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1. Introduction

The aim of enumerative geometry is to find for the number of geomet-
ric objects of specified kind, which satisfy certain incidence or tangency
constraints. The history of enumerative geometry can be traced back to
Italian schools, where mathematicians raised many questions about alge-
braic varieties in PN and obtained important formulas. In the last twenty
years, techniques from superstring theory reinvigorated enumerative geom-
etry, resulted in many exciting results such as Candelas et al.’s formula on
genus zero Gromov-Witten invariants on Calabi-Yau quintics and the Yau-
Zaslow formula on enumerating rational curves on K3 surfaces. Many clas-
sical questions were solved by introducing modern techniques. The most
famous example is Kontsevich and Manin’s recursive formula on Nd, the
number of rational curves of degree d passing through 3d− 1 points in gen-
eral position in P2.

In this article, we will report the recent progress of enumerating the
number of nodal curves on algebraic surfaces.

1.1. Main results. Consider a line bundle L on a complex projective
smooth surface S. This paper attempts to answer the following question:
how many reduced curves have exactly r simple nodes and no higher sin-
gularities in a generic r-dimensional linear system of |L|? Equivalently,
how many r-nodal curves in |L| pass through dim|L| − r points in general
position?

Göttsche [Gö] conjectured that for every r, the numbers of r-nodal
curves are given by universal polynomials of four topological numbers: L2,
LK, c1(S)2 and c2(S) provided that the line bundle L is (5r−1)-very ample
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(i.e. H0(S, L) → L|ξ is surjective for every ξ ∈ S[5r]). These polynomials
are universal in the sense that it only depends on r and are independent of
the surface and line bundle. Our first result is an algebro-geometric proof
of Göttsche’s conjecture.

Theorem 1.1 (Göttsche’s conjecture). For every integer r ≥ 0, there
exists a universal polynomial Tr(x, y, z, t) of degree r with the following prop-
erty: given a smooth projective surface S and a (5r − 1)-very ample (5-very
ample if r = 1) line bundle L on S, a general r-dimensional sublinear system
of |L| contains exactly Tr(L2, LK, c1(S)2, c2(S)) r-nodal curves.

Since the numbers of nodal curves for all line bundles on P2 and for
primitive classes on K3 surfaces have been determined ([CH], [BL]), all
coefficients of Tr can be computed by solving linear equations. Moreover, one
can combine all universal polynomials as coefficients to define a generating
function. Inspired by the Yau-Zaslow formula, Göttsche [Gö] conjectured
the closed form of this generating function of Tr, which we call the Göttsche-
Yau-Zaslow formula.

Theorem 1.2 (The Göttsche-Yau-Zaslow formula). There exist univer-
sal power series B1(q) and B2(q) such that∑

r≥0

Tr(L2, LK, c1(S)2, c2(S))(DG2(τ))r

=
(DG2(τ)/q)χ(L)B1(q)K2

SB2(q)LKS

(Δ(τ)D2G2(τ)/q2)χ(OS)/2
,

where G2 is the second Eisenstein series − 1
24 +

∑
n>0

(∑
d|n d

)
qn, D = q d

d q

and Δ(q) = q
∏

k>0(1 − qk)24.

If we write q = e2πiτ for τ on the complex upper half plane, then G2,
DG2 and D2G2 are quasimodular forms in τ and Δ is a modular form in τ .
For the precise definition of quasimodular forms, see [KZ].

1.2. Background. On P2, the number of nodal curves is classically
known as the Severi degree Nd,g, which is the number of plane curves of
degree d and genus g passing through 3d + g − 1 points in general posi-
tion. This subject was studied by Ran ([Ran1], [Ran2]), using degeneration
of P2 and an inductive procedure. In 1993, Kontsevich and Manin [KM]
introduced the techniques of Gromov-Witten theory to this problem, from
which they obtained a beautiful recursive formula of rational curves for all
degrees. For plane curves of a higher genus, Harris and Pandharipande
[HP] computed the Severi degrees with at most three nodes using Hilbert
schemes, and Choi [Ch] extended the result to at most four nodes using
Ran’s method.

The counting of nodal curves of arbitrary genus g in P2 was completely
solved by Caporaso and Harris [CH]. They defined the generalized Severi



UNIVERSAL FORMULAS FOR COUNTING NODAL CURVES ON SURFACES 97

degrees Nd,g(α, β) with tangential conditions and used deformation theory to
derive recursive formulas of Nd,g(α, β). Shortly after, Vakil [Vakil] derived
similar results for rational ruled surfaces.

For an arbitrary smooth projective surface, the number of nodal curves
with at most three nodes can be computed directly by standard intersec-
tion theory. In 1994, Vainsencher [Va] proved the existence of universal
polynomials in the case of up to six nodes. By computing the polynomials
explicitly, he showed that the polynomials only depend on L2, LK, c1(S)2

and c2(S). Later, Kleiman and Piene ([KP1], [KP2]) refined Vainsencher’s
approach and generalized the result to up to eight nodes. Since their meth-
ods rely on a detailed analysis of the singularities of low codimensions, it is
difficult to generalize the methods to the case of a higher number of nodes.

On algebraic K3 surfaces and primitive classes, the number of rational
curves not only can be determined but also possesses a general pattern.
Yau and Zaslow [YZ] discovered a surprising formula for the generating
function in terms of the Dedekind function, which prompts the speculation
that general modular forms may be involved. In particular, the Yau-Zaslow
formula implies that the number of rational curves in an effective class C
only depends on the self-intersection number C2.

The Yau-Zaslow formula was generalized by Göttsche [Gö] to arbi-
trary projective surface. Using Vainsencher and Kleiman-Piene’s numbers,
Göttsche conjectured the Göttsche-Yau-Zaslow formula, which relates the
generating function to quasimodular forms. This generating function is
defined by universal polynomials, which can be viewed as a virtual count-
ing of nodal curves, especially when the line bundle is not ample enough.
In addition, Göttsche observed that the generating function is completely
determined by the number of nodal curves on P2 and K3 surfaces; thus it
can be computed by the Severi degrees and quasimodular forms. A refor-
mulation of the Göttsche-Yau-Zaslow formula gives the generating function
on the number of genus g curves ([Gö], remark 2.6) and this reformulation
has been verified by Bryan and Leung [BL] for K3 surfaces and primitive
ample line bundles.

The Severi degrees also have interesting properties. On P2, fixing the
number of nodes and letting the degrees vary, Di Francesco and Itzykson
conjectured [FI] that the number of plane r-nodal curves of degrees d is a
polynomial in d, or the node polynomial. Recently, Fomin and Mikhalkin
[FM] proved the polynomiality with tropical geometry and found many
interesting properties of node polynomials. Block [Bl] generalized it to rela-
tive node polynomials and proved that there is a formal power series which
specializes to all relative node polynomials. These results suggest that enu-
merating curves with broader conditions may possess a structure that has
not been discovered.

We add that a symplectic proof to Göttsche’s conjecture was given by
A.K. Liu ([Liu1], [Liu2]), based on the work of Taubes on the equivalence of
Seiberg-Witten theory and Gromov-Witten theory. Recently another proof
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was also found by Kool-Shende-Thomas [KST], using the BPS calculus and
the computation of tautological integrals on Hilbert schemes by Ellingsrud,
Göttsche and Lehn [EGL].

1.3. Multiplicative structure. The Göttsche-Yau-Zaslow formula
expressed the generating function in terms of quasimodular forms and two
unknown series B1(q) and B2(q). If the canonical divisor of a surface S is
numerically trivial, only the quasimodular forms appear in the generating
function. Consequently, the generating function for K3 surfaces and abelian
surfaces is known. The unknown series B1(q) and B2(q) can be determined
using Caporaso and Harris’ recursive formulas of the Severi degrees of P2.
Göttsche has computed the coefficients of B1(q) and B2(q) up to degree 28.
However, we are still unable to find the closed forms for B1(q) and B2(q).

Instead of indexing on (DG2)r, we can simply use xr to define another
generating function

T (S, L) =
∑
r≥0

Tr(L2, LK, c1(S)2, c2(S))xr.

Because all coefficients are universal, T (S, L) is a universal power series.
Moreover, T (S, L) is multiplicative:

Theorem 1.3 ([Gö], proposition 2.3). Assuming the numbers of nodal
curves are given by universal polynomials, then there exist universal power
series A1, A2, A3, A4 in Q[[x]]× 1 such that the generating function has the
form

T (S, L) = AL2

1 ALKS
2 A

c1(S)2

3 A
c2(S)
4 .

While Göttsche proved this theorem by considering disjoint union of
surfaces, we will give a different proof using algebraic cobordism in Section 4.
The new proof plays a central role in our approach because it demonstrates
that universality is a result of algebraic cobordism structure.

The coefficients of Ai can be determined by Caporaso-Harris [CH] and
Vakil’s [Vakil] recursive formulas on P2 and P1 × P1 but the closed forms
are unknown. Note the generating functions in Theorems 1.2 and 1.3 can
be defined for all line bundles even if they are trivial or not effective. In this
setting, the r-th coefficient of T (S, L) equals the number of r-nodal curves of
[S, L] if L is sufficiently ample relative to r. Therefore, usually only a finite
number of initial coefficients honestly represent the number of nodal curves,
and after that the coefficients are virtual and hard to what they mean.
This difficulty will be overcome by depicting the universal polynomials as
intersection numbers dr(S, L) and working with dr(S, L) directly.

1Q[[x]]× is the group of units in Q[[x]] and the group action is defined by multiplication
of power series.
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1.4. Approach. In this article we prove Theorem 1.3 first, and derive
other theorems from this theorem. The main ingredients in our proof consist
of the algebraic cobordism group ω2,1, the enumerative number dr(S, L) and
the moduli stack of families of ideal sheaves. These techniques are developed
in order to study the degeneration of line bundles on surfaces, and to derive
a degeneration formula for the generating functions. As a consequence, we
will prove when L is (5r − 1)-very ample, the number of nodal curves in |L|
on S only depend on the class of [S, L] in ω2,1, which can be computed by
L2, LK, c1(S)2 and c2(S).

The algebraic cobordism theory has been developed by Levine and Pand-
haripande [LP]. They call

[X0] − [X1] − [X2] + [X3]

a double point relation if there exists a flat family of projective schemes
π : X → P1 satisfying the following properties: firstly, X is smooth and X0

is the fiber over 0 ∈ P1 and is smooth. Secondly, the fiber over ∞ ∈ P1 is
the union of two smooth components X1 and X2 intersecting transversally
along a smooth divisor D. Thirdly, X3 = P(1D � NX1/D) is a P1 bundle
over D. Define the addition of two schemes to be the disjoint union and the
multiplication to be the Cartesian product. The algebraic cobordism ring is
defined to be the ring generated by all smooth projective schemes modulo
the double point relation.

Since the problem of counting nodal curves is about a surface S and a
line bundle L on S, we generalize Levine and Pandharipande’s construction
to pairs of line bundles on surfaces. Let Li be line bundles on Xi, we call

[X0, L0] − [X1, L1] − [X2, L2] + [X3, L3]

an double point relation if [X0]− [X1]− [X2]+[X3] is a double point relation,
and there exists a line bundle L on X such that Li = L|Xi for i = 0, 1, 2;
L3 = η∗(L|D) where η : X3 → D is the projection.

In [LP], Levine and Pandharipande defined the algebraic cobordism
group of surfaces and line bundles ω2,1 to be the vector space over Q spanned
by all pairs [S, L] modulo all double point relations. The subscript (2, 1) cap-
tures the dimension of surfaces and the rank of line bundles. In Section 2,
we prove ω2,1 is a four-dimensional vector space over Q and (L2, LK, c1(S)2,
c2(S)) induces the isomorphism from ω2,1 to Q4. Consequently, the class of
[S, L] in ω2,1 is linear in L2, LK, c1(S)2 and c2(S). Two important bases of
ω2,1 are

{[P2,O], [P2,O(1)], [P1 × P1,O], [P1 × P1,O(1, 0)]} and

{[P2,O], [P2,O(1)], [S1, L1], [S2, L2]},
where Si are K3 surfaces and Li are primitive classes on Si with L2

1 �= L2
2.

In general, for pairs of vector bundles of rank k on smooth projective
scheme of dimension n, one can define the algebraic cobordism group ωn,k.
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Lee and Pandharipande [LeeP] have studied the structure of ωn,k. Our
result about ω2,1, although worked out independently, is a special case of
[LeeP].

Another important ingredient of our proof is the enumerative number
dr(S, L). This number is defined by Göttsche ([Gö]) as the intersection
number of a closed subscheme W 3r of S[3r] and the 2rth Chern class of the
tautological bundle of L on S[3r], i.e.

dr(S, L) =
∫

W 3r

c2r(L[3r]).

He proved that when L is (5r−1)-very ample, dr(S, L) equals the number of
r-nodal curves in [S, L]. Although it is difficult to compute dr(S, L) directly,
we believe it is the correct object to investigate for two reasons.

First, when a pair of smooth surface and ample line bundle degenerates
to the singular fiber, ampleness of the line bundle is usually not preserved.
Without ampleness, the universal polynomial Tr(L2, LK, c1(S)2, c2(S)) do
not necessarily equal to the number of r-nodal curves in [S, L]. On the
contrary, the numbers dr(S, L) can be defined for every line bundle, even if
it is not ample. In the end, we will show that for every pair [S, L], dr(S, L)
is the universal polynomial Tr(L2, LK, c1(S)2, c2(S)).

Second, since dr(S, L) is defined as an intersection number, it has many
good properties under degeneration. Suppose π : X → P1 defines a double
point relation and U is a Zariski open set of P1 such that all fibers are
smooth except π−1(∞). Jun Li and Baosen Wu [LW] constructed a moduli
stack X [n] → U , which is the moduli stack of rank one stable relative ideal
sheaves in the family XU = X ×P1 U → U . For each integer n, the moduli
stack X [n] → U can be viewed as a family of Hilbert schemes of n points on
fibers. The generic fiber of X [n] → U at ∞ �= t ∈ U is the Hilbert scheme
X

[n]
t and the special fiber is the union of products of relative Hilbert schemes

n⋃
k=0

(X1/D)[k] × (X2/D)[n−k].

For each r ∈ N, recall dr(S, L) is defined to be
∫

W 3r

c2r(L[3r]). The

closed subscheme W 3r in S[3r] can be extended globally to a family of closed
subschemes W3r in X [3r]. In addition, if L is a line bundle on X , then its
restriction on U similarly defines a tautological bundle L[n] on X [n] for each
n. Thus on X [3r], the intersection of c2r(L[3r]) and W [3r] defines a family of
zero cycles. Consider a double point relation [X0, L0]− [X1, L1]− [X2, L2]+
[X3, L3]. By rational equivalence of the fibers of W 3r over 0 and ∞, we show
the generating function

φ(S, L)(x) =
∞∑

r=0

dr(S, L)xr



UNIVERSAL FORMULAS FOR COUNTING NODAL CURVES ON SURFACES 101

satisfies the following degeneration formula:

φ(X0, L0) = φ(X1/D, L1)φ(X2/D, L2),

where φ(Xi/D, Li) is the “relative” generating function.
The relation of absolute generating function φ can be computed by ap-

plying the degeneration formula on several families to eliminate the relative
functions, which is

φ(X0, L0) =
φ(X1, L1)φ(X2, L2)

φ(X3, L3)
.

Thus φ induces a group homomorphism from the algebraic cobordism group
ω2,1 to (Q[[x]]×, · ). Consequently, Theorem 1.3 is proved and dr(S, L) equals
the universal polynomial Tr(L2, LK, c1(S)2, c2(S)) for all smooth projective
surfaces S and line bundles L. Since dr(S, L) equals the number of r-nodal
curves when L is (5r − 1)-very ample, Theorem 1.1 is proved as a corollary.

The generating function in Theorem 1.2 is

γ(S, L)(q) =
∑
r∈Z

Tr(L2, LK, c1(S)2, c2(S))(DG2(τ))r = φ(S, L)(DG2).

Therefore this generating function also induces a homomorphism from ω2,1

to Q[[q]]×. Since Bryan and Leung [BL] have computed γ(S, L)(q) on generic
K3 surfaces and primitive classes, we shall use a different basis

{[P2,O], [P2,O(1)], [S1, L1], [S2, L2]}
of ω2,1, where Si are K3 surfaces and Li are primitive classes on Si with
L2

1 �= L2
2. By Theorem 1.3, γ(S, L)(q) is a weighted product of γ(P2,O),

γ(P2,O(1)), γ(S1, L1) and γ(S2, L2). This proves Theorem 1.2. See Section
4 for more details about proofs and computation.

1.5. Outline. In Section 2 we briefly review the construction of two al-
gebraic cobordism theories. In particular we construct the algebraic cobor-
dism group ω2,1 and study its structure.

Section 3 is dedicated to the enumerative number dr(S, L) and its gener-
ating function φ(S, L)(x). The main result in this section is a degeneration
formula about φ(S, L)(x) for pairs satisfying a double point relation.

Finally, in Section 4 we combine the techniques developed in Sections 2
and 3 to prove Theorems 1.1, 1.2 and 1.3. We express the infinite series Ai

and Bi as the weighted product of generating functions on P2, P1 × P1, and
K3 surfaces.
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help in all aspects. Moreover, I thank Lothar Göttsche for the explanation
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1.7. Notation and Convention.
(1) All surfaces are assumed to be complex, projective, smooth and

algebraic.
(2) An r-nodal curve is a reduced connected curve that has exactly r

nodes and no other types of singularity.
(3) We always denote by [S, L] a pair of a smooth projective surface S

and a line bundle L on S.
(4) The number of r-nodal curves in a pair [S, L] means the number of

r-nodal curves in a generic r-dimensional linear system of |L| on S.

2. Algebraic Cobordism

2.1. Introduction. In this section, we assume k be a field of character-
istic 0. Let Schk denote the category of separated schemes of finite type over
k and Smk denote its full subcategory consisting of smooth quasi-projective
k-schemes.

The theory of algebraic cobordism Ω∗ was first constructed by Levine
and Morel [LM], which lifts the complex cobordism theory to algebraic
varieties over a field of characteristic zero. They proved that Ω∗ is a uni-
versal oriented cohomology theory on Smk endowed with a universal formal
group law. Other examples of oriented cohomology include the Chow ring
X → CH∗(X), the Grothendieck group of coherent sheaves joint with β,
β−1: X → K0(X)[β, β−1]. The universality of Ω∗ implies there are induced
morphisms of oriented cohomology theory

Ω∗ ⊗L∗ Z → CH∗

Ω∗ ⊗L∗ Z[β, β−1] → K0[β, β−1]

which are in fact isomorphisms. Thus CH∗ and K0[β, β−1] can be obtained
by changing the formal group laws on Ω∗, which is done by tensoring factors
Z and Z[β, β−1].

When Levine and Morel constructed Ω∗, they first identified the homol-
ogy theory Ω∗ on Schk and identify two theories by Ωn(X) =

⊕
Ωdα−n(Xα)

where X = ∪Xα is the union of irreducible components and the dimen-
sion of (Xα) is dα. Ω∗(X) are generated by cobordism cycles [f : Y →
X, L1, L2, . . . , Lr] where Y is in Smk, f is projective and Li’s are line bun-
dles over Y . Define the degree of such a cobordism cycle to be dimk(Y )− r.
Then Ω∗(X) is defined as the free abelian group generated by cobordism cy-
cles modulo some natural relations. Briefing speaking, if L is a line bundle
on X, we hope to have

c1(L)[f : Y → X, L1, L2, . . . , Lr] := [f : Y → X, L1, L2, . . . , Lr, f
∗L]

= [f ◦ i : Z → X, L1, L2, . . . , Lr],

where i : Z → Y is a closed subvariety of the zeroes of s and s is a section of
L transversal to the zero section. Thus the relations in Ω∗(X) are imposed to
make the equality always hold, and the first Chern class satisfies projective
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bundle formula, homotopy invariance, nilpotence, and formal group law
axioms.

Instead of dealing with a large number of generators and relations,
Levine and Pandharipande constructed another algebraic cobordism theory
ω∗ by allowing only one type of relation called the double point degeneration.
More precisely, they consider projective morphisms

π : Y → X × P1

and composition
π2 = p2 ◦ π : Y → P1

where X ∈ Schk and Y is a smooth quasi-projective scheme of pure
dimension. Assuming π−1

2 (∞) = A∪B, where A and B are smooth Cartier
divisors intersecting transversely at D = A ∩ B,

X3 := P(OD ⊗ NA/D) ∼= P(NB/D ⊗OD)

is a P1 bundle over D, and Y0 is the fiber of π2 over 0. The double point
relation over X defined by π is

[Y0 → X] − [A → X] − [B → X] + [X3 → X].

Let M(X)+ be the free additive group generated by [M → X], where M
is a quasi-projective smooth scheme and the morphism is projective. Denote
R(X) to be the subgroup generated by all double point relations over X and
ω∗(X) = M(X)+/R(X). Then mapping [M → X] to itself descends to a
morphism between two algebraic cobordism theories:

Theorem 2.1 ([LP]). There is a canonical isomorphism

ω∗(X) ∼= Ω∗(X).

As a result, ω∗ satisfies all properties of Ω∗. In particular, if k is a
field of characteristic 0, we denote Ω(k) to be Ω∗(Spec k) and ω∗(k) to be
ω∗(Spec k) in short. Levine and Morel showed that Ω∗(k) is isomorphic to
the Lazard ring L∗; consequently also isomorphic to ω∗(k). Furthermore, if
k admits an embedding to C, then

ω∗(k) → Ω∗(k) → MU2∗ ∼= L∗
[X → Speck] → [X → Speck] → [X ×Speck SpecC]

are isomorphisms, where the last morphism is Quillen’s isomorphism. Since
MU2∗ ⊗Z Q ∼= L∗ ⊗Z Q has a basis formed by products of projective spaces,
it follows that

Corollary 2.2.

Ω∗(k) ⊗Z Q ∼= ω∗(k) ⊗Z Q ∼=
⊕

λ=(λ1,...,λr)

Q[Pλ1 × · · · × Pλr ]



104 YU-JONG TZENG

where the index λ belongs to Nr for some positive integer r. Moreover, the
class of a smooth scheme X is uniquely determined by all Chern numbers of
X, in the same way as complex cobordism theory

In particular, ω2(k) is generated by P2 and P1×P1 over Q, i.e. all smooth
projective surfaces, up to a multiple, can be degenerated to the sum of P2

and P1 ×P1 using double point relations. In addition, the coefficients of the
sum are uniquely determined by the Chern numbers of the surface.

For our purpose of counting nodal curves, degenerating surfaces alone
are not sufficient. Instead, we consider the degeneration of pairs [S, L] where
S is a smooth projective surface and L is a line bundle on S.

Definition 2.1. Suppose [Xi, Li] are pairs of smooth projective surfaces
over k and line bundles for i = 0, 1, 2, 3. The double point relation for such
pairs is defined by

[X0, L0] = [X1, L1] + [X2, L2] − [X3, L3](2.1)

with the assumption that there exists a flat family of surfaces π : X → P1

and a line bundle L on X which satisfies the following properties:
(1) the family π : X → P1 gives a double point relation on surfaces;
(2) Li is the restriction of L on Xi for i = 0, 1, 2;
(3) L3 is the pullback of L|D via the projection X3 → D.

Remark. We use X1/D and X2/D to emphasize the divisor D when
discussing the relative geometry on Xi.

Let M(k) be the Q-vector space2 spanned by pairs of smooth projective
surfaces and line bundles, and let R(k) be the subgroup spanned by all
double point relations for pairs. We define the algebraic cobordism group of
surfaces and line bundles to be

ω2,1(k) = M(k)/R(k).

Because the double point relation on surfaces can be viewed as a double
point relation on pairs of surfaces with trivial line bundle, ω2(k) naturally
embeds into ω2,1(k)

By definition, ω2,1(k) is a vector space over Q. We are interested in
finding its dimension, bases, and invariants of this degeneration theory.

Proposition 2.3. Let S be a smooth projective surface over k and L be
a line bundle on S, then

[S, L] = a1[P2,O] + a2[P2,O(1)] + a3[P1 × P1,O] + a4[P1 × P1,O(1, 0)]
(2.2)

2We use Q here because it is enough for our purpose and for simplicity. In general,
the coefficients can be Z as discussed in [LP].
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in ω2,1(k), where

a1 = −L2 +
c1(S)2 + c2(S)

3
− c2(S), a2 = L2,

a3 = L2 +
LK + L2

2
− c1(S)2 + c2(S)

4
+ c2(S), a4 = −L2 − LK + L2

2
.

In other words, ω2,1(k) is a four dimensional vector space spanned by four
elements [P2,O], [P2,O(1)], [P1 × P1,O] and [P1 × P1,O(1, 0)]. Moreover,
(L2, LK, c1(S)2, c2(S)) defines an isomorphism from ω2,1(k) to Q4.

Remark. Proposition 2.3 implies the class of [S, L] in ω2,1 is uniquely
determined by degree two Chern polynomials of c1(S), c2(S) and c1(L) which
is a generalization of the case of schemes. Noether’s formula states

χ(OS) =
1
12

(c1(S)2 + c2(S))

and thus c1(S)2 + c2(S) is divisible by three and four. In addition, the
Riemann-Roch formula for L is

χ(L) = χ(OS) +
1
2
(L2 − LK),

and therefore L2 −LK is divisible by two. Therefore all coefficients in (2.2)
are integers.

In [Tz], we give a elementary proof of Proposition 2.3, which starts with
the following observation:

Lemma 2.4. Let C be a smooth curve in S, L be a line bundle on S, N
be the normal bundle of C in S and η : PC(N ⊕ OC) → C be the structure
map. Then

[S, L] =[S, L ⊗OS(−C)] + pairs on PC(N ⊕OC)

in ω2,1(k).

Consequently, we are allowed to add effective divisors freely to the line
bundle. The remaining terms are on ruled surfaces which have been classi-
fied. As a result Proposition 2.3 can be proved in the following steps.

(1) Write L as the O(D1 − D2), where O(Di) are very ample and Di

are smooth divisors. Then our observation implies [S, L] is the sum
of [S,O] plus pairs on ruled surfaces in the form PC(N ⊕OC).

(2) Degeneration of [S,O] is the same as degenerating [S] in ω2(k), thus
[S,O] can be written as the sum of several [P2,O] and [P1 ×P1,O].

(3) Pairs on PC(N 
 OC) can be further simplified by modifying the
line bundle N and degenerating the base curve C. Then we write
explicit double point relations to conclude these pairs are generated
by [P2,O(1)], [P1 × P1,O] and [P1 × P1,O(1, 0)].
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(4) Finally, we show L2, LK, c1(S)2 and c2(S) are preserved in double
point relations, thus are invariants of ω2,1(k). It implies ω2,1(k) has
four generators and four independent invariants, so the generators
is actually a basis of ω2,1(k).

(5) Since L2, LK, c1(S)2 and c2(S) are invariants of ω2,1(k), it can be
used to compute the coefficients of equation 2.2.

Remark.

(1) From the proof of Proposition 2.3, we know a set of four elements

{[Si, Li] | i = 1, . . . , 4}
is a basis of ω2,1 if and only if the four vectors

{(L2
i , LiKSi , c1(Si)2, c2(Si)) | i = 1, . . . , 4}

are linearly independent over Q.
(2) The sets (L2, LK, c1(S)2, c2(S)) and (LK, χ(L), χ(O), K2) deter-

mine each other, thus (LK, χ(L), χ(O), K2) is also a set of invari-
ants of ω2,1. As a result, if for a set of four elements in ω2,1, the
corresponding vectors (LK, χ(L), χ(O), K2) are linearly indepen-
dent, then the set is a basis of ω2,1.

(3) If S1, S2 are two K3 surfaces and Li are primitive classes on Si

respectively, the four numbers (LK, χ(L), χ(O), K2) of

B = {[P2,O], [P2,O(1)], [S1, L1], [S2, L2]} are

(0, 1, 1, 9), (−3, 3, 1, 9),
(

0, 2 +
L2

1

2
, 2, 0

)
,

(
0, 2 +

L2
2

2
, 2, 0

)
.

It follows that B is a basis if and only if L2
1 �= L2

2.

In general, the algebraic cobordism theory ωn,r for smooth schemes of
dimension n and vector bundles of rank r have been constructed analogously
by Y.P. Lee and Pandharipande [LeeP] for all nonnegative n, r. They
proved that the invariants of ωn,r are all possible degree n monomials of
the Chern classes of the scheme and the vector bundle. Furthermore, there
exists a basis consisting of products of projective spaces pairs with direct
sum of selected pullback of O(1)’s.

3. Degeneration Formula

3.1. The enumerative number dr(S, L). In this section we use the
enumerative number dr(S, L) to study the number of nodal curves. This
number dr(S, L) was introduced by Göttsche [Gö] for pairs of smooth pro-
jective surface and line bundle [S, L], and he proved that dr(S, L) equals the
number of r-nodal curves on [S, L] if L is (5r − 1)-very ample. The goal of
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this section is to derive a degeneration formula for the generating function

φ(S, L)(x) =
∞∑

r=0

dr(S, L)xr

for pairs satisfying double point relations.
Let S[n] be the Hilbert scheme of n points on S, and let Zn ⊂ S × S[n]

be the universal closed subscheme with projections

pn : Zn → S, qn : Zn → S[n].

Define L[n] = (qn)∗(pn)∗L. Because qn is finite and flat, L[n] is a vector
bundle of rank n on S[n]. Göttsche [Gö] suggested the following approach,
which interprets the number of nodal curves as intersection numbers on
Hilbert schemes:

Definition 3.1 ([Gö], definition 5.1). Let W 3r
0 be the locally closed

subset {
r∐

i=1

Spec(OS,xi/m2
S,xi

)

∣∣∣∣∣ xi are distinct closed points on S

}

and W 3r ⊂ S[3r] be the closure of W 3r
0 (with the reduced induced structure).

It is easy to see that W 3r is birational to S[r]. Define

dr(S, L) =
∫

W 3r

c2r(L[3r]).

For simplicity, define d0(S, L) = 1 because the number of 0-nodal curves,
which by definition are smooth, in a zero-dimensional linear system is one.

Definition 3.2. We call a line bundle L k-very ample if for every zero-
dimensional subscheme ξ ⊂ S of length k + 1, the natural map H0(S, L) →
H0(ξ, L ⊗Oξ) is surjective.

If L and M are very ample, then L⊗k ⊗ M⊗l is (k + l)-very ample. In
particular, very ampleness implies 1-very ampleness.

We quote a result of Göttsche below:

Proposition 3.1 ([Gö], proposition 5.2). Assume S is a smooth
algebraic surface and L is a (5r − 1)-very ample line bundle on S, then
a general r-dimensional sublinear system V ⊂ |L| contains dr(S, L) curves
with precisely r-nodes as singularities.

3.2. Degeneration Formula. In Section 1.4 we explained why dr

(S, L) behaves better than the actual number of nodal curves in flat fami-
lies. The goal of this section is to derive a degeneration formula for dr(S, L).
More precisely, we will show that if

[X0, L0] = [X1, L1] + [X2, L2] − [X3, L3]
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is a double point relation, then then number of nodal curves on [X0, L0]
can be determined by the numbers on [X1, L1], [X2, L2] and [X3, L3]. Thus
it is necessary to treat the number of curves with varied number of nodes
together by considering the generating function

φ(S, L)(x) =
∞∑

r=0

dr(S, L)xr.

The following theorem is the main result of this section:

Proposition 3.2. Suppose [X0, L0] = [X1, L1] + [X2, L2]− [X3, L3] is a
double point relation. Then

φ(X0, L0) =
φ(X1, L1) · φ(X2, L2)

φ(X3, L3)
.

In other words, φ is a homomorphism from ω2,1 to (Q[[x]]×, · ).

3.3. Moduli stack of relative ideal sheaves. The key tool is Jun Li
and Baosen Wu’s [LW] construction of the moduli stack of stable relative
ideal sheaves. Similar construction has been applied successfully to prove the
degeneration formulas of Gromov-Witten invariants [Li] and of Donalsdon-
Thomas invariants [LW]. Our case is even simpler because we only consider
families of surfaces and ideal sheaves on points on surfaces.

Let ∞ ∈ C be a specialized point and π : X → C be a flat projective
family of schemes that satisfies

(1) X is smooth and π is smooth away from the fiber π−1(∞);
(2) π−1(∞) =: X1 ∪D X2 is a union of two irreducible smooth com-

ponents X1 and X2 which intersect transversally along a smooth
divisor D.

In [LW], Li and Wu defined the notion of a family of stable perfect ideal
sheaves over C and constructed IΓ

X/C , the moduli space of stable perfect
ideal sheaves of type Γ of X → C. To make IΓ

X/C a stack, one has to replace
X by new spaces X[n] so that X and X[n] have the same smooth fiber Xt

when t �= ∞. Over ∞, the fiber of X[n] is a semistable model

X[n]0 = X1 ∪ Δ1 ∪ Δ2 ∪ · · ·Δn−1 ∪ X2,

where Δi
∼= PD(OD ⊕ NX1/D). The objects of IΓ

X/C are expanded relative
pairs (X/S, I) which consists of a family X over a C-scheme S and a family
of stable ideal sheaves I of type Γ on X/S. The fibers Xs of the family X/S
are required to be either smooth a fiber of X/C or a semistable model X[n]0
for some n. Under these settings, Li and Wu proved that the moduli space
has many good properties:

Theorem 3.3 ([LW]). The moduli stack IΓ
X/C is a separated and proper

Deligne-Mumford stack of finite type over C.
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In our case, π : X → C is a family of surfaces and I is a family of ideal
sheaves of zero-dimensional closed subschemes of length n. For s ∈ S, when
Xs is a smooth fiber of X/C, Is is automatically perfect and stable. If Xs is
a semistable model X[m]0, then the support of Is can not lie on the singular
loci of X[m]0. Furthermore, every component Δi contains at least one point
of the zero-set of Is (otherwise this component can be contracted).

The resulted moduli space In
X/C a separated and proper Deligne-

Mumford stack of finite type over C, and the fibers of the projection π[n] :
In

X/C → C can be described as follows:

(1) The fiber over ∞ is the union of products

∪n
k=0(X1/D)[k] × (X2/D)[n−k]

for all possible n ≥ k ≥ 0. (Xi/D)[ni] are the moduli spaces of
stable relative ideal sheaves of ni points on Xi/D. (Xi/D)[0] = pt.
They are also separated and proper Deligne-Mumford stacks (see
[LW]). We denote this fiber by (X1 ∪D X2)[n].

(2) In
X/C is smooth and π[n] is smooth away from the fiber over ∞.

(3) When t �= ∞, the smooth fiber of In
X/C over t equals X

[n]
t , the

Hilbert schemes of n points on Xt.

Therefore, In
X/C can also be viewed as a family of Hilbert schemes of n

points on X/C.
Suppose a family of surfaces X → P1 and line bundle L on X gives

a double point relation of line bundles on surfaces. This family X may
have multiple singular fibers and only the fiber of ∞ is required to be two
components intersection transversally. Therefore Li and Wu’s construction
can be applied only on an open subset of P1.

Let U be a Zariski open set of P1 obtained by deleting those points with
singular fibers except ∞, i.e. set-theoretically,

U =
{
t ∈ P1 | the fiber X|t is smooth

} ∪ {∞}.

Then πU : XU := X ×P1 U → U is a family of surfaces with only one singular
fiber X∞.

Write In
XU/U as X [n]. There are also universal closed subschemes over

X [n], (X1/D)[n] and (X2/D)[n] respectively. Similarly, one can define rank n

vector bundles L[n], L
[n]
1 and L

[n]
2 on (X1/D)[n] and (X2/D)[n] respectively,

and closed substacks W3r, W 3r
X0

and W 3r
Xi/D for i = 1, 2 in X [3r], X

[3r]
0 and

(Xi/D)[3r]. Let

dr(Xi/D, Li) =
∫

W 3r
Xi/D

c2r(L
[3r]
i ), d0(Xi/D, Li) = 1
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and
φ(Xi/D, Li) =

∑
r≥0

dr(Xi/D, Li)xr.

The 1-cycle
∫
W3r

c2r(L[3r]) restricts to fibers of X [n] over 0 and ∞ gives

two rational equivalent 0-cycles with the same degree. Therefore

Proposition 3.4. Suppose [X0, L1]− [X1, L1]− [X2, L2] + [X3, L3] is a
double point relation, then

φ(X0, L0) = φ(X1/D, L1) · φ(X2/D, L2).

To obtain a formula for absolute generating function, the relative sur-
faces can be closed up by adding projective bundles.

Corollary 3.5. Let [X, L] be a pair in ω2,1. Suppose D is a smooth
curve in X, N is the normal bundle of D in X and L ·D is the intersection
number of c1(L) and D. Recall PN := PD(OD ⊕ N), then

φ(X, L) = φ(X/D, L) · φ(PN/D, (L · D)f).

Now we are ready to prove Proposition 3.2

Proof of Proposition 3.2. Apply Corollary 3.5 to X = X1, X2 and
PN . It is easy to check the embeddings of D match perfectly and (Li ·D)f ∼=
(L2 · D)f ∼= L3 on PN . Thus we obtain

φ(X0, L0) = φ(X1/D, L1) · φ(X2/D, L2),

φ(X1/D, L1) · φ(PN/D0, L3) = φ(X1, L1),

φ(X2/D, L2) · φ(PN/D∞, L3) = φ(X2, L2),

φ(PN , L3) = φ(PN/D0, L3) · φ(PN/D∞, L3).

Then the theorem is proved by multiplying all equations. �

4. Universality Theorems and Generating functions

4.1. Outline. In this Section, we will prove Theorems 1.1, 1.2 and 1.3
by combining the degeneration formula (Proposition 3.2) with the structure
of algebraic cobordism group ω2,1 (Proposition 2.3).

Recall that for any smooth projective surface S and line bundle L on
S, we defined and studied the enumerative number dr(S, L) and generating
function

φ(S, L)(x) =
∞∑

r=0

dr(S, L) xr

in Section 3. By Proposition 3.2, this function φ induces a homomorphism
from ω2,1 to (Q[[x]]×, · ). On the other hand, Proposition 2.3 proves that
ω2,1 is four-dimensional and the only invariants are L2, LK, c1(S)2 and
c2(S). Combining these two results, we show that φ(S, L) only depends on
these four topological numbers and has a multiplicative structure.
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4.2. Proof of Theorems 1.3 and 1.1.

Proposition 4.1. There exist four series A1, A2, A3 and A4 in Q[[x]]×
such that

φ(S, L)(x) = AL2

1 ALKS
2 A

c1(S)2

3 A
c2(S)
4 .

More explicitly,

A1(x) = φ(P2,O)−1φ(P2,O(1))φ(P1 × P1,O)
3
2 φ(P1 × P1,O(1, 0))−

3
2 ,

A2(x) = φ(P1 × P1,O)
1
2 φ(P1 × P1,O(1, 0))−

1
2 ,

A3(x) = φ(P2,O)−
1
3 φ(P1 × P1,O)−

1
4 ,

A4(x) = φ(P2,O)−
2
3 φ(P1 × P1,O)

3
4 .

Proof. By Proposition 2.3, the class of [S, L] in ω2,1 is

[S, L] = a1[P2,O] + a2[P2,O(1)] + a3[P1 × P1,O] + a4[P1 × P1,O(1, 0)]
(4.1)

where

a1 = −L2 +
c1(S)2 + c2(S)

3
− c2(S), a2 = L2,

a3 = L2 +
LK + L2

2
− c1(S)2 + c2(S)

4
+ c2(S), a4 = −L2 − LK + L2

2
.

Since the generating function φ is a homomorphism from ω2,1 to
(Q[[x]]×, · ) (Proposition 3.2), we obtain

φ(S, L)(x) = φ(P2,O)a1φ(P2,O(1))a2φ(P1 × P1,O)a3φ(P1 × P1,O(1, 0))a4 .

Plugging in the values of ai and grouping the functions according to L2,
LK, c1(S)2 and c2(S) complete the proof. �

Another way to prove Proposition 4.1 is using the following diagram:

Q[[x]]×

ω2,1
(L2, LK, c1(S)2, c2(S))

φ

�����������������
Q4

���
�

�
�

�
�

�

Since φ is a homomorphism and ω2,1 → Q4 is an isomorphism, they
induce a homomorphism from Q4 to Q[[x]]×. This implies φ(S, L)(x) is a
universal power series in L2, LK, c1(S)2 and c2(S). Furthermore, let the
image of the standard basis ei of Q4 be Ai; then the commutative diagram
implies

φ(S, L)(x) = AL2

1 ALKS
2 A

c1(S)2

3 A
c2(S)
4 .
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Remark. One can see the same proof is still valid if we replace

{[P2,O], [P2,O(1)], [P1 × P1,O], [P1 × P1,O(1, 0)]}
by any basis of ω2,1. Thus the four series A′

is can also be expressed in the
generating function φ of any basis.

Corollary 4.2. The enumerative number dr(S, L) is a universal poly-
nomial of degree r in L2, LK, c1(S)2 and c2(S) for all projective smooth
surfaces S and line bundles L on S.

Proof. For all pairs [S, L], dr(S, L) is the coefficient of xr in

φ(S, L)(x) = AL2

1 ALKS
2 A

c21(S)
3 A

c2(S)
4 .

After expanding the series, one can see that the coefficient of xr in φ(S, L)(x)
is a universal polynomial of (L2, LK, c1(S)2, c2(S)) of degree r. �

Next, we prove Göttsche’s conjecture:

Theorem 1.1. For every integer r ≥ 0, there exists a universal poly-
nomial Tr(x, y, z, t) of degree r with the following property: given a smooth
projective surface S and a (5r − 1)-very ample (5-very ample if r = 1) line
bundle L on S, a general r-dimensional sublinear system of |L| contains
exactly Tr(L2, LK, c1(S)2, c2(S)) r-nodal curves.

Proof. dr(S, L) is always a universal polynomial of degree r for all line
bundles L on S. If L is (5r − 1)-very ample, Proposition 3.1 shows dr(S, L)
equals the number of r-nodal curves in [S, L]. Thus the number of r-nodal
curves in [S, L] is given by a universal polynomial of degree r when L is
(5r − 1)-very ample. �

Corollary 4.3. The generating functions φ(S, L)(x) and T (S, L)(x)
(defined in Section 1.3 as

∑∞
r=0 Tr(L2, LK, c1(S)2, c2(S))xr) are equal.

Theorem 1.3. There exist universal power series A1, A2, A3, A4 in
Q[[x]]× such that the generating function T (S, L) has the form

T (S, L) = AL2

1 ALKS
2 A

c1(S)2

3 A
c2(S)
4 .

Proof. This follows from Proposition 4.1 and Corollary 4.3. �

4.3. Proof of the Göttsche-Yau-Zaslow Formula. Let τ be on the
complex upper half plane, q = e2πiτ. The Eisenstein series

G2(τ) :=
−1
24

+
∑
n>0

⎛
⎝∑

d|n
d

⎞
⎠ qn

is a quasimodular form. Denote by D the differential operator D := 1
2πi

d
dτ =

q d
dq . Since the ring of quasimodular forms is closed under differentiation,
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DG2 and D2G2 are also quasimodular. In addition, let

Δ(τ) = q
∏
k>0

(1 − qk)24 = η(τ)24

where η(τ) is the Dedekind η function, and Δ(τ) is a modular form. We
define the generating function

γ(S, L)(q) =
∞∑

r=0

Tr(L2, LK, c1(S)2, c2(S))(DG2(τ))r.

An equivalent form of Bryan and Leung’s result ([BL], theorem 1.1) states
that for a generic K3 surface S and a primitive class L,

γ(S, L)(q) =
(DG2(τ)/q)χ(L)

Δ(τ)D2G2(τ)/q2
.

More generally, the generating function γ(S, L)(q) for all algebraic surfaces
is given by

Theorem 1.2 (Göttsche-Yau-Zaslow Formula). There exist universal
power series B1, B2 in q such that

∞∑
r=0

Tr(L2, LK, c1(S)2, c2(S))(DG2(τ))r

=
(DG2(τ)/q)χ(L)B1(q)K2

SB2(q)LKS

(Δ(τ)D2G2(τ)/q2)χ(OS)/2
.

Proof. Since (K2
S , LKS , χ(L), χ(OS)) and (L2, LK, c1(S)2, c2(S))

determine each other linearly, φ(S, L) is multiplicative in (K2
S , LKS , χ(L),

χ(OS)) and so as γ(S, L)(q) = φ(S, L)(DG2). Therefore we can let

γ(S, L)(q) = B1(q)K2
SB2(q)LKSB3(q)χ(L)B4(q)χ(OS).

For all generic K3 surfaces S and primitive classes L,

γ(S, L)(q) =
(DG2(τ)/q)χ(L)

Δ(τ)D2G2(τ)/q2
.

These pairs can achieve infinitely many distinct χ(L), and thus

B3(q) = DG2(τ)/q and B4(q) = (Δ(τ)D2G2(τ)/q2)1/2

and the result follows. �
Remark. Although in [BL] they found the formula for generating func-

tion of primitive classes on K3 surfaces with Picard number one, it is not
trivial to see why the coefficients equals our universal polynomials. For each
r, we have to show that there exist infinitely many K3 surfaces with Pi-
card number one and primitive classes L such that L is (5r − 1)-very ample
and also have distinct intersection numbers L2. It can be proved by using
Lemma 5.3 in [KP2], which shows that on a K3 surface with Picard number
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one, a primitive class L is (5r− 1)-very ample if L2 > 20r. Therefore Bryan
and Leung’s generating function is exactly φ(S, L)(x).

There is a reformulation of Theorem 1.3 given by Göttsche ([Gö], remark
2.6), which is the original version of Bryan and Leung’s formula.

Corollary 4.4. For all l, m, r, define

nS
r (l, m) = TS

l+χ(OS)−1−r(2l + m, m).

Then∑
l∈Z

nS
r (l, m)ql = B1(q)K2

SB2(q)m(DG2(τ))r D2G2(τ)
(Δ(τ)D2G2(τ)/q2)χ(OS)/2

.

If L is sufficiently ample with respect to δ = χ(L)−1−r, then nS
r ((L2−

LKS)/2, LKS) counts the δ-nodal curves in a general r-codimensional sub-
linear system of |L|. This reformulation provides another (possibly better)
way to find the closed form of B1(q) and B2(q).
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