Table of Contents

Preface				V		
0.	Introduction					
	0.1	Finite	Models, Logic and Complexity	1		
		0.1.1	Logics for Complexity Classes	1		
		0.1.2	Semantically Defined Classes	4		
		0.1.3	Which Logics Are Natural?	7		
	0.2	Natur	Natural Levels of Expressiveness			
		0.2.1	Fixed-Point Logics and Their Counting Extensions	8		
		0.2.2	The Framework of Infinitary Logic	9		
		0.2.3	The Rôle of Order and Canonization	11		
	0.3	Guide	to the Exposition	12		
1.	Definitions and Preliminaries					
	1.1	Struct	cures and Types	15		
		1.1.1	Structures	15		
		1.1.2	Queries and Global Relations	17		
		1.1.3	Logics	18		
		1.1.4	Types	19		
	1.2	Algori	ithms on Structures	21		
		1.2.1	Complexity Classes and Presentations	22		
		1.2.2	Logics for Complexity Classes	23		
	1.3	Some	Particular Logics	24		
		1.3.1	First-Order Logic and Infinitary Logic	24		
		1.3.2	Fragments of Infinitary Logic	25		
		1.3.3	Fixed-Point Logics	3 0		
		1.3.4	Fixed-Point Logics and the $L^k_{\infty\omega}$	33		
	1.4	Types	and Definability in the $L^k_{\infty\omega}$ and $C^k_{\infty\omega}$	35		
	1.5					
		$1.5.1^{\circ}$	Variants of Interpretations	38		
		1.5.2	Examples	4 0		
		1.5.3	Interpretations and Definability	41		

VIII Table of Contents

	1.6	Lindström Quantifiers and Extensions	43
		1.6.1 Cardinality Lindström Quantifiers	43
		1.6.2 Aside on Uniform Families of Quantifiers	44
	1.7	Miscellaneous	47
		1.7.1 Canonization and Invariants	47
		1.7.2 Orderings and Pre-Orderings	49
		1.7.3 Lexicographic Orderings	49
•	701		~ 1
2.		Games and Their Analysis	51
	2.1	The Pebble Games for $L^k_{\infty\omega}$ and $C^k_{\infty\omega}$	51
		2.1.1 Examples and Applications	54
		2.1.2 Proof of Theorem 2.2	60
		2.1.3 Further Analysis of the C^k -Game	62
		2.1.4 The Analogous Treatment for L^k	66
	2.2	Colour Refinement and the Stable Colouring	67
		2.2.1 The Standard Case: Colourings of Finite Graphs	67
		2.2.2 Definability of the Stable Colouring	68
		2.2.3 $C_{\infty\omega}^2$ and the Stable Colouring	71
		2.2.4 A Variant Without Counting	72
	2.3	Order in the Analysis of the Games	73
		2.3.1 The Internal View	74
		2.3.2 The External View	76
		2.3.3 The Analogous Treatment for L^k	77
3.	The	e Invariants	79
	3.1	Complete Invariants for L^k and C^k	80
	3.2	The C^k -Invariants	81
	3.3	The L^k -Invariants	85
	3.4	Some Applications	87
	0.1	3.4.1 Fixed-Points and the Invariants	87
		3.4.2 The Abiteboul-Vianu Theorem	90
		3.4.3 Comparison of I_{C^k} and I_{L^k}	91
	3.5	A Partial Reduction to Two Variables	93
	0.0	TI CALLES TOCALCOLOR TO TWO VALIABLES	50
4.	Fix	ed-Point Logic with Counting	97
	4.1	Definition of FP+C and PFP+C	98
	4.2	FP+C and the C^k -Invariants	106
	4.3	The Separation from PTIME	109
	4.4	Other Characterizations of FP+C	111
5.	Ral	ated Lindström Extensions	115
υ.	5.1		
	5.1	A Structural Padding Technique	
	0.2	Cardinality Lindström Quantifiers	
	5.3		
	0.3	Aside on Further Applications	128

				Table of Contents	IX		
6.	Caı	noniza	tion Problems		131		
	6.1	Canor	nization		131		
	6.2	Ртім	E Canonization and Fragments of P	ГІМЕ	134		
	6.3		nization and Inversion of the Invaria				
	6.4	A Rec	luction to Three Variables				
		6.4.1	The Proof of Theorems 6.16 and 6.				
		6.4.2	Remarks on Further Reduction		147		
7.	Car	nonizat	tion for Two Variables		149		
	7.1	Game	Tableaux and the Inversion Problem	n	150		
		7.1.1					
	7.2	Realiz	ations for I_{C^2}				
		7.2.1					
		7.2.2	Realizations of the Off-Diagonal Bo				
		7.2.3	Magic Squares				
		7.2.4	Realizations of the Diagonal Boxes				
	7.3 Realizations for I_{L^2}						
		7.3.1	Necessary and Sufficient Conditions				
		7.3.2	On the Special Nature of Two Vari				
Bil	oliog	raphy.			177		
Inc	lex				181		