is a fully invariant congruence of Fm; as a consequence an equation
ϕ ≈ ψ holds in KS , that is, it holds in Fm∗ = Fm/

∼
Ω(S), iff 〈ϕ,ψ〉 ∈ ∼

Ω(S),
and the algebraFm∗ is free in KS (see Burris and Sankappanavar [1981] Lemma
14.7 for instance).

Matrices are used to build up a semantics for sentential logics, and the usual
completeness notion arises: one says that a sentential logic S is complete with
respect to a class M of matrices when for all Γ ∪ {ϕ} ⊆ Fm , Γ `S ϕ holds
if and only if for every matrix 〈A , F 〉 ∈ M and every h ∈ Hom(Fm,A),
h[Γ ] ⊆ F implies h(ϕ) ∈ F . From the fact that FiSFm = ThS it immedi-
ately follows that an arbitary sentential logic S is complete with respect to the
whole class MatrS; one can also prove that any S is complete with respect
to the class Matr∗S. For these and related questions on matrix semantics see
Wójcicki [1988]. We will just need the following result:

PROPOSITION 1.23. KS is the variety generated by the class Alg∗S.

PROOF. As we have noted, an equation ϕ ≈ ψ holds in KS iff 〈ϕ,ψ〉 ∈ ∼Ω(S),
that is, by (1.6), iff for any γ(p, ~q) ∈ Fm , γ(ϕ, ~q ) a`S γ(ψ, ~q ). Since S is com-
plete with respect to the class Matr∗S, this holds iff for any 〈A, F 〉 ∈ Matr∗S
and any sequences ~a,~c in A, γA

(
ϕA(~a),~c

)
∈ F ⇐⇒ γA

(
ψA(~a),~c

)
∈ F ,

which by (1.1) amounts to saying that for all ~a,
〈
ϕA(~a) , ψA(~a)

〉
∈ ΩA(F ), and

this is equivalent to ϕA(~a) = ψA(~a) because the matrix is reduced. Finally, to
say that this holds for all reduced matrices of S is equivalent to saying that the
equation ϕ ≈ ψ holds in everyA ∈ Alg∗S. a

The reader may have noticed that the same proof actually shows that the class
of all algebra reducts of any class M of reduced matrices such that S is complete
with respect to M generates the same variety KS . We will find better descriptions
of this class of algebras, for some restricted cases, in Section 2.4, and also in
Chapter 4.


