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§9. A general iterability theorem

In this section we give a full proof of the iterability facts we have used.
The proof results from an amalgamation of §12 of [FSIT], §4 of [IT], and
§2 of this paper. Given a premouse M of the construction C of [FSIT], and
an iteration tree 7 on M, §12 of [FSIT] shows how to use the background
extenders of C to “enlarge 7” to an iteration tree i on V. The good behavior
of U guarantees that of 7. That U is well-behaved is shown in §4 of [IT], by
realizing in V the models M% occurring on countable elementary submodels
U of U. However, since the construction C of the present paper does not
involve background extenders over V, we cannot in the current situation
enlarge 7 to a tree on V. Instead, we shall run the enlargement process of
[FSIT] and the realization process of [IT] simultaneously, making do with the
partial background extenders of C as in §2.

We have also re-organized and streamlined the construction of §4 of [IT].
Moreover, in order to cover all our applications, we shall consider more than
just iteration trees on premice.

Definition 9.1. A creature is a structure which is either a premouse, a
psuedo-premouse, or a bicephalus.

Let C be the construction of §1, that is,

C = (Ng | € < 2NN is defined) .

Definition 9.2. M is a creature of C just in case for some j, &

(a) M =¢;(Ng), or

(b) M = (€, (Ng), F), M is a psuedo-premouse, and letting k = crit(F),
VA C P(k)M(JA| £ w = F has a certificate on A), or

() M = (€, (Ng), Fo, F1), M is a bicephalus, and letting i € {0,1} and
ki = crit(F;), VA C P(ki)M (|A| < w = F; has a certificate on A).

We say M is C-ezotic just in case condition (a) above fails to hold.

If M is a creature of C which is not a premouse, then M must be C-
exotic, but we do not know whether the converse is true. If M = €;(N),
then we call (j,€) an index (in C) for M; a non-exotic M can have more
than one such index, but all its indices have the same second coordinate. If
M is G-exotic, it must be of the form (&, (Ng), F) or (€, (Ng), Fo, F1), and
then we say (0,€) is an index (in C) for M. A C-exotic creature of C has
exactly one index in C. By ind(M) we mean the common second coordinate
of all indices of M.

Recall that a coarse premouse is a structure M = (M, €, §) such that M is
transitive, power admissible, satisfies choice, infinity, and the full separation
schema, satisfies the full collection schema for domains contained in Vs, and
such that wé =6 and “M C M.
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Definition 9.3. If M is a coarse premouse, then CM = WM ] € <
M and NEM exists) is the construction of §1 as done inside M, up to
stage 6M.

Thus C = CM for all coarse premice M such that 6™ = 2 and V_,’r =Va.

Notice that for any coarse premouse M, NM € V4 whenever NeM exists.
Flﬁthel‘ , there are in Vsam certificates for all extenders put into models of
cM.
By convention, all creatures are 0-sound. The notion of a weak 0-embedding
extends in an obvious way to creatures which are not premice. If 7 : M — N
and M and N are psuedo-premice, then = is a weak 0-embedding just in case
w is rXy elementary, and for some cofinal X C ORM, 7 isrX; elementary
on parameters from X. If 7 : M — N where M = (M’, Fy, F1) and N =
(N', Go, G1) are bicephali, then 7 is a weak 0-embedding just in case it is a
weak 0-embedding from (M’, Fy) to (N’, Go) and a weak 0-embedding from
(M, F1) to (N',G1). For k > 0, we shall consider k-soundness and weak
k-embeddings only as applied to premice.

Definition 9.4. Let M be a creature and let k < w; then (R,Q,7) is a
k-realization of M just in case R is a coarse premouse and

(a) Q is a creature of C® of the same type as M, and if k > 0 then M
is premouse and Q = Cx(Ng)® for some €,

(b) 7 is a weak k-embedding from M into Q, and

(¢) m, MER.

In the situation of 9.4, if M is a premouse then the ordinal £ as in (a) is
determined uniquely by @ and k.
If M is a creature and wfB = OR™M, then we set Jé"‘ = M.IfwB < ORM,

then we let 7, ﬁM be the unique premouse @ such that @) is an initial segment

of M and wB = ORC.

Definition 9.5. Two creatures M and N agree below v just in case for all
<y, M=y

We wish to consider iteration trees whose base is a family of creatures.

Definition 9.6. A phalanz of creatures is a pair

(((Mp, kg) | B < ), {(vs,28) | B< @)

such that for all f < «

(1) Mg is a creature, kg < w, and if kg # 0 then Mgy is a kg-sound
premouse;

(2) if B<v<a, then vg < vy,

(3) if B < v < a, then Ag is the least n > vg such that M, = n is a
cardinal, and moreover, py (My) > Ap;

(4) A\g < ORM*; and



The Core Model Iterability Problem 91

(5) if B < v < a, then Mg agrees with M., below Ag.

If B is a phalanx of creatures, say B = ({((Mpg, kg) | B < a),{(vs,Ag) | B <
a)), then we set M5 = My, deg®(8) = kg, v(8, B) = v and A(8, B) = As.
We also set [h(B) = o + 1. Notice that, because of (3), the A(3, B)’s are
determined by the v(f, B)’s and the Mg’s.

If B is a simple phalanx in the sense of §6, then B becomes a phalanx in
the sense of 9.6 if we set kg = w for all # < lh(B), and v(B, B) = A(B, B) for
all 8+ 1 < lh(B). The notion of an iteration tree on a simple phalanx, as
defined in §6, extends in an obvious way to phalanxes as defined in 9.6.

Definition 9.7. Let T be an iteration tree of length 8 + 1 on a phalanz B of
length o+ 1. Then:

(i) (a) for B < a, deg” (B) = deg®(8), and for a < B < 0, deg” (B) 15 the
unique k < w such that MZ; = Ultk((Mg)*, Eg) if B 1s a successor, and the
eventual value of degT(‘y) for vTB sufficiently large if B is a limit,

(b) for B < a, v(B,T) = v(B,B) and A(B,T) = X3, B), while for a <
B<0,v(B,T)=v(E]) and X(B,T) = Ih(E}).

(if) ¢(7) is the unique phalanz D such that Ih(D such that Ih(D) =0+ 1
and

(a) M2 = M% and deg®(B) = deg” (B) for all B < 6,

(®) v(8,D) =v(B,T) and X(B,D) = A(B,T) for all B < 6.

A realization of a phalanx B will be a family of realizations of the crea-
tures occurring in B. We shall demand that these realizations agree with one
another in a certain way. In order to explain this agreement condition, we
now recall the terminology associated to “resurrection” in §12 of [FSIT].

Let M be a creature wa = ORM, and t < w. Suppose t = 0 if M is not
a premouse. Let wA < ORM. Set

(Bo, ko) = (A,0),
and

(Bi+1, ki+1) = lexicographically least pair (3, k). such that

<’\)0) < <ﬂirki) Slez‘ (ﬂ) k) Slex (aat)

and pe(J5) < pr,(T50").
where (B;4+1, ki+1) is undefined if no such pair exists. Let ¢ be largest such
that (8;, k;) is defined; then we call ((Bo, ko), - - -, (Bi, ki)) the (t,A) dropdown
sequence of M. It is clear that if ((B.,k.) | e < i) is the (¢,A) dropdown
sequence of M, then (Be, ke) <]ex (Bet1,ket1) for alle < i,and 0 < ke <w
for all e < 7 such that e > 0. Also, letting wa = ORM,

{pe(TM) | X < BA(B k) Sjex (0, t) Ape(TM) < A} = {pe. (TH) | e < i}
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The following lemma is proved in §12 of [FSIT]. We gave its proof in a
typical special case in Lemma 2.6 of these notes.

Lemma 9.8. Let M be a creature of C with indez (t,€), let ((Be, ke) | e < 7)
be the (t,A) dropdown sequence of M. Then there is a unique v < £ such that
(7[;"" is a creature of C with index (k;,7).

Now let M be a creature of C with index (t,£), and let wA < ORM.
We define the (M, t,£) resurrection sequence for X as follows. Let (8, k) be
the last term in the (¢, ) dropdown sequence of M. If (8, k) = (), 0), then
the (M, t,§) resurrection sequence for A is empty. If (8, k) # (), 0) (so that
k > 0), then let ¥ < & be unique so that JpM = €x(N5), as given by 9.8. Let

T G (Ny) = Co1(N5)

be the canonical embedding. Then the (M,t,£) resurrection sequence for A
is (B, k,v,m)"s, where s is the (€x_1(Ny),k — 1,7) resurrection sequence
for w(A). Here, as usual, if A = OR N €x(N,), then () = OR N Cx_1(N5)
by convention. Notice (7,k — 1) <jox (€,1), so this is indeed a legitimate
inductive definition.

Now suppose M is a creature of C with index (t,£), wA < ORM, (8., k.) |
e < 1) is the (¢,A) dropdown sequence of M, and ((8e,£e, e, Te) | € < ) is
the (M, t,£) resurrection sequence for A. As explained in §12 of [FSIT], we
can find stages

1<e<er<---<e_1=35

such that for 1 < j <i-1,

(be,r8e,) = Te,—10Me,—g 00 mo({Bi—j, ki—j)) -

2

We set ep = 0, and interpret “m.,_1 0---0 my” as standing for the identity
embedding; this makes the equation just displayed true for j = 0 as well. Set

Oij—j = Te, OMe, -1 00T

so that
0','_]' : Jﬂ/\/l._] - Q:leJ-l('N' eJ)

is an £, — 1 embedding, for 0 < j < ¢— 1. In order to simplify the indexing a
bit, we set 7;_; = 7., for 0 < j <i—1. Notice that k;_; = £,,. Thus, setting
p=1—j, we have that for 1 < p <71,

op : Tpet = Cepm1(N5,)
is a k, — 1 embedding. Let us set Res, = €,_1(N7,).

Definition 9.9. In the situation described above, we call (0, Resy) the pth
partial resurrection of A from stage (t,§).
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The partial resurrections of A from stage (t,) agree with one another in
the following way. For 1 < p <1, let

Kp = pkp(J[;A:l) ¢
Then one can check without too much difficulty that k; > k2 > --- > k4, and
P<qg=>o0p | K1 =0g [ Kg-1,

and
p < ¢ = Res, and Res, agree below sup(oyk4-1) -

Definition 9.10. In the situation described above, we call (o, Res) the com-
plete resurrection of A from (M, t,€) if and only if

(a) the (M,t,€) resurrection sequence for A is empty, and (o, Res) =
(:dentity, M), or

(b) the (M,t,€) resurrection sequence for A is nonempty, and (o, Res) =
(01, Resy).

Notice that in either case of 9.10, Res is a creature of C with index (k, ),
for some (v, k) <jex (£,t). If Res is C-exotic, then 9.10 (a) must hold.

Of course, the notions associated to resurrection can be interpreted in
any coarse premouse R, using C* | and not just in V. We shall do this in the
following.

Let (o,Res) be the complete resurrection of A from (M,t,£). Suppose
JM is active, which is a case of particular interest. If (¢,€) = (0, ), then
M = JM = Res, and o is the identity. Otherwise, (X, 1) Slex (€:t), so
(B1, k1) = (A, 1). It follows that Res = N, for some y < ¢, and 0 : TM — A,
is a 0-embedding.

Definition 9.11. Let B be a phalanz of length o + 1. Then a realization of
B is a sequence (Rp,Qp,m5) | B < a) such that

(1) for all B < «, (Rp,Qp, 7p) is a deg®(B)-reahzation of Mg, and

(2) of B < v < «a, and T 15 the unique ordinal & such that (degB(ﬂ),E) is
an inder of Qg in CRs, and Asg = A(B3,B), and (aﬁ,Resp) 15 the complete
resurrection of m5(\g) from (Qg,deg®(8), ), and vg = v(B, B), then

(a) Vi? = Vi, and V34 C Vi, for p = o o ms(vp),

(b) Res’ agrees with Q. below o o m5(Np),

(c) (cPomg) I Ag=my | Ag, and

(d) (67 o mp)(Ap) < Ty(Ap)-

If £ = ((Rs,Qp,m8) | B < ) is a realization of B, then we write ’Rf, for
Rg, etc.

Definition 9.12. Let B be a phalanz of length o + 1, £ a realization of B,
and T a putative iteration tree on B. Let a+1 <y < Ih T, and let 3 < a+1
and BTy. We call a pair (P,o) an E-realrzation ofM?; if and only if
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(1) (R§,P,0) is a deg” (v) reahzation of M7,

(2) if Qs has indez (deg®(B),€) and P has indez (deg” (7),6) in the
construction of R, then § < ¢, and

DTNn[BAr#ée0<E,
(3) if QT N[BYlr = ¢ and deg” (v) = deg®(B), then P = Qp and

e_ .
Mg =0015,-

Definition 9.13. Let 7 be an iteration tree on B, and b a mazimal branch of
T such that DT Nb is finite. Then an &-realization of b is just an E-realization
of Mf, where v = sup b and S is the putative iteration tree of length v + 1
such that S [y =T | v and b= {n | nSy}. We say b is E-realizable 1ff there
1s an &€-realization of b.

We can now state the main result of this section. Recall that a cutoff point
of a coarse premouse (M, €,6) is an ordinal § € M such that (VM,€,6)is a
coarse premouse. We say that M has « cutoff points if the order type of the
set of cutoff points of M is at least a.

Theorem 9.14. Let B be a hereditarily countable phalanz, and let £ be a
realization of B such that Ya < lh(B) (R, has §Re cutoff points). Let T be
a countable putative normal iteration tree on B. Then either

(1) T has a mazimal, £-realizable branch, or

(2) T has a last model M7, and this model 1s E-realizable.

Proof. Fix &g, a realization of By as in the hypotheses, and 7 a putative nor-
mal iteration tree of countable length 6 on By. We shall consider no iteration
trees but 7 in the proof to follow, and so we set Mg = Mg, Eg = E;,

vsg = v(B,T), \g = AB,T), and deg(B) = deg” (8). Let n* : § — w be
one-one, and set

n(a) =inf{n*(f) |a =L or aTp}.

Clearly oT8 = n(a) < n(f), and for A a limit < 6, n(}) is the eventual value
of n(B) for all sufficiently large BTA. Notice that if n(a) = n(8), then T8

or fTa or a = 3. Also, for b a branch of T,
is maximal & sup{n(a)|a€bd} =w.

For o, 3 < 0, we say

o survives at 3 &la=8V(eTBAn(a)=n(B)A
Vy(a <y <BA7 ¢ (a,f)r) = n(a) < n(v)))].

It is easy to see that if @ survives at 3 and [ survives at 7, then a survives at
7. Also, if a survives at ¥ and aTfT7, then « survives at § and f survives
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at . One can also easily see that if A is a limit, then all sufficiently large
BT\ survive at A, and that for b a branch of T,

b ismaximal ©Vaebifeb (a <P Aa doesn’t survive at ).

Let [h (B()) =apg+ 1.
For each # < ayg, letting k = deg®(8), choose a cofinal Y3 C pi (Mg°) such

that wg" is 7 X141 elementary on parameters from Y. Next, for ag < 8 < 6,
we define Y by induction. If T-pred(8) = v and B ¢ D7 and deg(8) =
deg(7), then set Y5 = i,p"Y,. If T-pred(8) = v but B € D7 or deg(f) <
deg(7), then set Yp = i5"(M3). Finally, if B is a limit ordinal < 0, let Y5 =
common value of 7/, Y, for all sufficiently large T3

The idea here is that in a copying construction beginning from &, Y3 is
the subset of Mg on which we expect X4 elementarity of the copy map,
for k = deg(B3). We call a k realization (R,Q, 7) of Mg a (k,Y’) realization
just in case 7 is 7 X4 elementary on Y. A realization 2 of &(7 [ a+1)isa
Y realization just in case V43 < a((R5, @5, 75) is a (deg(f), Y) realization of
M_). All realizations we consider in the proof to follow will be Y -realizations.

Let a < 6 and let (R, @, 7) be a deg(«a) realization of M,. We shall define
a tree U = U(a,R,Q, 7). Roughly speaking, U tries to build a maximal
branch b of T' such that a € b, together with a realizing map o for M7 which
extends 7. More precisely, we put a triple
((Bo, - -+ Bn), {0y -, Pn), (Qo, - -.,@n)) into U just in case

(1) Bo=a, po =7, and Qo = @,

and for all ¢ < n,

(2) ﬂ,Tﬂ.+1 and S; does not survive at f;41,

3) ind®(Qi41) < ind®(Q;), and DT N (B;, Biy1lr ;6 ¢ iff ind™ (Q,H) <
ind®(Q;); moreover, if DT N (B;, Biz1lr = ¢ and deg” (i) = deg” (Biy1),
then @Q; = Qi41, and

(4) (R, Qis1,piq1) is a (deg(Biz1),Y) realization; moreover, if D7 N
(Bi, Bi+1)r # ¢ and deg(B;) = deg(fi+1), then ¢; = pip1 045 4.,

Suppose that ((8; | ¢ € w), (pi | i € w),(Qi | ¢ € w)) is an infinite branch
of U(a,R,Q, ™). Set b = {n | Ji(nTB;)}; then (1) and (2) guarantee that
b is a maximal branch of 7 such that o € b. By condition (3), DT Nb is
finite, and Q; is eventually constant as i — w, say with value Q. Condition
(3) also guarantees Qoo = Qo = @ in the case DT N (b — (e + 1)) = ¢ and
deg(a) = deg (b) (i-e., deg(n) = deg () for all n € b — (a + 1)). Finally, let
yE M;{, and let k be large enough that D7 N (b—Bx) = ¢, deg(Br) = deg
(b), and y = ighb(z) for some ¢ € Mpg,. We then set o(y) = @r(z). By
condition (4), o 1s a well-defined weak deg (b) embedding from M} into Qoo
Moreover, if D7 N (b— (a+ 1)) = ¢ and deg (@) = deg(b), then ™ = 7 0 iZ,.

So if for some a < ag, U(a,RE, Q5°, 7£°) has an infinite branch, then
conclusion (1) of 9.14 holds. We therefore assume henceforth that for all
a < ag, U(a, RE, Q%0 , no) is wellfounded. Notice that U(a, RE, Q5°, 75°)

belongs to R&°, and has size < §R=° in REe.
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Notice that if & < 6, then there are only finitely many v < @ such that
a < v and T-pred(y) < a and T-pred(y) survives at . [If not, then we can
fix k < n(a) such that k = n(y) = n(T-pred(y)) for infinitely many v such
that T-pred(y) < @ < 7. Fix two distinct such 7’s, say 79 and ;. Then 7,
and y; are T-incomparable, yet n(vyo) = n(y1). This contradicts the definition
of n.] For a < f < 6, we define

(o, B) = {7y | B< vy <0 AT-pred(y) < @ A T-pred(y) survives at 7}|.

Definition 9.15. Let y < § = lh T, and let £ be a realization of (T | 7).
We say € has enough room iff Va < ¥

(a) U(a,RE, Q% 7%) is wellfounded, and

(b) RE has w - rank(U(a, RE, Q5, 7)) + c(a,v) cutoff points.

Definition 9.16. Let a < v < 0, then « 1s a break point at v iff whenever § 1s
a successor ordinal such that o < f <+ and T-pred(B) < «, then T-pred(B)
does not survive at 3.

We can now prove our main lemma, which concerns the extendibility of
realizations of the phalanxes determined by initial segments of 7.

Lemma 9.17. Let ag < o < 1 < 8, and let £ be a realization of &(T | a+1)
such that £ has enough room. Then:

(1) Suppose a is a break pownt at 1. Then there is a realization F of
(T [ n+1) such that F [ a+1=E, F has enough room, and ’R,,f € RE.

(2) Suppose that for some § < a, § survives at 1), and let 6y be the largest
such ordinal 6. Then there is a realization F of &(T | n+ 1) such that
Fléo=E&1 b0, F has enough room, and

(a) R = RE, and md™7 (QF) < ind"™=(QE),

(b) DT N (a,nlr # ¢ = ind®7 (QF) < ind®=(QE), and

(c) f DT N (a,n)r = ¢ and deg” (o) = deg” (1), then Q5, = Q7 and
me =m o1l .
Proof. By induction on 7. First, supposing 9.17 known for < v, we prove
it for v + 1. So let ag < @ <y + 1, and let & realize #(7 [ a + 1) and have
enough room. Let § = T-pred(y + 1).

We shall ultimately consider two cases in the construction of the desired
F realizing @(T [ v + 2): the case that for some § < «, § survives at y + 1,
and the case that a is a break point at ¥ + 1 and S does not survive at
v + 1. Ostensibly there is a third case, the case that « is a break point at
v+ 1 and S survives at v + 1, but this case reduces easily to case one. For
in this third case, @ < f < v + 1. Since « is a break point at g, induction
hypothesis 9.17 (1) gives us a G realizing @(7 | 8+ 1), having enough room,
and such that £ = G [ o+ 1 and 'R,g € RE. Now case one gives us an F
realizing #(7 | v + 2), having enough room, and such that F [ 3 =G [ B8
and ’RfH = ’Rg Clearly, F is as required in 9.17 (1) with n = vy + 1.
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The desired F will come from a realization H of &(7 | v + 1) which we
now define. The definition depends on which of the two cases we are in.

Case 1. For some § < «, é survives at v + 1.

Let 6o be the largest such é. Since 8 = T-pred(y+1), 6o = B or (6075 and
6o survives at ). Let G = £ if §y = 3, and otherwise let G be the realization
of &(T | B+1) given by our induction hypothesis 9.17 (2), with n = 3. Since
B survives at v + 1, either § = v or 3 is a break point at . [If T-pred(¢) <
B < & <7 and T-pred(§) survives at €, then n(8) > n(£) = n(T-pred(£)), so
B doesn’t survive at v + 1.] Let H = G if 8 = v, and otherwise let X be a
realization of (7 [ v+ 1) such that H | 8+ 1 = G as given by our induction
hypothesis 9.17 (1), with n = 7.

Notice that in any case, ’RZ} =RY = RE. Also, if DT N (a,Blr = ¢
and deg”(a) = deg?(f), then QFf = Q% and 7§ = L in' Finally,
ind®# (Q%) < ind®=(Q%), and if DT N (a,flr # ¢, then ind™# (Q¥) <
ind®= (Q7%).

Case 2. « is a break point at ¥ + 1, and 3 does not survive at v + 1.

In this case, a is a break point at y. f a=y welet H =€. If a < 7, we
let H be the realization of &(7 [ v + 1) given by induction hypothesis 9.17
(1). In either case, we have £ = H [ @« + 1 and R?f CRE.

Now, using H, we produce the desired F realizing (7 [ v + 2). We shall
have to consider the case split above again later, but for now we can run
the two cases simultaneously. In order to clean up our notation a bit, we set
(Qny Ry, my) = (@, R, m)Y) for all n < .

Let j = deg(y), and let Q. have index (j,€) in C®~. Let (07, Res”) be
the complete resurrection of 7,(\,) from (Q,,7,€), as computed in R, of
course. Since ¥ > ag, Ay = lh E,{ If A, = ORM>~, then as usual we set

Ty(Ay) = OR9™.
Claim 1. If < 7, then ¢ | m,(}y;) = identity.

Proof. Since (7T | v+ 1) is a phalanx, definition 9.6 guarantees that ), is a
cardinal of M., and p;(My) > A,. Since 7, is a weak j-embedding, 7, (A;)
is a cardinal of @, and p;(Q,) > my(A,). Also, m,(Ay) < my(Ay). It follows
that all projecta associated to the (j, 7, (Ay)) dropdown sequence of @ are
2 Ty (). o
Set
F=0"0 7r.,(E3—) = last extender of Res’ ,

where if Res” is a bicephalus we choose the extender interpreting the
same predicate symbol that E, interprets in M,. We wish to consider
Ult(Q5 41, F), where @7, is the creature of CR#¢ we shall now define. Let
n = deg(B), and ((no, ko), - - -, (7e, ke)) = the (n,Ag) dropdown sequence of
Mg, and set

Ki = Pk, (Jﬂjidﬂ)



98 §9. A general iterability theorem

for 0 < i < e. The following claim relates these to the (n,m3(Ag)) dropdown
sequence of Qg. The claim is slightly complicated by the fact that 7 is only
a weak n-embedding.

Claim 2. The (n,73(Ag)) dropdown sequence of Qg is

(a) ((ms(n0), ko), - - -, (mp(ne), ke)) if ke < pn(Mpp),

(b) ((ms(m0), ko), - .., (7p(ne), ke)) ™ u, where u = ¢ or u = (n, n) for wn =
OR®” if k. = pa(Mp) but (wne, k.) # (ORM#,n), and

(¢) ((75(m0), ko), - - -, (p(Me—1), ke—1)) ~u, where u = ¢ or u = (mp(7e), ke) =
(wn, n), for wn = ORY? if (wne, ke) = (ORM? n).

Remark. Note that k., = pp,(Mp) in case (c). If e = 0, then n = 0 = ko and
o = Ag = whg = ORM?. The (n, m5()\g)) dropdown sequence for Qg is then
((OR%#,0)), which falls under case (c).

Remark. The u = ¢ case in (¢) would not be necessary if mg were a full
n-embedding.

The claim follows quite easily from the fact that 75 is a weak (n,Yp)-
embedding. For (a), notice that mgpn(Mp) < pa(Qp). Recall that w5 pre-
serves cardinals, so that if for example wn. < ORM» then My | Vy >
1e(pu(TE) > pr.(TE)), and thus Qp | ¥y > ma(e) (pu(TE) > ma(re).

Let po = crit(ET), and let

= e+1 if po < Ke ,
- least j s.t. k; < po, ifke <po.

Notice that since kg = Ag > po, 7 > 0.
Because 7 is maximal,

o [T i<e,
T+ Mg if i=e+1,

and

ki—1 if i<e,
deg(7+1):{n if i;e+1.

Let (o-f , Resf ) be the ith partial resurrection of Ag from (Qg, n, 7), where
Qp has index (n,7) in CRs , if this resurrection is defined. (The resurrection
is undefined if i = e + 1, and defined if i < e by claim 2. If i = ¢, (¢7, Res?)
is undefined just in case (w7, ke) = (OR™# n) and the conclusion of (c) of
claim 2 holds with u = ¢.)

Now let
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Q: _ Res? if Resf’ is defined ,
LALSE Qs otherwise
- = of if Resiﬁ is defined ,
identity otherwise .

Thus, in any case, g o (75 [ M}, ;) is a weak deg(y + 1) embedding from

y+1 into @34, . Moreover, o o mg is rEdeg(7+1)+1 elementary on Z, where
Z=Ypify+1¢ D7 and deg(y + 1) = deg(B), and Z = universe of M3,
otherwise.

Set k = deg(y + 1).

Claim 2.5. 0 o m3 is a weak k-embedding which is 72}, elementary on
By1 " (Yat1)

Proof. Assume first that B‘,esf3 is defined, so that i < e, deg(y + 1) = k; — 1,
and o = ap is a full k; — 1 embedding Looking at claim 2, we see that in

all cases the domain of o is (] o (ns)? since we cannot have the situation in (c)

with i = e and u = ¢. But MJ, = ],,, ,and mg [ M2, is a weak k; — 1
embedding. In fact, if wy; < ORM? then mg [ M3, is fully elementary,
and if wy; = ORM#| then k; < n, so mp [ M3, is a weak k; embedding. It

follows that o o (ms [ M},,) is a weak k; — 1 embedding from M7, into

Q5+1- Assume next that Res? is undefined. Then either i = e+ 1, or we have

the situation in (c) of claim 2 with u = ¢. In either case, deg(y+1) < n. Also
M1 = Mp, Q141 = Qp, and o=identity. Since g is a weak n-embedding,
o omg is a weak deg(y + 1) embedding from M, into @}4,.

Let (o7, Res?) be the complete resurrection of m3(Ag) from (Qp,n, 7). Let
1 be the complete resurrection embedding for o(73(Ag)) from the appropriate
tuple. (This tuple is (Q%,,,n,7) if Res? is undefined, and (@541, ki —1,n)
where Res? = €, _1(N;)R# otherwise.) Then

¥ Tporbnn = Res?

and
of = =yo(o] "'ﬂ(}‘ﬂ))

Claim 3. ¢ | (sup(o o mgk;—1)) = identity.

Proof. Suppose first that Resi exists, so that ¢ < e and ¢ = a? . From
claim 2 and the fact that 73 is a weak n-embedding we see that mg(k;_1)
is the projectum associated to the (i — 1)°t element of the (n, 75(Ag)) drop-
down sequence of Q3. As we remarked earlier, ¥ is therefore the identity on
sup(c?"75(ki_1)), and this implies the claim.

Suppose next that Res is undefined, so that either i = e+1 or i = e and
(c) of claim 2 holds with u = ¢. In either case the projectum associated to the
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last term of the (n, m3(Ag)) dropdown sequence of Qp is at least sup(7j;_1).

Thus o? | sup(mgki—1) = identity. But ¢ = o? and o = identity, so this

implies the claim. O
Now let

_ (,u"')M +oif MYy, Eud  exists,
# ORM3+1  otherwise .

Claim 4. py < Mg, and if yy = ORM>+: then M, = J,\/:'" and po is the
largest cardinal of M7 .

My
Proof. If B = v, then (;LS’)J‘W exists (is < A,) since E, has index A, on the
M., sequence. Also, M, is the shortest initial segment of M. over which a

: M, . +\M?, + ‘7.:\47
subset of y1o not in J5 7 is definable. Thus p; = (pyMr+r = (u) " < Ay,

and A, < ORM>+:, which yields the claim.

Now let 3 < v. We have pp < vg < Ag, and A is a cardinal of M,,. Also
P(po) N My = P(po) N Txa” = P(po) N Ti? = = P(o) 0 M. 1t follows
that p1 < Ag. If gy = ORM>+1, then as Ay < ORM3+1, M2, = J,\p
Lo is the largest cardinal of M7+1

From the proof above we see that if # < v, then p; = (ug)™~. Also,
claim 4 1mp11es pl < ki—1. If kK;_1 = Ap this is obvious. Otherwise x;_; is a
cardinal of J,\ , since it is a projectum of some ._7,,M # with n > Ag. Since
o < Ki—1 by the choice of 7, p; < K;-1.

The next claim shows that Res” and @}, have the agreement required
for an application of the shift lemma.

Claim 5. (a) Res” agrees with Q3 below sup(c o m3" 1),
(b)oYomy [pr=coms [ p1.

Proof.
Subclaim A. @34, and Res” agree below sup(c o 75"p1), and o o 74 |
i =voooms | .

Proof. This follows at once from claim 3 and the fact that g1 < k;-1.
Subclaim A yields claim 5 at once in the case 8 = 7, so let us assume
B <.
Subclaim B. If 8 < v, then Res’ and Q. agree below sup(o o 75”1 ), and
Yoogomg [ py=my [ p1.

Proof. Recall that ¥ 0 0 o m5 = 0 o m5. This subclaim therefore follows at
once from the fact that H is a realization of (7 [ v + 1); see clause 2 of
9.11. Notice here that y; < Ag by claim 4.

Subclaim C. If # < 4, then @, and Res” agree below sup(oomg”yy), and

Ty lp=0%omy [ p.
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Proof. py < Ag,and gomg [ py = my | p1, so sup(o o 73" py) < m,(Ag). By

claim 1, @y and Res” agree below 7,(Ag), and o7 is the identity there.
Together, A, B, and C yield claim 5. ]
Let us define

k=0 omy(po) = o omg(po) = crit F.
Thus (K+)Qf,+, = o omg(p1), with the usual understanding if p; = ORM>+1.
Claim 6. Res” agrees with @, below (k+)%1 < (x+)Res”
Proof. We prove this slight strengthening of claim 5(a) in the same way
that we proved 5(a). First, Res’ and QY41 agree below (k*)93+1, and
(k1)95+1 < (;ﬁ)ReSﬁ. This is because po < K;i_1, s0 comg(po) = Kk < crit 1,
so (K)+)Q:/+1 < crit 9. This finishes the proof of claim 6 if 3 = v, so suppose

. 8 . . .
B < 7. Since py < Ag, and (K+)Res = of o mg(p1), and H is a realization,

we have Res’ agrees with Q. below (K+)Res" and (n+)ReSﬂ < (k*)9. But
Q- agrees with Res” below ¢ o m,()g), and (k+)?” < 07 o my(Ag), which
completes the proof. O
Claim 7. V& = V7.

Proof. po < vp because 7 is an iteration tree, so k = o o mg(po) = 0P o
ms(po) < o o m(vg). The claim now follows from the fact than H is a
realization; cf. 9.11 (2) (a). a

Now Res” is a creature of C®~ with an index of the form (0,7) in C®~.
Therefore R, has background certificates for the countable fragments of F'.
Let

(N,G)=  some (¢7 o my(vy), ran(c” omy)) —

certificate for F', as computed in R .

Since Ult(N, G) is closed under w-sequences, ¢” o1, [ v, € Ult(N,G). Let
us fix b € [lh G]<“ and a function @ — (i) mapping [x]!®! into V<" so that

Y omy [ (Ay+1)=[b,a-n(a)]¥ .

Suppose for a moment that case 1 of 9.17 applies, that is, that § < o
and 6o survives at v+ 1. It follows that ¢(n,v+2) < ¢(n,y + 1) for all 5 such
that B < n < . Therefore, for such 7, R, has w - rank(U(n, Ry, Qy, ™)) +
c(n,7+ 2) + 1 cutoff points, because H has enough room. Let &, be the last
of these cutoff points, and set

R, = transitive collapse of

Hull"en (Vonomp(uy) U {677, Qy, m} U a™ 0 my(Ay))
as computed in R, ,
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and
(Qp, ™) = image of (Qy, 7,) under collapse .

Notice that Rj is coded by an element of VR o RORYEE which is a subset

of Ry because ’H is a realization. (Note here o7 o 7r,,(/\,,) has cardinality
op o 7r,,(1/,,) in Ry.) So (R}, @y, ;) € R, for all 1) such that 8 <5 < 7. Set

=(Ry, @nmy) | B<n<7).

Then H* € R, since R, is closed under w sequences. Clearly, H* is coded by
a member of Vﬂ.,o,r L(vy)+1- 1t is easy to check that (H [ B)""H* is a realization
of &(T [ v+1). It may not have enough room as a realization of (7 | y+1),
of course, because we have dropped an ordinal on coordinates 5 such that
B < n <. Since G is 67 o1, (vy) + 1 strong in R, H* € Ult(N, G). We may
suppose our finite support b was chosen so that for some function % — H* (%)
mapping [«]!*! into V,

= [b,\a-H* (@))% .

If there is no 6 < « such that 6 survives at 4 + 1, then H* is undefined.

Let k = deg(y + 1), and @’ 4; = Ultx(Q34,, F). The ultrapower makes
sense by claim 6, and it is wellfounded because F' has background certificates
in Ry, and R, is w-closed. Let 7 : Myy; — @), be given by the shift
lemma, that is,

([0, flg,*) = (07 omy(a),c 0 mp(£FTH

(Here, if k > 0, then o o m4(fr,q) = frooms(q) for all terms r € Sk and
g € M7 . For simplicity, we shall use the k = 0 ultrapower notation.) By
the shift lemma, Q) , agrees with @, below ¢” o m\()y), and 7 | A, =
dYomy | Ay. Also, 7 is a weak k-embedding which is » X, 4; elementary on
Y, 4+1. We now use the countable completeness of G to reflect 7 below «.
Let {xn | n < w} be an enumeration of the universe of M 41, and let z,, =

[@n, fn]E v where @, € [v,]<“. Set a, = 07 o 7y (@) and fn = 0 o ms(fn),
so that

7(zn) = [an, fﬂ]Fw‘1 .

For notational reasons, we shall sometimes regard the component measures
E. of an extender E as concentrating on order-preserving t : ¢ — crit(E),
so that “for £ a.e. t : ¢ — crit(E), t € X” means that there is aset Y €
E. such that whenever t : ¢ — crit(E) is order preserving and t'c € Y,
then t € X. Let us write I(8,Q,0) just in case o is rX; elementary on its
domain, ¢ is r X4 elementary on dom o NYp, Vi < k(pi(Mp) € dom ¢ =
cr(p,(M,g)) = pi(Q)), and o"pr(Mp) C pr(Q). Thus, if 7 : Mg — @, then
w is a weak k -embedding from My into @ which is r 41 elementary on
Y < (V finite F C Mp)I(8,Q, 7 | F).
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Fort:(bUag---Uayp)— k order preserving, let
@f (2:) = fi(t"a:)
for all ¢ < n.

Claim 8. Let n < w and let c = bUagU---Ua,. Then there is a set W,, € G,
such that whenever ¢ : ¢ — & is order preserving and t"¢ € W,

() I+1, Q. o) |

(ii) if 541 (y) € dom @}, then @7 (i}41(y)) = 0 0 ma(y),
(iii) if 2, < Ay, then @} (z,) = m(t"b)(xn), and

(iv) if z, = Ay, then @} (z,) > 7(t"b)(zn).

Proof. We first show that (ii) holds for G a.e. t : ¢ — k. Let i},,(y) = z; =
[d,-,f,-]g’“, where i < n. Then f;(@) = y for (E,)a, a.e. &. Since o o 75 and
o7 o, agree on P(uo), this means that f;(i4) = o o m5(y) for Fy, a.e. 4. The
set of such % is in ran(o” o m,), so fi(t"a;) = c o ma(y) for G ae. t : c — k.
Since o7 (i54,(y)) = fi(t"a;), we are done.

Next, we show (i) holds G a.e. First, let p(vo - - -vn) be an rX; formula.
Then

My Eplzo--za] i @4y b plT(20) -+ 7(2)]
iff for F a.e. t: Ua,——-wc,
i<n
Q41 F plfo(t"a0) - fa(t"an)]
iff forGaet:c—k,
Q41 E plet (zo) - - - 07 (24)] -

Notice, for the third equivalence above, that the appropriate set of @ is in the
range of 07 o 7, so that FU a, and GU a, 8ive it the same measure. Second,
we show ¢} is rZk41 elemerlltary on Y7;1 N{zo---zn},for Gae. t:c— k.
Notice here that Yy 41 = 434, Z, where 0 o 1 is rZi 4, elementary on Z. [If
v+1¢ D7 and k = deg(y + 1) = deg(B), then Z = Y3, and g o 15 = mp
is rXy41 elementary on Ys because H is a Y-realization. Otherwise, Z is
the universe of M}, o is a full k-embedding, and 7p is at least rZ;4; as
a map from M}, to J,,Q", where wn = m5(OR N M3, ,).] Thus, if we set
Yyt1 N {zo -z} = {i541(%0), -, %5 41(¥m)}, then we have for all rZy4y
formulae p

Mo | pliS11(¥0) - 1541 (U )] HE M3y = pluo - - Ym]
iff QY41 F plo o mp(yo) -+ o 0 mp(ym)]
ifffor Gae. t:c—k

Qi1 E LY (541 (00)) -+ 7 (141 (ym))] -
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This completes the proof of (i).
We now prove (iii). Let 2z, < A,, and assume first that A, = v,. Since
Tn < Uy,

[an, Falp, ™ = [{za}, id]p*,
SO Q‘ Q‘
[an, falp ™ = [{07 0 my(za)}, id] 27+

because of the agreement between o o mg and 6 o7,. Letting d = a, U{o7 0
Ty(Zn)}, this means that for F' a.e. t : d — &, fo(t"an) = t(07 o my(2n)).
Because the set of all ¢”d for which this equation holds is in ran(¢” o 7, ), we
get that

fn(t"an) = t(0” o my(zn)), for G ae. t.

But also,

[{o7 o my(2n)},1d]G = 0y 0 7y (20) = [b, Az 7(@)]E (2a),

and since z,, is countable in N, it is represented by the constantly z, function

in Ult(N, G). By Los’ theorem for Ult(N,G),
w(t"b)(zn) = t(6” o my(2,)), for G ace. t.

This finishes the proof of (iii) in case Ay = v.

If v, < Ay, then vy, = v + 1 where v is the largest generator of E,, and
AM=IlhE,= (V+)Ult(M:’+1’E").

If 2, < vy, the proof in the first case applies, so assume z,, > v.,. We then

M,

get a function g € V,, " such that

pot+

-
v+1

[@n, g]; = some wellorder of v of order type z,, .

Applying the shift lemma map 7 to this fact, with g = s omg(g) = 07 o7, (g),

-
v+1

[@n, g]g = some wellorder of 6”7 o 7, (v) of order type 6”7 o m,y(z,) .

But now Fj agrees with G4 on all sets in ran(o” o m), whenever d € [o7 o
7y (v + 1)]<¥. This implies

[anag]gﬂ'l = [an;g]g-
It follows that for G a.e. t, g(t"ay) is a wellorder of order type t(cY o (z,)).
We also have that for F' a.e. t, hence for G a.e. t, g(t"a,) has order type
f(t"an). So we get that f(t”a,) = t(67 o my(zs)) for G a.e. t. Now we can
finish the proof of (iii) as in the first case.

We leave the proof of (iv) to the reader. The main point is that [a,, f]¥ >
Y o my(Ay).
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_ M SN .
(We may assume f,, € V,, "', so that f, = 07 om,(fn) is inran(c” om,).)

This follows from the agreement between F' and G; the proof breaks into the
cases vy = Ay and v, < Ay as did the proof of (iii).

This completes the proof of claim 8.

We can now finish the proof of 9.17 in case 1, the case that for some
6 < a, asurvives at y+1. For 8 < n < v, let oy, be the complete resurrection
embedding in Ry for @} from =;(),). Then o [ A; = 07 o, | Ay, and
opomp(Ay) < 0¥ omy(Ay) for all < ; this one sees from the construction of
H*. This agreement is a fact about H* and ¥ o my [ (A, + 1) in Ult(N, G);
by Los’ theorem we get a set X € G such that for all u € X

(o7 0 mp)(@) T Ag = (@) T Ay

and

(o5 0 m)(@)(Ag) < w(@)(Ag)
for B < n < 7. Here (0} o m;)(@) = op(@) o 7(w), where Hp(a) =
(R;(u), Qy(u), m(u)) and oy (@) is the complete resurrection of mp(@)(Ay)
from @y (u) in R;(u). We can also arrange that for @ € X,

o7 omy [ po = () [ po,

because ¢7 o m," po is just a countable subset of kK = crit G, and G is
countably complete. Finally, we can arrange that for 4 € X, R;(u) has
w - rank(U(n, Ry (@), @y (@), m; (@) + ¢(n, v + 2) cutoff points.

Now let W, be as in claim 8, for all n < w, and let ¢t : bUJ, ¢, an — &
be order preserving and such that t”6 € X and ¢t"(bUaq---Ua,) € W, for
all n. Such a t exists because G is countably complete. Set p(z,) = fn(t"an)
for all n < w, and

F=H1B"H ") ((Rp, Qr41,9)) -

It is easy to verify that F fulfills the requirements of 9.17 as a realizations of
&(T | v+ 2) in case 1.

Now let us prove 9.17 in case 2, the case that « is a break point at vy + 1
and B does not survive at y+1. From claim 8 and the countable completeness
of G we get

Claim 9. For Gy a.e. 4, there is a ( deg(y + 1),Y) embedding ¢ : M, —
41 such that

(@) p 1 Ay =m(a) [ Ay,

(b) ¢(A) > 7(@)(M),

(¢) poiyy, =0comp.

Now if & and ¢ are as in claim 9, then (y + 1,,Q%,;) is a node of
the tree L((ﬂ,Rg‘,Qg‘,w}’;‘). (The fact that § does not survive at v + 1 is
relevant here.) Moreover, U(y + 1, R;{, @541, ) is isomorphic to the subtree
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of U(ﬁ,R Q5 ,7rp) consisting of nodes below (v + 1,¢,@%,;). It follows
that ’R,Zf has an w - rank(U(y + 1,72'”, Qy41,9) ey +1,v+2)+ 15t cutoff

H
point 7. Working in R%, we can form a Skolem hull of V,,R" containing
H
V7(e5)()\7) U {Q3419}, closed under w-sequences and having size < x. The

m

H
collapse of this hull belongs to V,;R” = VN. This gives us

Claim 10. For G} a.e. 4, there is a triple (R, @, ¢) such that

(a) (R,Q, ) is a (deg(y + 1),Y) realization of M,4q,

(b) (R,Q,9) €V,

(¢) R has w -rank(U(y + 1, R, Q, ¢)) + c(v + 1,7 + 2) cutoff points,

(d) @ agrees with Q- below w(u)(Ay), and R agrees with N below
r@)(h),

and
(€) ¢ | Ay = w(@) [ Ay and p(Ay) > m(a)(Ay).

By the axiom of choice in N, there is in N a function f(2) = (R(a), Q(g),
o(u)) which picks, for each @ in the relevant Gp-measure one set, a triple
satisfying claim 10. Let

F =H"[b, M - (R(a), Q(a), p(@))]X .

It is easy to see that F is a realization of the phalanx &(7 [ v + 2); the
necessary agreement of models and embeddings comes from parts (d) and (e)
of claim 10. Part (c) of claim 10 implies that F has enough room. As case 2
governed our definition of H, £ [a+1=H [ @+ 1 and ’RH C RE. 1t follows
that F a4+ 1 =& [ a+ 1, and since R'y+1 € Ult(N, G) C RY, we have
RZ,, € RE. Thus F witnesses the truth of 9.17 (1).

This finishes the successor step in the inductive proof of 9.17.

Now let n be a limit ordinal, and ag < a < 7. Let fT'n, where 3 is large
enough that a < B3, B survives at 7, DT N[3,n)r = ¢, and deg(B) = deg(n)-
Let (B, | n € w) be such that By = B, and B,TBn+1Tn for all n, and
n =sup{B, | n € w}. Let £ be our given realization of (7 [ a + 1).

Suppose first that « is a break point at 7. Then « is a break point at
B, so by induction we have a realization Fy of &(7 | S + 1) which has
enough room. We also get 7y [ a4+ 1=¢&, and 'R;" € ’R,g Now suppose F,
realizing &(7) [ (B, +1) is given. Since S, survives at ,3,._,.1, and between £,
and B, 41 there is no dropping in model or degree, our induction hypothesis
gives a realization F,41 of (T [ fn41 + 1) having enough room, and such

Fn Fn
that Fny1 [ Bn = Fn [ Bn, R = ﬁ..:: and Q;: = Qp,.::’ and 7r7" =
}-n+l

T
Wﬁ +1 zﬁnﬁn-“’ Let

F=JFal B~ (REQ,7),
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where for 2 € M, we define 7(z) by

e =iy .(y) = n(z) =75"(y).

It is easy to check that F witnesses 9.17 (1) for & and 7.

Next, suppose 8o < a is largest such that &y survives at 7. Let (8, | n < w)
be such that T-pred(fo) = b0, BT Pn+1Tn for all n, and sup, B, = 1. By
induction hypothesis 9.17 (2) we get a realiza.tion Fo of }T I ,30 +1) wh1ch
has enough room, and such that Fo [ 6o = € [ 6 and R , and Q

is related as required to Q% 5,0 and 7r6 = W; ° ozZ Bo If thls 1s requlred We can

then use induction hypothesis 9.17 (2) repeatedly as in the last paragraph,
and we easily get 9.17 (2) at 5. This completes the proof of Lemma 9.17. O

We can now easily complete the proof of 9.14. Suppose first that 8 is a
limit ordinal. For 0 < ¢ < w, let a;4+1 be defined by

n*(aiy1) = inf{n*(B) | i < B < 6} .

(Recall that ag = lh(Bo) — 1.) Clearly, a; < a;41 and a;4; is a break point
at 0, for all :. We may suppose that n* was chosen so that n*(ag) = 0, which
means that aq is a break point at §. But then 9.17 (1) gives us a sequence
(.7", | i € w) such that Fy = &, F; is a realization of (7 [ a; + 1), and
'Ra,'_ﬁ € R, for all i < w. This is a contradiction.

Next, suppose § = v+ 1. We may suppose n* is chosen so that n*(y) =0,
which implies that 3 survives at ¥ whenever 8Ty. But then 9.17 (2) clearly
implies that M_{ is &y-realizable, as desired. O

Theorem 2.5 obviously follows from 9.14. (While 9.14 was only proved for
normal trees, whereas 2.5 was stated for linear compositions of normal trees,
we can nevertheless take care of such “almost normal” trees by applying 9.14
(2) repeatedly to their normal components.) The iterability of the exotic
creatures of C which we used in the proof of 1.4 also follows immediately.
This represents all the iterability we used in §1 - §5.

It remains only to prove Theorem 6.9, which states that if K¢ = “There
are no Woodin cardinals”, then every K° generated phalanx B such that
lh B < §2 is §2 + 1-iterable. We shall now sketch the minor modifications of
the proof of 9.14 which yield this result.

First, the reflection arguments of §2 show that it is enough to prove the
following: let 7 : M — K¢ be elementary, where M is countable. Let B
be a hereditarily countable phalanx which is (2, M)-generated, where L is
the strategy of choosing unique cofinal wellfounded branches. Let 7 be a
countable, normal, putative iteration tree on B. Then either 7 has a cofinal
wellfounded branch or 7 has a last, wellfounded model. So fix =, M, and
B with these properties; we shall show that there is a realization £ of B
such that Yo < Ih (B) (RE has 6”& cutoff points). The desired conclusion
concerning 7 then follows from 9.14.
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Since 2 is measurable, we can find § < 2 such that 7 : M — M is
elementary. Let n be such that (V;, €, £2) is a coarse premouse having 2 + 2
cutoff points, and let & = ((V;, €, £2), V¢, 7). Thus & is a realization of M.

Now fix a < lh(B), and let S be a countable iteration tree on M such that
MB is an initial segment of Mf, the last model of S, and such that S has
no maximal wellfounded branches. Such a tree S exists because B is (2, M)
generated. We have by definition 6.7: if o + 1 < Ih(B), then Vy(v(ES) >
A(a, B)), and if @ + 1 = [h(B), then

VYVB < a(V(E3) 2 N8, B)).

We now apply a slight variant of 9.17 to find the desired realization
(RE,Q%,mE) of MB. Let n* : v+ 1 — w be 1-1 and n*(0) = 0. Let
n : v+ 1 — w be defined from n* as in the proof of 9.14, and interpret
“survives” and “break point” relative to n asin 9.14. Thus 0 is a break point
at y. For f < v,and (R,Q,0) a degs(ﬂ) realization of M‘g, let U(B,R,Q,0)
be defined as in the proof of 9.14: it is the tree of attempts to build a max-
imal branch b of S and realize M$ appropriately. Since S has no maximal
wellfounded branches, U(3, R, @, ) is always wellfounded.

For F a realization of &(S | €), let us say that F has more than enough
room just in case V3 < E(Rﬁ}- has §7% 4w -rank(U(8,R7, Q;, wf)) +¢(8,7)
cutoff points), where of course ¢(f,7) is defined as in the proof of 9.14. So
&o has more than enough room. It is clear that the proof of 9.17 works
equally well when “more than enough room” replaces “enough room” in its
hypothesis and conclusion. Since 0 is a break point at «, this version of 9.17
gives us a realization F of ¢(S) such that & = F [ 1 and Rf has 677 cutoff
points. Since F is a realization of &(S§), Qf agrees with Q7 = Mg below
ocon(v(ES)) and 7r21r Pv(ES)=ocorm [v(ES)=oox | v(ES), where o is the
appropriate complete resurrection embedding (bringing 7(ES) back to life).
Now whenever § < o and A(3, B) is defined (i.e. 8+ 1 < lh(B)), A(B,B) is
a cardinal of M and v(E§) > A(B, B). Thus 7(\(8, B)) is a cardinal of K¢
and o [ m(A(B, B)) + 1 is the identity. This implies that 71{ P (AMB,B)+1) =
7 | (A(B,B) + 1), whenever 8 < a and A(B, B) exists. Let us set R = 'Rf,
76 =77 | ME, and Q4 = QF if ME = MS$, and Qf = 77 (MB) otherwise.
Doing this for all a < lh(B), we obtain a realization £ of B which has enough
room; the agreement properties of £ follow from the fact that if a+1 < lh B,
then 75 | (A(a,B) + 1) = 7 | (M, B) + 1) and Q% agrees with M below
(A, B) + 1), and from the corresponding facts when a + 1 = lh(B).

From 9.14 we get that the tree 7 on B is well-behaved, and this completes
the proof of 6.9.





