§5. The construction of true K The model K^c constructed in §1 depends too heavily on the universe within which it is constructed to serve our purposes. In this section we isolate a certain Skolem hull K of K^c , and prove that $K^V = K^{V[G]}$ whenever G is generic over V for a poset $\mathbb{P} \in V_{\Omega}$. The uniqueness result underlying this fact descends ultimately from Kunen's proof of the uniqueness of $L[\mu]$ ([Ku1]), and is based on the following lemma. **Lemma 5.1.** Let M and N be weasels which have the S-hull and S-definability properties at all $\beta < \alpha$. Let (T, \mathcal{U}) be a successful conteration of M with N, let W be the common last model of T and U, and let $i: M \to W$ and $j: N \to W$ be the iteration maps. Then $i \upharpoonright \alpha = j \upharpoonright \alpha = identity$. *Proof.* Suppose not, and let $\kappa = \inf(\operatorname{crit}(i), \operatorname{crit}(j))$. Without loss of generality, let $\kappa = \operatorname{crit}(i)$. We claim first that $\kappa = \operatorname{crit}(j)$. For let $$\Delta = \{ \gamma < \Omega \mid i(\gamma) = j(\gamma) = \gamma \},\,$$ and recall that Δ is S-thick in M and N. Now $\kappa \notin H^W(\Delta)$, since otherwise κ is the range of i. On the other hand, N has the S-definability property at κ since $\kappa < \alpha$. Thus $\kappa \in H^N(\Delta)$, and if $\kappa < \operatorname{crit}(j)$, then $\kappa \in H^W(\Delta)$. So $\kappa = \operatorname{crit}(j)$. We can now finish the proof as in 4.5. Let $A \subseteq \kappa$ and $A \in M$; we claim that $A \in N$ and $i(A) \cap \nu = j(A) \cap \nu$, where $\nu = \inf(i(\kappa), j(\kappa))$. For by the S-hull property of M at κ , we can find $\bar{\beta} \in \Delta^{<\omega}$ and a Skolem term τ such that $A = \tau^M(\bar{\beta}) \cap \kappa$. (Notice that $\kappa \subseteq \Delta$.) But then $i(A) = \tau^W(\bar{\beta}) \cap i(\kappa)$, so $A = \tau^W(\bar{\beta}) \cap \kappa = j(\tau^N(\bar{\beta})) \cap \kappa$. Since $\operatorname{crit}(j) = \kappa$, this implies that $A = \tau^N(\bar{\beta}) \cap \kappa$, so that $A \in N$. Also $j(A) = \tau^W(\bar{\beta}) \cap j(\kappa)$, and therefore $i(A) \cap \nu = j(A) \cap \nu$ where $\nu = \inf(i(\kappa), j(\kappa))$. A symmetric proof shows that if $A \subseteq \kappa$ and $A \in N$, then $A \in M$ and $i(A) \cap \nu = j(A) \cap \nu$. Let E and F be the first extenders used on the branches M-to-W and N-to-W of T and U respectively, and let $\theta = \inf(\nu(E), \nu(F))$, so that $\theta < \nu$. Then $i_E(A) \cap \theta = i(A) \cap \theta = j(A) \cap \theta = i_F(A) \cap \theta$ for A in $P(\kappa)^M$. It follows that $E \upharpoonright \theta = F \upharpoonright \theta$; on the other hand, since (T, U) is a coiteration, no extender used in T is compatible with any extender used in U. This contradiction completes the proof. Corollary 5.2. Let M be an $\Omega+1$ iterable weasel which has the S-definability property at all $\beta < \alpha$; then M has the S-hull property at α . *Proof.* By induction we may suppose M has the S-hull property at all $\beta < \alpha$. Let $A \subseteq \alpha$, let Γ be S-thick in M, and let N be the transitive collapse of $H^M(\alpha \cup \Gamma)$. We must show that $A \in N$. Now N is $\Omega + 1$ iterable since it embeds in M, and Ω is S-thick in N. Also, N has the S hull and definability properties at all $\beta < \alpha$. Let (T, \mathcal{U}) be a successful contention of M with N, with iteration maps $i: M \to W$ and $j: N \to W$. By 5.1, $i \upharpoonright \alpha = j \upharpoonright \alpha =$ identity. Then $A = i(A) \cap \alpha$, so $A \in W$. Since $\operatorname{crit}(j) \geq \alpha$, $A \in N$, as desired. **Definition 5.3**. Let \mathcal{M} be a set premouse, and let $S \subseteq \Omega$. We say that \mathcal{M} is S-sound iff there is an $\Omega + 1$ iterable weasel W such that - (1) $\mathcal{M} \triangleleft W$, - (2) Ω is S-thick in W, and - (3) W has the S-definability property at all $\beta \in OR \cap \mathcal{M}$. Condition (3) of 5.3 is equivalent to: for every S-thick Γ , $OR \cap \mathcal{M} \subseteq H^W(\Gamma)$. This is simply because if β is least such that $\beta \notin H^W(\Gamma)$, then $\beta \notin H^W(\beta \cup \Gamma)$. Also, by 5.2, condition (3) implies that W has the S-hull property at all $\beta \leq OR \cap \mathcal{M}$. Corollary 5.4. Let \mathcal{M} and \mathcal{N} be S-sound; then either $\mathcal{M} \subseteq \mathcal{N}$ or $\mathcal{N} \subseteq \mathcal{M}$. *Proof.* Let W and R be weasels witnessing the S-soundness of \mathcal{M} and \mathcal{N} respectively. Let $i: W \to T$ and $j: R \to T$ be the iteration maps coming from a coiteration using $\Omega + 1$ iteration strategies. Then if $\alpha = \inf(\operatorname{OR}^{\mathcal{M}}, \operatorname{OR}^{\mathcal{N}})$, Lemma 5.1 implies $i \upharpoonright \alpha = j \upharpoonright \alpha = \text{identity}$. This means that $\mathcal{M} \subseteq \mathcal{N}$ or $\mathcal{N} \subseteq \mathcal{M}$. Let $S \subseteq \Omega$ be such that, for some $\Omega+1$ iterable weasel W, Ω is S-thick in W. Clearly, there are many S-sound premice: \mathcal{J}_{ω}^{W} is an example, and \mathcal{J}_{α}^{W} for $\alpha = \omega_{1}^{W}$ is a slightly less trivial one. By 5.4 there is a proper premouse \mathcal{R} such that the S-sound mice are precisely the proper initial segments of \mathcal{R} . We now give an alternative construction of \mathcal{R} , one which shows that it is embeddable in W. **Definition 5.5**. Suppose Ω is S-thick in W. Then we put $$x \in Def(W, S) \Leftrightarrow \forall \Gamma(\Gamma \text{ is } S\text{-thick in } W \Rightarrow x \in H^W(\Gamma)).$$ Clearly, $\operatorname{Def}(W,S) \prec W$. (More precisely, $\operatorname{Def}(W,S)$ is the universe of an elementary substructure of W. Recall here that the language of W includes a predicate \dot{E} for its extender sequence. Thus a more careful statement would be that $(\operatorname{Def}(W,S),\in \upharpoonright \operatorname{Def}(W,S),\dot{E}^W\cap \operatorname{Def}(W,S))$ is an elementary submodel of W.) We now show that, up to isomorphism, Def(W, S) is independent of W. **Lemma 5.6.** Let Ω be S-thick in W, an let $i: W \to Q$ be the iteration map coming from an iteration tree on W; then i'' Def(W, S) = Def(Q, S). Proof. Let $\Delta = \{ \gamma < \Omega \mid i(\gamma) = \gamma \}$, so that Δ is S-thick in both W and Q. Suppose first $x \in \text{Def}(W, S)$. Let Γ be S-thick in Q; then $\Gamma \cap \Delta$ is S-thick in W, so $x = \tau^W(\bar{\beta})$ for some $\bar{\beta} \in (\Gamma \cap \Delta)^{<\omega}$ and term τ . But then $i(x) = \tau^Q(\bar{\beta})$, so $i(x) \in H^Q(\Gamma)$. As Γ was arbitrary, $i(x) \in \text{Def}(Q, S)$. Suppose next that $y \in \text{Def}(Q, S)$. Since Δ is S-thick in Q, we can find $\bar{\beta} \in \Delta^{<\omega}$ so that $y = \tau^Q(\bar{\beta})$ for some term τ . Then y = i(x), where $x = \tau^W(\bar{\beta})$. Now let Γ be S-thick in W. Then $\Gamma \cap \Delta$ is S-thick in Q, and so $i(x) = \tau^Q(\bar{\alpha})$ for some term τ and $\bar{\alpha} \in (\Gamma \cap \Delta)^{<\omega}$. But then $x = \tau^W(\bar{\alpha})$, and since Γ was arbitrary, we have $x \in \text{Def}(W, S)$. Corollary 5.7. Let P and Q be $\Omega+1$ iterable weasels such that Ω is S-thick in each. Then $Def(P,S) \cong Def(Q,S)$. *Proof.* Once again, we are identifying Def(P, S) with the elementary submodel of P having universe Def(P, S). To prove 5.7, let $i: P \to W$ and $j: Q \to W$ be given by coiteration; then by 5.6 $Def(P, S) \cong Def(W, S) \cong Def(Q, S)$. \square **Definition 5.8**. Suppose there is an $\Omega + 1$ iterable weasel W such that Ω is S-thick in W; then K(S) is the common transitive collapse of Def(W, S) for all such weasels W. If there is no $\Omega + 1$ iterable weasel W such that Ω is S-thick in W, then K(S) is undefined. **Lemma 5.9**. Suppose K(S) is defined; then for any set premouse \mathcal{M} , \mathcal{M} is S-sound iff $\mathcal{M} \subseteq K(S)$. *Proof.* Let \mathcal{M} be S-sound, as witnessed by the weasel W. Then $OR^{\mathcal{M}} \subseteq Def(W,S)$, as one can see by an easy induction on $\beta \in OR^{\mathcal{M}}$. Thus $\mathcal{M} \subseteq Def(W,S)$, and since \mathcal{M} is transitive, $\mathcal{M} \subseteq K(S)$. Conversely, let $\mathcal{M} \subseteq K(S)$. Let R be an $\Omega+1$ iterable weasel such that Ω is S-thick in R, and let $\pi: K(S) \to R$ be elementary with ran $\pi = \mathrm{Def}(R, S)$. Let $\theta = \sup \pi'' \mathrm{OR}^{\mathcal{M}}$, and for each $\alpha \in \theta - \mathrm{ran} \pi$, let $$\Gamma_{\alpha} = \text{some } S \text{ -thick } \Gamma \text{ such that } \alpha \notin H^{R}(\Gamma).$$ Then $\bigcap_{\alpha<\theta} \Gamma_{\alpha}$ is S-thick in W, so $\operatorname{Def}(R,S)\subseteq H^R(\bigcap_{\alpha<\theta} \Gamma_{\alpha})$, while $H^R(\bigcap_{\alpha<\theta} \Gamma_{\alpha})\cap \theta=\operatorname{Def}(R,S)\cap \theta$ by construction. Thus if we set $$W = \text{transitive collapse of } H^R \left(\bigcap_{\alpha \leq \theta} \Gamma_{\alpha} \right)$$ then W is an $\Omega+1$ iterable weasel with Ω S-thick in W, and $\mathcal{M} \subseteq W$. It is easy to see that W has the S-definability property at all $\beta \in \mathrm{OR}^{\mathcal{M}}$: if not, then letting $\sigma:W\to R$ invert the collapse, we have that R fails to have the S definability property at $\sigma(\beta)$. Since $\beta\in\mathrm{OR}^{\mathcal{M}}$, $\sigma(\beta)=\pi(\beta)$, and since $\pi(\beta)\in\mathrm{Def}(R,S)$, this is a contradiction. Thus W witnesses that \mathcal{M} is S-sound. As far as we know, it could happen that K(S) is defined (that is, there is an $\Omega + 1$ iterable weasel W such that Ω is S-thick in W) and yet K(S) is a set premouse, and hence not universal. We now show that if K^c satisfies "there are no Woodin cardinals", then $K(A_0)$, which exists by 2.12 and 3.12, is a universal weasel. **Theorem 5.10**. Suppose that $K^c \models$ there are no Woodin cardinals; then $K(A_0)$ is a weasel, and moreover $(\alpha^+)^{K(A_0)} = \alpha^+$ for $\mu_0-a.e.$ $\alpha < \Omega$, so that $K(A_0)$ is universal. *Proof.* We first show that $K(A_0)$ is a weasel, or equivalently, that $\mathrm{Def}(K^c,A_0)$ is unbounded in Ω . So suppose otherwise toward a contradiction. It is easy then to see that there are A_0 -thick classes Γ_{ξ} , for $\xi<\Omega$, such that $$\xi < \delta \Rightarrow \Gamma_{\delta} \subseteq \Gamma_{\xi}$$, and letting $$b_{\xi} = \text{least ordinal } \nu \in (H^{K^c}(\Gamma_{\xi}) - \text{Def}(K^c, A_0)),$$ we have that $$(\mathrm{Def}(K^c, A_0) \cup \Omega) \subseteq b_0 \text{ and } \xi < \delta \Rightarrow b_{\xi} < b_{\delta}.$$ By Lemma 4.8, we can fix ν such that $0 < \nu < \Omega$, $\nu = \sup\{b_{\xi} \mid \xi < \nu\}$, and K^c has the A_0 -definability property at ν . Let $c \in \nu^{<\omega}$ and $d \in \Gamma_{\nu+1}$ and τ a term be such that $$\nu = \tau^{K^c}[c,d] \, .$$ Fix $\xi < \nu$ such that $c \in b_{\xi}^{<\omega}$, so that $$\exists c \in b_{\xi}^{<\omega}(b_{\xi} < \tau^{K^c}[c,d] < b_{\nu+1}).$$ This is an assertion about b_{ξ}, d , and $b_{\nu+1}$, all of which belong to $H^{K^c}(\Gamma_{\xi})$. Thus we can find $c^* \in (b_{\xi} \cap H^{K^c}(\Gamma_{\xi}))^{<\omega}$ such that $$b_{\xi} < \tau^{K^c}[c^*, d] < b_{\nu+1}$$. But $b_{\xi} \cap H^{K^c}(\Gamma_{\xi}) = \operatorname{Def}(K^c, A_0) \cap \Omega$, so $c^* \in \operatorname{Def}(K^c, A_0)$. This implies $\tau^{K^c}[c^*, d] \in H^{K^c}(\Gamma_{\nu+1})$, and since $\operatorname{Def}(K^c, A_0) \subseteq b_0$, and $b_0 < \tau^{K^c}[c^*, d] < b_{\nu+1}$, this contradicts the definition of $b_{\nu+1}$. Thus $\operatorname{Def}(K^c, A_0)$ is unbounded in Ω . We claim that, in fact, $\operatorname{Def}(K^c, A_0) \cap \Omega$ has μ_0 - measure one. For this it is enough to show that if $\nu < \Omega$ is regular, $\operatorname{Def}(K^c, A_0)$ is unbounded in ν , and K^c has the A_0 -definability property at ν , then $\nu \in \operatorname{Def}(K^c, A_0)$. So suppose ν is a counterexample to the last sentence. For each $\eta \in (\nu+1) - \operatorname{Def}(K^c, A_0)$, pick an A_0 -thick class Γ_η such that $\eta \notin H^{K^c}(\Gamma_\eta)$, and let $\Gamma = \bigcap_\eta \Gamma_\eta$. Let b be the least ordinal in $H^{K^c}(\Gamma)$ which is strictly greater than ν . Fix $\xi \in \operatorname{Def}(K^c, A_0) \cap \nu$ and $d \in \Gamma^{<\omega}$ such that for some $c \in \xi^{<\omega}$ and term $\tau, \nu = \tau^{K^c}[c, d]$. Then, as in the proof that $\operatorname{Def}(K^c, A_0)$ is unbounded, for each $\eta \in \operatorname{Def}(K^c, A_0) \cap \nu$ we can find $c_\eta \in \xi^{<\omega} \cap \operatorname{Def}(K^c, A_0)$ such that $\eta < \tau^{K^c}[c_\eta, d] < b$. As ν is regular, we can fix c^* so that $c_\eta = c^*$ for arbitrarily large $\eta < \nu$. But then $\nu \leq \tau^{K^c}[c^*, d] < b$. Since $c^* \in \operatorname{Def}(K^c, A_0) \subseteq H^{K^c}(\Gamma)$, this contradicts the definition of b. Finally, we show that for μ_0 -a.e. ν , $\operatorname{Def}(K^c, A_0)$ is unbounded in ν^+ . This clearly implies that $(\nu^+)^{K(A_0)} = \nu^+$ for μ_0 -a.e. ν , and so completes the proof of 5.10. So suppose not; then we can fix $\nu \in \operatorname{Def}(K^c, A_0)$ such that $(v^+)^{K^c} = \nu^+$, K^c has the A_0 -hull property at ν , and $\operatorname{Def}(K^c, A_0) \cap \nu^+$ is bounded in ν^+ . We have then an A_0 -thick class Γ such that $H^{K^c}(\Gamma)$ is bounded in ν^+ , say by $\delta < \nu^+$. By the hull property we have a term τ and $d \in \Gamma^{<\omega}$ such that for some $c \in (\nu+1)^{<\omega}$ $$\delta < \tau^{K^c}[c,d] < \nu^+.$$ But now, set $$\eta = \sup\{\tau^{K^c}[c^*, d] \mid c^* \in (\nu + 1)^{<\omega} \land \tau^{K^c}[c^*, d] < v^+\}.$$ Then $\delta < \eta < \nu^+$, and $\eta \in H^{K^c}(\Gamma)$ since $\nu, d \in H^{K^c}(\Gamma)$. This contradicts the choice of δ . It is very easy to show that, modulo the absoluteness of $\Omega + 1$ iterability, K(S) is absolute under "set" forcing. **Theorem 5.11.** Suppose K(S) is defined, as witnessed by the $\Omega + 1$ -iterable weasel W such that Ω is S-thick in W. Let G be V-generic over \mathbb{P} , where $\mathbb{P} \in V_{\Omega}$, and suppose that $V[G] \models W$ is $\Omega + 1$ -iterable. Then $V[G] \models \text{``}K(S)$ exists, as witnessed by W, and $K(S)^{V[G]} = K(S)^{V}$. *Proof.* V and V[G] have the same cardinals and cofinalities $> |\mathbb{P}|$; moreover, if $C \in V[G]$ and C is club in some regular $\nu > |\mathbb{P}|$, then $\exists D \in V \ (D \subseteq C \text{ and } D \text{ is club in } \nu)$. It follows that for any class $\Gamma \subseteq \Omega$ in V[G] $$V[G] \models \Gamma$$ is S thick in W iff $\exists \Delta \subset \Gamma(V \models \Delta \text{ is } S \text{ -thick in } W)$. This implies that Ω is S-thick in W in V[G], and that $Def(W, S)^{V[G]} = Def(W, S)^V$. Since W is $\Omega + 1$ iterable in V[G] by hypothesis, we get that $K(S)^{V[G]}$ exists and $K(S)^{V[G]} = K(S)^V$. We doubt that one can show that $\Omega+1$ -iterability of W is absolute for "set" forcing in the abstract, although we have no counterexample here. It seems likely that one must appeal to the existence of a definable $\Omega+1$ iteration strategy for W. This will come from a simplicity restriction on the iteration trees on W, which in turn will come from a smallness condition on W. At the one Woodin cardinal level, we can use the following lemma, whose proof is a slight extension of that of 2.4(a). **Lemma 5.12**. Let W be an $\Omega+1$ -iterable (respectively, $(\omega, \Omega+1)$ -iterable) proper premouse such that $W \models$ there are no Woodin cardinals, and let G be V-generic over \mathbb{P} , where $\mathbb{P} \in V_{\Omega}$. Then $V[G] \models W$ is $\Omega+1$ iterable (respectively, $(\omega, \Omega+1)$ -iterable). *Proof.* We give the proof for $\Omega + 1$ -iterability. Using the weak compactness of Ω in V[G], it is enough to show that V[G] satisfies: whenever T is a putative normal, ω -maximal iteration tree on \mathcal{J}_{α}^{W} , for some W-cardinal $\alpha < \Omega$, and lh $T < \Omega$, then either T has a last, wellfounded model, or T has a cofinal wellfounded branch. So suppose \mathcal{T} is a tree on \mathcal{J}_{α}^{W} which is a counterexample to this assertion, and let $\mathcal{T}, \mathcal{J}_{\alpha}^{W} \in V_{\eta}[G]$, where $\eta < \Omega$ is an inaccessible cardinal, and $\mathbb{P} \in V_n$. By the Löwenheim-Skolem theorem, we have in V a countable transitive M and elementary $\pi: M \to V_{\eta}$ such that $\mathcal{J}_{\alpha}^{W}, \mathbb{P} \in \operatorname{ran} \pi$. Let $\pi((\bar{W}, \bar{\mathbb{P}})) = (\mathcal{J}_{\alpha}^{W}, \mathbb{P})$; then M thinks that $\bar{\mathbb{P}}$ has a condition forcing the existence of a "bad" tree on \bar{W} . Since M is countable, we can find in Von M-generic filter \bar{G} on $\bar{\mathbb{P}}$ such that $M[\bar{G}] \models \bar{\mathcal{T}}$ is a "bad" tree on \bar{W} . Notice that since \bar{W} satisfies "There are no Woodin cardinals", \bar{T} is simple; moreover, since $\pi: \bar{W} \to \mathcal{J}_{\alpha}^{W}$ is elementary, $\bar{\mathcal{T}}$ is "good" in V. Thus $\bar{\mathcal{T}}$ cannot have a last, illfounded model, and $\bar{\mathcal{T}}$ has a unique cofinal wellfounded branch b in V. It is enough for a contradiction to show that $b \in M[G]$, and for this it is enough to show $b \in M[\bar{G}][H]$, where H is $M[\bar{G}]$ generic for $\operatorname{Col}(\omega, \max(|\bar{T}|, |\bar{W}|)^{M[\bar{G}]})$. But now in $M[\bar{G}][H]$ there is a real x which codes (\bar{T}, \bar{W}) . Also, $x^{\parallel} \in M[\bar{G}][H]$, since M is closed under the sharp function on arbitrary sets because it embeds elementarily in V_n . It is a Σ_2^1 assertion about x that \bar{T} has a cofinal wellfounded branch, this assertion is true in V, and $x^{\dagger} \in M[\bar{G}][H]$, so this assertion is true in $M[\bar{G}][H]$. As b is unique, this means that $b \in M[G][H]$. Putting together 5.11 and 5.12, we get **Theorem 5.13.** Suppose K(S) is defined, as witnessed by a weasel W such that $W \models$ there are no Woodin cardinals. Let G be V-generic for \mathbb{P} , where $\mathbb{P} \in V_{\Omega}$. Then $V[G] \models "K(S)$ is defined, as witnessed by W", and $K(S)^{V[G]} = K(S)^{V}$. **Corollary 5.14.** Suppose $K^c \models there$ are no Woodin cardinals, and let G be V-generic over $\mathbb{P} \in V_{\Omega}$. Then $V[G] \models ``K(A_0)'$ is defined, as witnessed by $(K^c)^V$; moreover $(\alpha^+)^{K(A_0)} = \alpha^+$ for μ_0 - a.e. $\alpha < \Omega$ ". Let us observe in passing that if there is an $\Omega+1$ iterable weasel W such that Ω is S-thick in W, for some S, and $W \models$ there are no Woodin cardinals, then in fact $K^c \models$ there are no Woodin cardinals. [Sketch: If $K^c \models$ there is a Woodin cardinal, then its coherent sequence is of size $< \Omega$. Let $(\mathcal{T}, \mathcal{U})$ be a terminal coiteration of K^c with W, using an iteration strategy on the W side and picking unique cofinal branches on the K^c side. $(\mathcal{T}, \mathcal{U})$ cannot be successful, since otherwise the K^c side would have iterated past W, contrary to $(\alpha^+)^W = \alpha^+$ for stationary many α . Thus it must be that T has no cofinal wellfounded branch. The existence of generic branches for trees on K^c then implies $\delta(T)$, the sup of the lengths of the extenders used in T, is Woodin in an iterate of W, a contradiction.] Thus we can add to the conclusion of 5.14: $(K^c)^{V[G]} \models$ there are no Woodin cardinals. We are not sure whether Ω is $(A_0)^V$ -thick in $(K^c)^{V[G]}$, however. We now show that, if there is an $(\omega, \Omega+1)$ -iterable weasel, then there is at most one weasel of the form K(S). First, let us note: **Lemma 5.15**. If there is an $(\omega, \Omega + 1)$ -iterable universal weasel, then every $\Omega + 1$ -iterable proper premouse is $(\omega, \Omega + 1)$ -iterable. *Proof.* Let W be universal and Σ an $(\omega, \Omega+1)$ -iteration strategy for W. Let \mathcal{M} be an $\Omega+1$ iterable premouse. By coiteration, we obtain a normal iteration tree \mathcal{T} on W which is a play of round 1 of $\mathcal{G}^*(W,(\omega,\Omega+1))$ according to Σ , with last model \mathcal{P} , and an elementary $\pi:\mathcal{M}\to\mathcal{P}$. But then \mathcal{P} is $(\omega,\Omega+1)$ -iterable, and so by 2.9, so is \mathcal{M} . The next lemma says that, except possibly for its ordinal height, K(S) is independent of S. **Lemma 5.16.** Suppose there is an $(\omega, \Omega + 1)$ -iterable universal weasel, and that S and T are stationary sets such that K(S) and K(T) exist. Then $K(S) \subseteq K(T)$ or $K(T) \subseteq K(S)$. In particular, if K(S) and K(T) are weasels, then K(S) = K(T). *Proof.* Let \mathcal{M} be S-sound, as witnessed by W, and let \mathcal{N} be T-sound, as witnessed by R. We assume without loss of generality that $\mathrm{OR}^{\mathcal{M}} \leq \mathrm{OR}^{\mathcal{N}}$. W and R are $(\omega, \Omega+1)$ -iterable by Lemma 5.15. By Theorem 3.7 (1), for all but non-stationary many $\alpha \in S \cup T$, $(\alpha^+)^R = (\alpha^+)^W = \alpha^+$. Now let W^* be the (linear) iterate of W obtained by taking an ultrapower by the order zero total measure on α from W, for each $\alpha \in T$ -OR^{\mathcal{M}} such that $W \models \alpha$ is measurable. Similarly, let R^* be obtained from R by taking an ultrapower by the order zero measure on α at each $\alpha \in S - \mathrm{OR}^{\mathcal{N}}$ such that $R \models \alpha$ is measurable. Then W^* and R^* still witness the S and T soundness of \mathcal{M} and \mathcal{N} , respectively. Moreover, Ω is $S \cup T$ thick in each of W^* and R^* . Let $i: W^* \to Q$ and $j: R^* \to Q$ come from coiteration. Let $\kappa = \min(\operatorname{crit}(i), \operatorname{crit}(j))$. It is enough to show that $\operatorname{OR}^{\mathcal{M}} \leq \kappa$, for then $\mathcal{M} \subseteq \mathcal{N}$ as desired, so assume that $\kappa < \operatorname{OR}^{\mathcal{M}}$. Suppose that $\kappa = \operatorname{crit}(i) < \operatorname{crit}(j)$. Since Ω is T-thick in R^* and W^* , and $\kappa \in \operatorname{Def}(R^*, T)$, we can find a term τ and common fixed points $\alpha_1 \cdots \alpha_k$ of i and j so that $\kappa = \tau^{R^*}[\bar{\alpha}]$. But then $\kappa = j(\kappa) = \tau^Q[\bar{\alpha}] = i(\tau^{W^*}[\bar{\alpha}])$, so $\kappa \in \operatorname{ran}(i)$, a contradiction. Similarly, we get $\operatorname{crit}(i) \leq \operatorname{crit}(j)$, so $\operatorname{crit}(j) = \operatorname{crit}(i) = \kappa$. A similar argument with the hull property gives the usual contradiction. let $A \subseteq \kappa$ and $A \in W^*$. We have a term τ and common fixed points $\bar{\alpha}$ of i and j such that $A = \tau^{W^*}[\bar{\alpha}] \cap \kappa$, using here that W^* has the S-hull property as κ and Ω is S-thick in R^* . Then $i(A) = \tau^Q[\bar{\alpha}] \cap i(\kappa)$, so $\tau^Q[\bar{\alpha}] \cap \kappa = \tau^{R^*}[\bar{\alpha}] \cap \kappa = A$, and $j(A) = \tau^Q[\bar{\alpha}] \cap j(\kappa)$. Thus i(A) and j(A) agree below $\min(i(\kappa), j(\kappa))$. This implies that the extenders used first on the branches of the two trees in our coiteration which produced i and j are compatible with one another. This is a contradiction. **Definition 5.17.** Suppose there is an $(\omega, \Omega+1)$ iterable universal weasel, and that K(S) exists for some S; then we say that K exists, and define K to be the unique proper premouse M such that $\forall \mathcal{P}, S$ (\mathcal{P} is S-sound $\Leftrightarrow \mathcal{P} \subseteq M$). We do know whether it is consistent with the definitions we have given that K exists, but is only a set premouse or a non-universal weasel. If we assume that $K^c \models$ there are no Woodin cardinals, then K exists by 2.12, 3.6, and 3.12; moreover K is universal by 5.10. We summarize what we have proved about K under this "no Woodin cardinals" assumption: **Theorem 5.18**. Suppose $K^c \models there$ are no Woodin cardinals; then - (1) K exists, and is $(\omega, \Omega + 1)$ iterable, - (2) $(\alpha^+)^K = \alpha^+$ for μ_0 a.e. $\alpha < \Omega$, and - (3) if G is V-generic/ \mathbb{P} , for some $\mathbb{P} \in V_{\Omega}$, then $V[G] \models \text{``K'}$ exists, is $(\omega, \Omega+1)$ iterable, and $(\alpha^+)^K = \alpha^+$ for μ_0 a.e. $\alpha < \Omega$ ''; moreover $K^{V[G]} = K^V$.