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Complex Singularities of the Burgers System

and

Renormalization Group Method

Dong Li and Ya. G. Sinai

Abstract. We consider complex-valued solutions of the n-dimens-
ional Burgers’ system, n > 1. We show that there exists an open
set in the space of n2 + 5n − 2/2-parameter families of initial con-
ditions such that for each family from this set there are values of
parameters for which the solution develops blow up in finite time.

1. Introduction

The n-dimensional Burgers system is a modification of the n-dimens-
ional Navier-Stokes system. It is written for an unknown n-dimensional
vector u(x, t) = (u1(x, t), . . . , un(x, t)) and in the absence of the external
forcing has the form

∂uj

∂t
+

n
∑

k=1

∂uj

∂xk
uk = ∆uj , 1 ≤ j ≤ n.(1)

The viscosity is taken to be 1, x ∈ Rn.
(1) has an invariant submanifold of gradient-like solutions, i.e., so-

lutions which are gradients of some functions. The analysis of these
solutions is done with the help of the so-called Hopf-Cole transforma-
tion (see [HC]). They are much simpler than general solutions of the
Burgers system.

Concerning general solutions there is a theorem by Ladyzhenskaya
(see [La]) which gives the existence and uniqueness of solutions in
Sobolev spaces. However, this result remains a folklore theorem be-
cause [La] dos not contain a detailed proof.

In this paper we consider complex solutions of (1) and show that
they can develop singularities in finite time. For gradient-like solutions
this was proven recently by Poláčik and Šverák (see [PS]). The result
and the method of the present paper are similar to the ones in our joint

c©2008 International Press

181



182 D. LI AND YA.G. SINAI

paper [LS] where we proved the same statement for the 3-dimensional
Navier-Stokes system. As in [LS] write the Fourier transform of u in
the form −iv(k, t). Then for v we have the following equation:

v(k, t) = e−t|k|2v(k, 0) +

t
∫

0

e−(t−s)|k|2ds

∫

Rn

〈

v(k − k′, s), k′〉 v(k′, s) dk′.

(2)

In this paper we consider real solutions of (2). Real solutions of (1)
appear from odd functions v(k, t).

As in [LS] we use power series which represent solutions of (2). Let
vA(k, 0) = Av(k, 0). Then the solution vA(k, t) of (2) can be written in
the form

(3) vA(k, t) = e−t|k|2A v(k, 0) +

t
∫

0

e−(t−s)|k|2∑

p>1

Ap gp(k, s) ds

The substitution of (3) into (2) gives the system of recurrent relations
for the functions gp:

(4) g1(k, s) = exp {−s|k|2} v(k, 0),

(5) g2(k, s) =

∫

Rn

〈v(k−k′, 0) , k′ 〉 v(k′, 0) · exp {−s|k−k′|2−s|k′|2} dnk′,

gp(k, s) =

∫ s

0
ds2

∫

Rn

〈

v(k − k′, 0), k′ 〉 gp−1(k
′, s2) ·

(6)

· exp {−s|k − k′|2 − (s − s2)|k′|2} dnk′

+
∑

p1+p2=p
p1,p2>1

∫ s

0
ds1

∫ s

0
ds2

∫

Rn

〈

gp1(k − k′, s1), k
′ 〉 ·

· gp2(k
′, s2) · exp{−(s − s1)|k − k′|2 − (s − s2)|k′|2} dnk′

+

∫ s

0
ds1

∫

Rn

〈

gp−1(k − k′, s1), k′ 〉 v(k′, 0) ·

· exp {−(s − s1)|k − k′|2 − s|k′|2} dnk′.

The same methods as in [Si 2] allow to prove that the series (3) is
converging for small t. We can see from (6) that the first and the last
terms are different from the other terms in (6) because they contain
explicitly the initial condition.

As in [LS] we modify (6) by extracting the main part of (6). In this
way we come to a nonlinear equation giving the “fixed point” of the
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renormalization group (see §2). In the case of Burgers system solutions
to this equation are simpler than in [LS] and consist only of Gaussian
functions. In §3 following the same line as in [LS] we study the spectrum
of the corresponding linearized group. Then using the same strategy as
in [LS] we prove our main result whose formulation is given below.

Main theorem. Let τn = n2+5n−2
2 . There exists an open set

in the space of τn-parameter families of initial conditions such that
for each family from this set one can find the values of parameters
so that the solution having the corresponding initial condition devel-
ops a blow up at time tcr. If E(t) =

∫

Rn〈v(k, t), v(k, t)〉dk, Ω(t) =
∫

Rn〈k, k〉〈v(k, t), v(k, t)〉dk are the energy and the enstrophy of the so-

lution, then E(t) ≈ 1
(tcr−t)5

, Ω(t) ≈ 1
(tcr−t)7

as t → tcr.

The first author is supported by the NSF Grant DMS 0111298. The
second author is supported by NSF Grant DMS 0600996.

2. The Derivation of the Equation for the Fixed Point and

the Analysis of Its Solutions

Take some number k(0) which later will be assumed to be sufficiently
large and introduce the vector K(r) = rk(0)(1, 1, . . . , 1). These will be

the points near which all gr will be concentrated,We write k = K(r) +√
rk(0) · Y, Y ∈ Rn. Thus instead of k we have the new variable Y =

(Y1, . . . , Yn) which typically will take values O(1). Put κ(0,0) = (1, . . . , 1)

and κ(0) = (k(0), . . . , k(0)).
In all integrals over s1, s2 in (6) make another change of variables

sj = s

(

1 − θj

p2
j

)

, j = 1, 2. Instead of the variable of integration k′

introduce Y ′ where k′ = K(p2) +
√

pk(0)Y ′. All this is very much similar

to [LS]. Write g̃r(Y, s) = gr(K(r) +
√

rk(0) Y, s), γ = p1

p , p2

p = 1 − γ.

Then (6) gives us a slightly modified recurrent equation:

g̃p(Y, s)

(7)

= gp(K(p) +

√

pk(0) Y, s)

=
(

pk(0)
)

n+2
2









∑

p1,p2≥1
p1+p2=p

p2
1
∫

0

dθ1

p2
2
∫

0

dθ2 · 1

p2
1 · p2

2

·

·
∫

Rn

〈

g̃p1

(

Y − Y ′
√

γ
,

(

1 − θ1

p2
1

)

s

)

,
p2

p
κ(0,0) +

Y ′
√

pk(0)

〉

·
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· g̃p2

(

Y ′
√

1 − γ
,

(

1 − θ2

p2
2

)

s

)

·

· exp







−θ1

∣

∣

∣

∣

κ(0) +
√

k(0)
Y − Y ′
√

p · γ

∣

∣

∣

∣

2

− θ2

∣

∣

∣

∣

∣

κ(0) +

√
k(0)Y ′

√
p(1 − γ)

∣

∣

∣

∣

∣

2






dnY ′



 .

This is our main recurrent relation. It is of some importance that in

front of (7) we have the factor p
n+2

2 and inside the sum the factor 1
p2
1
· 1

p2
2
.

As p → ∞ the recurrent equation (7) takes some limiting form. The
main contribution to (7) comes from p1, p2 of order p. If Y, Y ′ = O(1)

then Y −Y ′√
p , Y ′√

p are small compared to κ(0) = (k(0), . . . , k(0)). Therefore

in the main order of magnitude the Gaussian term in (7) can be replaced

by exp {−(θ1 + θ2)|k(0)|2}, s1 and s2 can be replaced by s and the
integrations over θ1, θ2 and Y ′ can be done separately. Thus instead of
(7) we get a simpler recurrent relation:

g̃p(Y, s) = (k(0))
n−6

2 p
n+2

2

∑

p1,p2>p1/2

p1+p2=p

1

p2
1 · p2

2

·(8)

·
∫

Rn

〈

g̃p1

(

Y − Y ′
√

γ
, s

)

,
p2

p
κ

(0,0)
+

Y ′
√

pk(0)

〉

·

· g̃p2

(

Y ′
√

1 − γ
, s

)

dn Y ′.

In our approximation the inner product in (8) can be replaced by

〈

g̃p1

(

Y − Y ′
√

γ
, s

)

,
p2

p
κ

(0,0)
〉

=
p2

p

n
∑

j=1

g̃(j)
p1

(

Y − Y ′
√

γ
, s

)

,

where g̃p1 = (g̃
(1)
p1 , . . . , g̃

(n)
p1 ).

We come to even simpler recurrent relation instead of (8):

g̃p(Y, s) = (k(0))
n−6

2 p
n+2

2

∑

p1,p2>p1/2

p1+p2=p

1

p2
1 · p2

2

·

(9)

·
∫

Rn

p2

p

n
∑

j=1

g̃(j)
p1

(

Y − Y ′
√

γ
, s

)

· g̃p2

(

Y ′
√

1 − γ
, s

)

dn Y ′.

As in [LS] we make the following inductive assumption concerning

the form of g̃p(Y, s): there exist intervals S(p) = [S
(p)
− , S

(p)
+ ], S(p+1) ⊂

S(p), on the time axis, the functions Z(s), Λ(s) defined for s ∈ S(1),
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positive numbers σ(j), 1 ≤ j ≤ n, such that for all r < p

g̃r(Y, s) = Z(s)Λr
p(s)r

4−n
2

n
∏

j=1

√

σ(j)

2π
exp

(

−σ(j)

2
|Yj |2

)

·(10)

· (H(Y ) + δ(r)(Y, s)).

We derive below the equation for the function H. The main part of
the proof is to organize the inductive process in such a way that the
remainders δ(r) tend to zero as r → ∞. The substitution of (10) into
(9) gives

g̃p(Y, s) = (k(0))
n−6

2 Z(s)2 · p 4−n
2 Λp(s)

∑

γ=
p1
p

1

p
· (1 − γ)·

·
∫

Rn





n
∑

j=1

H(j)

(

Y − Y ′
√

γ

)



H

(

Y ′
√

1 − γ

)

·

·
n
∏

j=1

√

σ(j)

2πγ
exp

(

−σ(j)

2γ

∣

∣Yj − Y ′
j

∣

∣

2

)

·

·
n
∏

j=1

√

σ(j)

2π(1 − γ)
exp

(

− σ(j)

2(1 − γ)

∣

∣Y ′
j

∣

∣

2

)

dnY ′.

Here H = (H(1), . . . , H(n)) and we do not mention explicitly the depen-
dence of H on s. The last sum looks like a Riemannian integral sum
and as p → ∞ its limit takes the form:

H(Y )

n
∏

j=1

√

σ(j)

2π
exp

(

−σ(j)

2
|Yj |2

)

= (k(0))
n−6

2 Z(s) ·
∫ 1

0
dγ(1 − γ)·

·
∫

Rn





n
∑

j=1

H(j)

(

Y − Y ′
√

γ

)



H

(

Y ′
√

1 − γ

)

·

·
n
∏

j=1

√

σ(j)

2πγ
exp

(

−σ(j)

2γ

∣

∣Yj − Y ′
j

∣

∣

2

)

·

·
n
∏

j=1

√

σ(j)

2π(1 − γ)
exp

(

− σ(j)

2(1 − γ)

∣

∣Y ′
j

∣

∣

2

)

dnY ′
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Put Z(s) = (k(0))
6−n

2 . The final equation does not contain k(0) and we
have

H(Y )
n
∏

j=1

√

σ(j)

2π
exp

(

−σ(j)

2
|Yj |2

)

(11)

=

∫ 1

0
dγ(1 − γ)

∫

Rn





n
∑

j=1

H(j)

(

Y − Y ′
√

γ

)



H

(

Y ′
√

1 − γ

)

·

·
n
∏

j=1

√

σ(j)

2πγ
exp

(

−σ(j)

2γ

∣

∣Yj − Y ′
j

∣

∣

2

)

·

·
n
∏

j=1

√

σ(j)

2π(1 − γ)
exp

(

− σ(j)

2(1 − γ)

∣

∣Y ′
j

∣

∣

2

)

dnY ′.

This equation is the equation for the fixed point of our renormalization
group. It is analogous to the fixed point equation from [LS].

The solutions of (11) have natural scaling with respect to the pa-

rameters σ(j), 1 ≤ j ≤ n. Namely, if we solve the equation (11) for

σ(j) = 1, 1 ≤ j ≤ n and denote the corresponding solution by H(Y ),

then the general solution for arbitrary σ = (σ(1), . . . , σ(n)) is given by
the formula

(12) H(σ)(Y ) =





n
∏

j=1

√

σ(j)



 H(
√

σ(1)Y1, . . . ,
√

σ(n)Yn).

Similar scaling was mentioned in the case of Navier-Stokes system (see

[LS]). Thus, it is enough to consider (11) with σ(j) = 1, 1 ≤ j ≤ n.
As in [LS] we use expansions over Hermite polynomials:

H(j)(Y1, . . . , Yn)(13)

=
∑

m1,...,mn≥0

h(j)
m1,...,mn

Hem1(Y1) · · · Hemn(Yn), j = 1, . . . , n

where Hem(z) are the Hermite polynomials of degree m with respect to
the Gaussian density 1√

2π
exp

{

−1
2z2
}

. Recall the following properties

of Hermite polynomials:

1. He0(z) = 1, zHe0(z) = z = He1(z).
2. zHem(z) = Hem+1(z) + mHem−1(z), m > 0
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3.

∫

R1

Hem1

(

Y − Y ′
√

γ

)

1√
2π

exp

{

−|Y − Y ′|2
2γ

}

·

· Hem2

(

Y ′
√

1 − γ

)

1√
2π

exp

{

− |Y ′|2
2(1 − γ)

}

dY ′

= γ
m1+1

2 (1 − γ)
m2+1

2 Hem1+m2(Y )
1√
2π

exp

{

−|Y |2
2

}

.

Substituting (13) into (11) and using 1),2),3), we come to the system of

equations for the coefficients h
(j)
m1,...,mn which is equivalent to (11):

h(j)
m1,...,mn

(14)

=
∑

m′
1+m′′

1=m1

...
m′

n+m′′
n=mn

(∫ 1

0
γ

m′
2 (1 − γ)

m′′+2
2 dγ

)

·
n
∑

k=1

h
(k)
m′

1,...,m′
n
h

(j)
m′′

1 ,...,m′′
n

where m′ = m′
1 + · · · + m′

n, m′′ = m′′
1 + · · · + m′′

n.

For the coefficient h(j)(m1, . . . , mn) we define d = m1 + · · · + mn.
We solve (14) for different values of d.
Case 1: d = 0. In this case we have

h(j)(0, . . . , 0) =
1

2

(

n
∑

k=1

h(k)(0, . . . , 0)

)

h(j)(0, . . . , 0)

We are interested in solutions for which all h(j)(0, . . . , 0) are nonzero.
Then we must have

n
∑

k=1

h(k)(0, . . . , 0) = 2.(15)

Case 2: d = 1. Here it is not difficult to show that the only possible
solution is h(k)(m1, . . . , mn) = 0 for any m1 + · · ·+mn = 1 and 1 ≤ k ≤
n.
Case 3: d > 1. A simple induction on d shows that all terms with
the given d are zero.

From all these three cases it follows easily that any solution of (14)

is given by (h(1)(0, . . . , 0), · · · , h(n)(0, . . . , 0)) satisfying (15) while all
other terms are zero. We formulate the final result as the following
theorem

Theorem 2.1. Let σ(1) > 0, . . . , σ(n) > 0 and x(j) = h(j)(0, . . . , 0),

1 ≤ j ≤ n− 1 are arbitrary and x(n) = 2−∑n−1
k=1 x(k). Then there exists



188 D. LI AND YA.G. SINAI

a solution of (11) having the following form

Gσ,x(Y ) =





n
∏

j=1

√

σ(j)











n
∏

j=1

√

σ(j)

2π
exp

(

−σ(j) |Yj |2
2

)







· x

where σ = (σ(1), . . . , σ(n)), x = (x(1), . . . , x(n)). In other words all fixed

points of our renormalization group are Gaussian!

3. The Linearization Near Fixed Point

As in [LS] the strategy of the proof of the main result is based on
the method of renormalization group. Let us write

g̃r(Y, s)Λ−r(s)Z−1(s) · r n−4
2

n
∏

j=1

√
2π

σ(j)
exp

(

σ(j)

2
|Yj |2

)

= x + δ(r)(γ, Y, s)

(16)

where δ(r)(γ, Y, s) =
{

δ
(r)
j (γ, Y, s), 1 ≤ j ≤ n

}

= δ̃(p)(γ, Y, s), γ =
r

p
and γ ≤ 1. It is natural to consider the set of functions {δ̃(p)(γ, Y, s)}
as a small perturbation of our fixed point. When we go from p to p + 1

δ̃(p+1)(γ, Y, s) = δ̃(p)

(

p + 1

p
γ, Y, s

)

, γ ≤ p

p + 1
,

The formula for δ̃(p+1)(1, Y, s) follows from (11):

δ̃
(p)
k (1, Y, s)

n
∏

j=1

√

σ(j)

2π
exp

(

−σ(j)

2
|Yj |2

)

(17)

=

∫ 1

0
dγ(1 − γ)

∫

Rn





n
∑

j=1

δ̃
(p)
j

(

γ,
Y − Y ′
√

γ
, s

)

H(k)

(

Y ′
√

1 − γ

)

+
n
∑

j=1

H(j)

(

Y − Y ′
√

γ

)

δ̃
(p)
k

(

1 − γ,
Y ′

√
1 − γ

, s

)



 ·

·
n
∏

j=1

√

σ(j)

2πγ
exp

(

−σ(j)

2γ

∣

∣Yj − Y ′
j

∣

∣

2

)

·

·
n
∏

j=1

√

σ(j)

2π(1 − γ)
exp

(

− σ(j)

2(1 − γ)

∣

∣Y ′
j

∣

∣

2

)

dnY ′,

where δ̃
(p)
k is the k-th component of δ̃(p). We did not include in the last

expression terms which are quadratic in δ̃(p+1) because in this section
we consider only the linearized part.
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Definition 3.1. A function Φα(Y ), Y = (Y1, . . . , Yn) with values
in Rn is called an eigen-function if the function Φα(γ, Y ) = γα · Φα(Y )
satisfies the equation:

Φ̃α,k(Y )
n
∏

j=1

√

σ(j)

2π
exp

(

−σ(j)

2
|Yj |2

)

(18)

=

∫ 1

0
dγ(1 − γ)

∫

Rn





n
∑

j=1

γαΦα,j

(

Y − Y ′
√

γ

)

H(k)

(

Y ′
√

1 − γ

)

+
n
∑

j=1

H(j)

(

Y − Y ′
√

γ

)

(1 − γ)αΦα,k

(

Y ′
√

1 − γ

)



 ·

·
n
∏

j=1

√

σ(j)

2πγ
exp

(

−σ(j)

2γ

∣

∣Yj − Y ′
j

∣

∣

2

)

·

·
n
∏

j=1

√

σ(j)

2π(1 − γ)
exp

(

− σ(j)

2(1 − γ)

∣

∣Y ′
j

∣

∣

2

)

dnY ′.

In the last expression Φα,j(γ, Y ) is the j-th component of Φα(Y ).

The eigen-function corresponding to α will be denoted by Φα, its
components will be denoted by Φα,j .

The meaning of the definition 3.1 is the following. Assume that we

have a perturbation proportional to δ(r)(Y ) =
(

r
p

)α
Φα(Y ), r < p. If

we apply (17) then in the main order of magnitude we shall get Φα(Y ).
Below we study in detail the set of eigen-functions Φα. If α > 0,

α = 0, α < 0 then the corresponding eigen-functions are called unstable,
neutral or stable correspondingly. We shall show that there exist the
eigen-value α = 1 of multiplicity ν1 = 1, the eigen-value α = 1

2 of
multiplicity ν1/2 = n − 1 and the eigen-value α = 0 of multiplicity

ν0 = n2+3n−2
2 . All other eigen-values are stable. In view of the above

mentioned scaling invariance it is enough to consider σ(1) = · · · = σ(n) =
1. We use again the expansion over Hermite polynomials:

Φ
(j)
α,1,...,1(Y )

= Φ(j)
α (Y )

=
∑

m1, ..., mn

fα,j(m1, . . . , mn)Hem1(Y1) · · ·Hemn(Yn), 1 ≤ j ≤ n.
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Then we come to the linear system of recurrent relations

fα,j(m1, . . . , mn)

(19)

=
∑

m′
1+m′′

1=m1

...
m′

n+m′′
n=mn

(∫ 1

0
γ

m′
2 (1 − γ)

m′′+2
2

+αdγ

)

·
n
∑

k=1

h
(k)
m′

1,...,m′
n
fα,j(m

′′
1, . . . , m

′′
n)

+

(∫ 1

0
γ

m′
2

+α(1 − γ)
m′′+2

2 dγ

)

·
n
∑

k=1

fα,k(m
′
1, . . . , m

′
n)h

(j)
m′′

1 ,...,m′′
n

where h
(j)
m1,...,mn are coefficients of the expansion of H(Y ). In our case

h(j)(m1, . . . , mn) = 0 if m1 + · · ·+ mn > 0 and
∑n

k=1 h(k)(0, . . . , 0) = 2.

Denote h(k)(0, . . . , 0) = x(k). Then we get

fα,j(m1, . . . , mn) =

(

2

∫ 1

0
γ

m
2

+1+αdγ

)

fα,j(m1, . . . , mn)

+

(∫ 1

0
γ

m
2

+α(1 − γ)dγ

)

(

n
∑

k=1

fα,k(m1, ..., mn)

)

x(j).(20)

After summation over j, 1 ≤ j ≤ n, and using the fact that
∑n

j=1 x(j) =
2 we come to the equation

(

n
∑

k=1

fα,k(m1, . . . , mn)

)

·
(

1 − 2

∫ 1

0
γ

m
2

+αdγ

)

= 0.

It is not difficult to see that α = N/2 for some integer N ≤ 2 (oth-
erwise all fα,j(m1, . . . , mn) vanish). For any fixed eigenvalue α, we
now calculate the explicit expression of the corresponding eigen func-
tion fα(m1, . . . , mn). There are three cases.

Case 1: m is such that 2
∫ 1
0 γm/2+αdγ 6= 1 and 2

∫ 1
0 γm/2+1+αdγ 6= 1 .

In this case we get that

f (j)
α (m1, . . . , mn) = 0, ∀ m1 + · · · + mn = m, ∀ j = 1, . . . , n.

Case 2: 2
∫ 1
0 γm/2+αdγ = 1 or equivalently m = 2 − 2α. Then,

fα,j(m1, . . . , mn) = Cα(m1, . . . , mn)x(j), ∀ m1 + · · · + mn = m,

where Cα(m1, . . . , mn) is an arbitrary constant depending only on α
and (m1, . . . , mn).

Case 3: 2
∫ 1
0 γm/2+α+1dγ = 1 or equivalently m = −2α . In this case

f
(j)
α (m1, . . . , mn) must satisfy the constraint:

n
∑

j=1

f (j)
α (m1, . . . , mn) = 0.
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Concluding from the above three cases, we now formulate our main
theorem about the spectrum of the linearized operator.

Theorem 3.1. The spectrum of the operator A consists of the fol-

lowing eigen-values

spec (A) =

{

1,
1

2
, 0,−m

2
, m ≥ 1

}

.

The first eigen-values have multiplicities ν1 = 1, ν 1
2

= n − 1, ν0 =

n2+3n−2
2 .

The system of eigenfunctions is complete in the following sense. Let

Γ(s) be the stable linear subspace of ∆ generated by all eigenfunctions

with ℜ(λ) < 0, Γ(u) be the unstable subspace generated by all eigenfunc-

tions with eigenvalues λ > 0, and Γ(n) be the neutral subspace gener-

ated by all eigenfunctions with eigenvalue λ = 0. Then dim Γ(u) = n,

dim Γ(n) = n2+3n−2
2 and

∆ = Γ(u) + Γ(n) + Γ(s).

Proof. By previous arguments, we discuss the spectrum separately in
the following three cases.

1◦ unstable spectrum: α = 1, 1/2.

a) α = 1. In this case we have f
(j)
1 (m1, . . . , mn) = 0 if m1 + · · ·+

mn > 0 and f (j)(0, . . . , 0) = Cx(j), j = 1, . . . , n. Clearly this
gives ν1 = 1.

b) α = 1/2. In this case f
(j)
1/2(m1, . . . , mn) = 0 if m1 + · · ·+ mn 6=

1. And for m1 + · · · + mn = 1 we have f
(j)
1/2(m1, . . . , mn) =

C1/2(m1, . . . , mn)x(j), j = 1, . . . , n. This gives ν1/2 = n − 1.

This gives dim Γ(u) = n.

2◦ neutral spectrum: Here we have α = 0, and two cases.

a) m1 + · · · + mn = 2. In this case we get f
(j)
0 (m1, . . . , mn) =

C0(m1, . . . , mn)x(j), j = 1, . . . , n. This gives (n+1)n
2 eigen-

vectors.
b) m1 + · · ·+mn = 0. In this case we get

∑n
j=1 f

(j)
0 (0, . . . , 0) = 0,

j = 1, . . . , n. This gives n − 1 eigen-vectors.

Putting all two cases together, we see that dim Γ(n) = n2+3n−2
2 .

3◦ stable spectrum: α < 0.

There are two cases.

Case 1: m1+· · ·+mn = 2−2α. In this case We have f
(j)
α (m1, . . . , mn) =

Cx(j), 1 ≤ j ≤ n. There are
(

2−2α+n+1
2−2α

)

such eigen-vectors.
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Case 2: m1 + · · · + mn = −2α. In this case the constraint is

n
∑

j=1

f (j)
α (m1, . . . , mn) = 0 1 ≤ j ≤ n.

There are (n − 1)
(−2α+n−1

−2α

)

such eigen-vectors.

We now prove the completeness of the set of our eigen functions. Fix
(m1, . . . , mn) and consider an arbitrary function G having only the

nonzero coefficients g(j)(m1, . . . , mn), 1 ≤ j ≤ n. We shall show that G
can be expressed by a finite linear combination of our eigen functions.
There are two cases.

Case 1: m1 = · · · = mn = 0. From the discussions above we see

that α = 1 has an eigen vector f
(j)
α=1(0, . . . , 0) = Cxj which is parallel to

the vector x, and α = 0 has eigen vectors satisfying
∑n

j=1 f
(j)
α=0(0, . . . , 0)

= 0 which span the space complement to the vector x. It is clear that
g(j) is in the linear span of these eigen vectors.

Case 2: m1 + · · · + mn = m ≥ 1. From previous discussions we see

that α = 2−m
2 has an eigenvector f

(j)

α= 2−m
2

(m1, . . . , mn) parallel to the

vector x, and α = −m
2 has eigen vectors spanning the space complement

to the vector x. Again it is clear that g(j)(m1, . . . , mn) is in the linear
span of these eigen vectors.

Concluding from the above 2 cases, we see that our eigen vectors
form a basis for the Gaussian weighted space L2(Rn)n. The theorem is
proved.

4. The Choice of Initial Conditions and the Initial Part of

the Inductive Procedure

As in [LS], the equation (11) for the fixed point which was derived
in §2 is non-typical from the point of view of the renormalization group
theory because it contains the integration over γ, 0 ≤ γ ≤ 1. On the
other hand, since we consider the Cauchy problem for (1) we are given
only the initial condition v(k, 0) which produces through the recurrent
relations (4), (5), (6) the whole set of functions gr(k, s). For large p and

r ≤ p they can be considered as depending on γ =
r

p
and our procedure

is organized in such a way that for γ which are away from zero g̃r are
close to their limits.

We take k(0) which will be assumed to be sufficiently large, introduce
the neighborhood

A1 = {k :
∣

∣

∣k − κ(0)
∣

∣

∣ ≤ D1

√

k(0)lnk(0)}
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where κ(0) = k(0)(1, . . . , 1) and D1 is also sufficiently large. Our initial
conditions will be zero outside A1. Inside A1 they have the form

v(k, 0) =
1

(2π)n/2
exp

{

−|Y |2
2

}



H(0)(Y ) +
l(u)
∑

j=1

b
(u)
j Φ

(u)
j (Y )+

l(n)
∑

j′=1

b
(n)
j′ Φ

(n)
j′ (Y ) + Φ(Y ; b(u), b(n))



(21)

In this expression k = κ(0) +
√

k(0)Y , H(0)(Y ) is the fixed point of our

renormalization group with σ(1) = · · · = σ(n) = 1 and x(1) = · · · =

x(n) = 2/n (see §2), l(u) = n and l(n) = n2+3n−2
2 (see §3). Also Φ

(u)
j ,

Φ
(n)
j′ are unstable and neutral eigen-functions of the linearized group

corresponding to H(0) (see §3), b
(u)
j and b

(n)
j′ are our main parameters.

We assume that their values satisfy the inequalities:

−ρ1 ≤ b
(u)
j , b

(n)
j′ ≤ ρ1,

where ρ1 is a positive constant. Our numerical studies show that it is

enough to take ρ1 = 3/4. Each function Φ(Y ; b(u), b(n)), b(u) = {b(u)
j },

b(n) = {b(n)
j′ } is small in the sense that it satisfies the inequalities

sup
Y,b

∣

∣

∣
Φ(Y ; b(u), b(n))

∣

∣

∣
≤ D2,

sup
∥

∥

∥
Φ(Y ; b̄(u), b̄(n)) − Φ(Y ; ¯̄b

(u)
, ¯̄b

(n)
)
∥

∥

∥
≤ D2(

∣

∣

∣
b̄(u) − ¯̄b

(u)
∣

∣

∣
+
∣

∣

∣
b̄(n) − ¯̄b

(n)
∣

∣

∣
).

Due to the presence of b(u), b(n), we have l = l(u) + l(n) = n2+5n−2
2 -

parameter families of initial conditions, due to the presence of Φ we
have an open set in the space of such families.

Let

Ar =
{

k : |k − rκ(0)| ≤ D1

√

rk(0) ln
(

rk(0)
)

}

,

and the variable Y be such that k = rκ(0) +
√

rk(0)Y . Assume that for

some p and all r < p, |Y | ≤ D1

√

ln
(

rk(0)
)

gr(rκ
(0) +

√

rk(0)Y, s) = Z · Λr(s) · r
4−n

2 · hr(Y, s)

and

hr(Y, s) =
1

(2π)n/2
exp

{

−|Y |2
2

}

(

H(0)(Y ) + δ(r)(Y, s)
)

,

where Z is a constant to be specified later and Λr(s) is a function of s
for each r.
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Denote p0 = N where N is an integer. Actually we will take N = 50.
The initial part of our procedure goes for p ≤ p0. It is discussed in this
section. The part corresponding to p > p0 is discussed in §5.

Returning back to (6) take the term with some p1, p2, p1+p2 = p and

introduce new variable of integration Y ′ where k′ = p2κ
(0) +

√

pk(0)Y ′.
Introduce also the variables θ1, θ2, 0 ≤ θ1 ≤ (p1k

(0))2, 0 ≤ θ2 ≤ (p2k
(0))2

where s1 = s

(

1 − θ1

(p1k(0))2

)

, s2 = s

(

1 − θ2

(p2k(0))2

)

.

Then from (6)

1

Z
· Λp · p

4−n
2 hp(Y, s)

= (pk(0))
n+2

2

∑

p1+p2=p

(p1p2)
4−n

2

∫ p2
1

0
dθ1·

·
∫ p2

2

0
dθ2

1

p2
1p

2
2

Λp1

((

1 − θ1

p2
1

)

s

)

Λp2

((

1 − θ2

p2
2

)

s

)

·

·
∫

Rn

〈

hp1

(

Y − Y ′
√

γ
,

(

1 − θ1

p2
1

)

s

)

,
p2

p
κ(0,0) +

Y ′
√

pk(0)

〉

·

· hp2

(

Y ′
√

1 − γ
,

(

1 − θ1

p2
1

)

s

)

·

· e−θ1

˛

˛

˛
κ(0)+

√
k(0) Y −Y ′

√
pγ

˛

˛

˛

2
−θ2

˛

˛

˛
κ(0)+

√
k(0) Y ′

√
p(1−γ)

˛

˛

˛

2

dnY ′,

or in a slightly simpler form,

(k(0))−
n+2

2

Z
· Λp · hp(Y, s)(22)

=
1

p

∑

p1+p2=p

(γ(1 − γ))−n/2

∫ p2
1

0
dθ1·

·
∫ p2

2

0
dθ2 Λp1

((

1 − θ1

p2
1

)

s

)

Λp2

((

1 − θ2

p2
2

)

s

)

·

·
∫

Rn

〈

hp1

(

Y − Y ′
√

γ
,

(

1 − θ1

p2
1

)

s

)

,
p2

p
κ(0,0) +

Y ′
√

pk(0)

〉

·

· hp2

(

Y ′
√

1 − γ
,

(

1 − θ1

p2
1

)

s

)

·

· e−θ1

˛

˛

˛
κ(0)+

√
k(0) Y −Y ′

√
pγ

˛

˛

˛

2
−θ2

˛

˛

˛
κ(0)+

√
k(0) Y ′

√
p(1−γ)

˛

˛

˛

2

dnY ′.

Here γ =
p1

p
. Now we shall modify (22) similar to what we did in §2.

As in [LS], the modification consists of two steps.
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Step 1. All terms s
(

1 − θ1

(p1k(0))2

)

, s
(

1 − θ2

(p2k(0))2

)

are replaced by
s.

Step 2. In the main order of magnitude,

〈hp1(
Y − Y ′
√

γ
, s),

p2

p
κ

(0,0)
+

Y ′
√

pk(0)
〉 =

p2

p

n
∑

j=1

h(j)
p1

(
Y − Y ′
√

γ
, s).

We take Z = (k(0))
6−n

2 and choose the initial interval on the time

axis in the form S(1) =
[

1
4(k(0))2

, 3
8(k(0))2

]

. Due to our choice of S(1)

the product s(k(0))2 = O(1). During the first part of our procedure

S(p) = S(1), p ≤ p0. Now we derive the recurrent formulas for Λp. For

our fixed point H(0), the integral in (22) containing H(0) gives us the

product of H(0), the Gaussian term and a polynomial in γ. The function
H(0) and the Gaussian term can be taken out of the summation in γ.
After symmetrizing the summation in γ, we get the following recurrent
system for Λp(s):

Λp(s) =
∑

p1+p2=p

1

p
· Λp1(s)Λp2(s) · (1 − e−s(p1k(0))2) · (1 − e−s(p2k(0))2).

(23)

In [LS], we have a similar (but more complicated) recurrent system for
Λp(s). It follows from [Li], [Si 3] that the asymptotics of Λp(s) is given
by,

Λp(s) = Λ(s)p ·
(

1 + O(
1

p3/2
)

)

,(24)

where Λ(s) > 0 is a limiting constant independent of p. This result will
be used in the proof of the main theorem.

Now we shall discuss the behavior of all remainders δ(r), r < p. We
make the following inductive assumption:

δ(r)(Y, s) =
l(u)
∑

j=1

(

b
(u)
j,r + β

(u)
j,r

)

γα
(u)
j Φ

(u)
j (Y )

+
l(n)
∑

j′=1

(

b
(n)
j′,r + β

(n)
j′,r

)

Φ
(n)
j′ (Y ) + Φ(st)

r (Y, s), γ =
r

p − 1
.

Here b
(u)
j,r = (p − 1)αjb

(u)
j γα

(u)
j , b

(n)
j′,r = b

(n)
j′ , and the corrections β

(u)
j,r ,

β
(n)
j′,r are small compared to b

(u)
j,r , b

(n)
j′,r respectively. Also {Φ(st)

r (Y, s)},
1 ≤ r < p belongs to the stable subspace of our fixed point.
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As we go from p− 1 to p, the variable γ = r
p−1 changes to γ′ = r

p =

γ · p−1
p . Therefore

(

b
(u)
j,r + β

(u)
j,r

)

γα
(u)
j Φ

(u)
j

=

(

(p − 1)α
(u)
j b

(u)
j + β

(u)
j,r

)

·
(

p

p − 1

)α
(u)
j

· (γ′)α
(u)
j Φ

(u)
j

=



pα
(u)
j b

(u)
j +

(

p

p − 1

)α
(u)
j

· β(u)
j,r



 · (γ′)α
(u)
j Φ

(u)
j .

The formulas for the part involving the neutral eigen-functions are sim-

ilar and even simpler because α
(n)
j′ = 0. Thus the main terms in the

expressions containing unstable and neutral eigen-values preserve their
form. The norm of {Φst

r } decreases.
In the initial part of our procedure with p ≤ p0 we use the discrete

recurrent formulas and get small corrections β
(u)
j,r , β

(n)
j′,r and Φ(st). We

consider four types of corrections.

a1) In the expression for δ(p)(Y, s) there are terms which depend

linearly on all δ(r)(Y, s). Especially important are the terms

pα
(u)
j b

(u)
j (γ)α

(u)
j , Φ

(u)
j and b

(n)
j′ Φ

(n)
j′ . In the limiting regime p →

∞ they produce the integral over γ which gives

pα
(u)
j b

(u)
j ·

(

1 +
1

p

)α
(u)
j

Φ
(u)
j = (p + 1)α

(u)
j b

(u)
j Φ

(u)
j ,

in view of the definition of the eigenfunctions (see §3) and the
condition γ′ = 1. The same statement holds true for the neu-
tral eigen-functions.

However for finite p, the sums over γ differ from the corre-
sponding integrals. The difference produces some corrections
which we expand according to our decomposition of the whole
space onto unstable, neutral subspaces and the stable subspace.

Corresponding terms are denoted as β
(u)
j,p,1, β

(n)
j′,p,1 and Φ

(st)
p,1 .

These corrections decay as O(1
p).

a2) The term which contains all corrections arising during the two
steps of our procedure (see above). All these corrections de-

pend on k(0) and are smaller than 1
(k(0))µ1

for some positive

constant µ1.

a3) The term β̃p which is a linear function of all β
(u)
j,r , β

(n)
j,r , 1 ≤ r ≤

p − 1. We use the Hilbert space X(p) consisting of functions
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f = {fr(Y ), 1 ≤ r < p} equiped with the norm

‖f‖2 =
1

p − 1

p−1
∑

r=1

‖fr(Y )‖2
L2

where ‖·‖L2 is the norm in the space of square-integrable func-
tions of Y . It follows easily from §3 that for some constant
C1

∥

∥

∥β̃p

∥

∥

∥

L2
≤ C1





l(u)
∑

j=1

∥

∥

∥β
(u)
j

∥

∥

∥+
l(n)
∑

j′=1

∥

∥

∥β
(n)
j′

∥

∥

∥



 .

Therefore
∥

∥

∥
{β(u)

j,r , β
(n)
j′,r}, 1 ≤ r ≤ p − 1, β̃p

∥

∥

∥

2

X(p+1)

=
1

p

p
∑

r=1

(

∥

∥

∥
β

(u)
j,r

∥

∥

∥

2
+
∥

∥

∥
β

(n)
j′,r

∥

∥

∥

2
)

=
p − 1

p

∥

∥

∥
{β(u)

j,r , β
(n)
j′,r, 1 ≤ r ≤ p − 1}

∥

∥

∥

2

X(p−1
+

1

p

∥

∥

∥
β̃p

∥

∥

∥

2

≤
∥

∥

∥{β(u)
j,r , β

(n)
j′,r, 1 ≤ r ≤ p − 1}

∥

∥

∥

2
·
(

p − 1

p
+

C1

p

)

≤
∥

∥

∥
{β(u)

j,r , β
(n)
j′,r, 1 ≤ r ≤ p − 1}

∥

∥

∥

2
·
(

1 +
C2

p

)

for another constant C2. Iterating this estimate we get

∥

∥

∥
{β(u)

j,r , β
(n)
j′,r, 1 ≤ r ≤ p}

∥

∥

∥
≤
∥

∥

∥
β

(u)
j,1 , β

(n)
j′,1

∥

∥

∥
·

p
∏

q=1

(

1 +
C2

q

)

.

The first term
∥

∥

∥
β

(u)
j,1 , β

(n)
j′,1

∥

∥

∥
≤ 1

(k(0))µ2
for another constant µ2

and
∏p

q=1

(

1 + C2
q

)

≤ pC3
0 for another constant C3. This gives

the estimate of the linear part.
a4) All terms which are quadratic functions of all remainders. Since

all previous terms were already estimated the quadratic terms
are much smaller than the previous ones.

The sum of all these terms gives β
(u)
j,p , β

(n)
j′,p, Φst

p .

We take N = 50. For all p ≤ 50 all remainders were found numeri-
cally with the help of computer using exact recurrent relations (7). At

N = 50 we make the first rescaling. Put b
(u,1)
j = pαjb

(u)
j + β

(u)
j,p , for

1 ≤ j ≤ l(u) and b
(n,1)
j′ = b

(n)
j′ + β

(n)
j′,p for 1 ≤ j′ ≤ l(n) and p = 50. These

are our new rescaled variables. All previous expressions for δ(r)(Y, s),
r < N can be written as functions of these new variables:

b
(u)
j pαj + β

(u)
j,r = b

(u,1)
j + β

(u,1)
j,r , 1 ≤ j ≤ l(u),
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where β
(u,1)
j,r = β

(u)
j,r − β

(u)
j,p and

b
n)
j′ + β

(n)
j′,r = β

(n,1)
j′,1 + β

(n,1)
j′,r , 1 ≤ j′ ≤ l(n),

where β
(n,1)
j′,r = β

(u)
j′,r − β

(n)
j′,p. The change in the expression for Φ

(st)
r is

just the change of variables b
(u)
j , b

(n)
j′ . Numerically it was shown that

ρ1 can be chosen in such a way that the set b
(u)
j , b

(n)
j′ for which −ρ1

2 ≤
b
(u,1)
j , b

(n,1)
j′ ≤ ρ1

2 is contained in the original set −ρ1 ≤ b
(u)
j , b

(n)
j′ ≤ ρ1.

We use this procedure till p = p0 = N . The procedure for p > p0 will
be discussed in §6.

5. The List of Remainders and Their Estimates

In the beginning of §4 we described (n2+5n−2)/2-parameter families
of initial conditions which we consider in this paper. We mentioned

above that for each p we have an interval S(p) =
[

S
(p)
− , S

(p)
+

]

on the

time axis. Actually these intervals will be changed only when p =
pn = (1 + ǫ)n where ǫ > 0 is a constant. Therefore we shall write

S(n) =
[

S
(pn)
− , S

(pn)
+

]

and hope that there will be no confusion.

In this and the next section we consider p > p0. Each function
g̃r(Y, s), r < p, has the following representation:

in the domain |Y | ≤ D1

√
ln rk(0),

g̃r(Y, s) = Z · Λr(s) · r
4−n

2 · 1

(2π)n/2
· e−

|Y |2
2 (H(0)(Y ) + δ(r)(Y, s)).

in the domain |Y | > D1

√

ln(rk(0)):

|g̃r(Y, s)| ≤ B1Λr(s)

rλ1

for some constants λ1 > 0, B1 > 0. We use the formula (7) to get

g̃(p)(Y, s). New remainders appear in one of the following ways.

Type I. The recurrent relation (7) does not coincide with the equation
for the fixed point and actually is some perturbation of this
equation. The difference produces some remainders which
tend to zero as p → ∞.

Type II. For the limiting equation all eigen-vectors in the linear ap-
proximation are multiplied by some constant. In the equation
(7) it is no longer true and the difference generate some re-
mainders. (see also §6).

Type III. The remainders which are quadratic functions of all previous
remainders.
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5.1. The Remainders of Type I. We call the domain A the set

{|Y | ≤ D1

√

ln(rk(0))} and the domain B the set {|Y | > D1

√

ln(rk(0))}.
The estimates will be done separately in each domain. We include the
first, the second and the last two terms in (7) in the remainders. We
shall estimate only the first one, the others are estimated in the same
way.

Domain A: We have

β(1)
p (Y, s)

=
(

(p + 1)k(0)
)

n+2
2 · 1

p2
·
∫ p2

0
dθ2·

·
∫

Rn

〈

v(k(0) +
√

(p + 1)k(0)(Y − Y ′); b)κ(0,0) +
Y√
p + 1

〉

·

· g̃p

(

Y ′,

(

1 − θ2

p2

)

s

)

·

· exp

{

−
∣

∣

∣
k(0) + (Y − Y ′)

√

p + 1
∣

∣

∣

2
− θ2

p2

∣

∣

∣
k(0)p + Y ′√p + 1

∣

∣

∣

2
}

dnY ′.

Here b means the collection of all parameters in the definition of v(k; 0).

The main contribution to the integral comes from Y −Y ′ = O
(

1√
p+1

)

.

In this domain in the main order of magnitude

〈v(k(0) + (Y − Y ′)
√

p + 1, 0; b), κ(0,0)〉 = O(1)

Assuming that v(k(0) +(Y −Y ′)
√

p + 1, 0; b) is differentiable w.r.t the
first three variables we see that the inner product

〈v(k(0) + (Y − Y ′)
√

p + 1, 0 ; b), κ(0,0) +
Y√
p + 1

〉

is of order O(1). For g̃p we can write using our inductive assumptions

g̃p

(

Y ′,

(

1 − θ2

p2

)

s

)

= Z · Λp(s) · p
4−n

2 · 1

(2π)n/2
· e−

|Y |2
2 · H(p)

(

Y ′,

(

1 − θ2

p2

)

s

)

.

where H(p)(Y, s) = H(0)(Y, s) + δ(p)(Y, s)). Also

exp

{

−θ2

p2

∣

∣

∣k(0) p + Y ′√p + 1
∣

∣

∣

2
}

= exp

{

−θ2

∣

∣

∣

∣

k(0) +
Y ′√p + 1

p

∣

∣

∣

∣

2
}

and in the main order of magnitude the integration over θ2 does not
depend on Y ′. Thus we can write

∣

∣

∣β(1)
p (Y, s)

∣

∣

∣ ≤ D4 ·
1

p
· p 4−n

2 · Λp(s) · e−
|Y |2

2 .(25)
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Here and later various constants whose exact values play no role in
the arguments will be denoted by the letter D with indices. Since in

the expression for g̃p+1 we have the factors Λp+1 · (p + 1)
4−n

2 · e−
|Y |2

2 ,

the estimate (25) shows that |β(1)
p (Y, s)| is much smaller than g̃p+1 by

a factor of O(1
p). This is good enough for our purposes. We do not

discuss the errors which follow from the fact that the expressions in the
previous formulas depend on θ2.

Domain B: The smallness of β
(1)
p (Y, s) in this case follows easily from

several inequalities and arguments.

1◦: |Y | ≤ D4

√

pk(0) because |k| ≤ D5pk(0).

2◦: |Y − Y ′| ≤ D6

√
k(0) because v(k, 0; b) has a compact support.

3◦: If |Y − Y ′ | ≤ 2s+√
p

(recall that S = [S−, S+], we denote here

s+ = S+), then

exp

{

−
∣

∣

∣k(0) + (Y − Y ′)
√

p + 1
∣

∣

∣

2
}

≤ 1

If |Y − Y ′| ≥ 2s+√
p

then

exp
{

−
∣

∣

∣
k(0) + (Y − Y ′)

√

p + 1|2
}

≤ exp
{

−s+

4

∣

∣

∣
Y − Y ′|2

}

.

4◦: If |Y ′| ≥ D7
√

p then

exp

{

−θ2

p2

∣

∣

∣k(0)p + Y ′√p + 1
∣

∣

∣

2
}

≤ exp{−D8θ2}

5◦: If |Y ′| ≤ D7
√

p then

exp

{

− θ2

p2

∣

∣

∣
k(0) p + Y ′√p + 1

∣

∣

∣

2
}

≤ 1.

6◦: We have

exp

{

−1

2
|Y |2

}

= exp

{

Y · (Y − Y ′) − 1

2

∣

∣Y − Y ′∣
∣

2
}

.

If |Y − Y ′| ≤ 2s+√
p

then

exp

{

Y · (Y − Y ′) − 1

2

∣

∣Y − Y ′∣
∣

2
}

≤ D8.

If |Y − Y ′| >
2s+√

p
then we have an integral of the function which is the

product of some Gaussian factor and |H(p)(Y )|. Direct estimate shows
as before that in this case

|β(1)
p (Y, s)| ≤ Λp(s) · p

4−n
2 · e−

|Y |2
2 · D8

p3/2
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which is also good for us.
In the same way one can estimate terms with relatively small p1

and p − p1 (i.e., p1 ≤ √
p or p1 ≥ p − √

p). The remainders will be

of order 1√
p1

· 1
p . The next set of remainders comes from splitting the

integration over θ and Y ′ (see (7) and beginning of §2). We may assume
that p1 >

√
p or p1 < p−√

p because other terms were estimated before.
Put

˜̃gp+1(Y, s)

= ((p + 1)k(0))
n+2

2

∑

p1+p2=p+1
p1,p2>

√
p

p2
1
∫

0

dθ1

p2
2
∫

0

dθ2 · 1

p2
1p

2
2

·

·
∫

R3

〈

g̃p1

(

Y − Y ′
√

γ
,

(

1 − θ1

p2
1

)

s

)

, k(0) +
Y√
p + 1

〉

·

· g̃p2

(

Y ′
√

1 − γ
,

(

1 − θ2

p2
2

)

s

)

·

exp







−θ1

∣

∣

∣

∣

κ(0) +
√

k(0)
Y − Y ′

√
p + 1 · γ

∣

∣

∣

∣

2

− θ2

∣

∣

∣

∣

∣

κ(0) +

√
k(0)Y ′

√
p + 1(1 − γ)

∣

∣

∣

∣

∣

2






dnY ′.

Using the inductive assumption we can rewrite the last expression as
follows:

˜̃gp+1 (Y, s)

= (k(0))
n−6

2 Z(s)2 · (p + 1)
4−n

2

∑

p1+p2=p+1
p1,p2>

√
p

p2
1
∫

0

dθ1

p2
2
∫

0

dθ2

Λp1 · Λp2 · γ−n/2(1 − γ)−n/2 · 1

p + 1
·

exp







−θ1

∣

∣

∣

∣

κ(0) +
√

k(0)
Y − Y ′

√
p + 1 · γ

∣

∣

∣

∣

2

− θ2

∣

∣

∣

∣

∣

κ(0) +

√
k(0)Y ′

√
p + 1 (1 − γ)

∣

∣

∣

∣

∣

2






·

〈H(p1)(
Y − Y ′
√

γ
, s(1 − θ1

p2
1

)), κ(0,0) +
Y√
p
〉 H(p2)(

Y ′
√

1 − γ
, s(1 − θ2

p2
2

))dnY ′.

As was explained before, in the Domain A the inner product

〈

H(p1)

(

Y − Y ′
√

γ
, s

(

1 − θ1

p2
1

))

, κ(0,0) +
Y√
p

〉
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takes values O(1) and the remainder can be written in the following
form:

β(2)
p (Y, s)

=
∑

p1+p2=p+1
p1,p2>

√
p

p2
1
∫

0

dθ1

p2
2
∫

0

dθ2 · γ−n/2(1 − γ)−n/2 · 1

p + 1
·

exp







−θ1

∣

∣

∣

∣

κ(0) +
√

k(0)
Y − Y ′

√
p + 1 · γ

∣

∣

∣

∣

2

− θ2

∣

∣

∣

∣

∣

κ(0) +

√
k(0)Y ′

√
p + 1 (1 − γ)

∣

∣

∣

∣

∣

2






·

〈H(p1)(
Y − Y ′
√

γ
, s(1 − θ1

p2
1

)), κ(0,0) +
Y√
p
〉 H(p2)(

Y ′
√

1 − γ
, s(1 − θ2

p2
2

))dnY ′.

−
∑

p1+p2=p+1
p1,p2>

√
p

p2
1
∫

0

dθ1

p2
2
∫

0

dθ2 · γ−n/2(1 − γ)−n/2 · 1

p + 1
· e−

|Y −Y ′|2
2γ

− |Y |′2
2(1−γ) ·

〈H(p1)(
Y − Y ′
√

γ
, s)), κ(0,0) +

Y√
p
〉 H(p2)(

Y ′
√

1 − γ
, s)dnY ′.

We did not include the factor Λp · p
4−n

2 because it is a part of the
inductive assumption. This remainder is estimated in the following way.

First we consider

R1 =

(

∣

∣

∣

∣

k(0) +
Y − Y ′
√

pγ

∣

∣

∣

∣

2

− 1

)

+

(

∣

∣

∣

∣

k(0) +
Y ′

√
p (1 − γ)

∣

∣

∣

∣

2

− 1

)

As before, consider the domain where

|Y − Y ′| ≤ D9

√

ln (pk(0)), |Y ′| ≤ D10

√

ln (pk(0)).

We write

R1 =
|Y − Y ′|2

p · γ2
+

|Y ′|2
p · (1 − γ)2

+ D11

( |Y − Y ′|√
p γ

+
|Y ′|√

p(1 − γ)

)

.

In the Domain A

|R1| ≤
D12 ln(pk(0))

pk(0)
.

Therefore

R2 = exp

{

−θ1

∣

∣

∣

∣

k(0) +
Y − Y ′
√

p γ

∣

∣

∣

∣

2

− θ2

∣

∣

∣

∣

k(0) +
Y ′

√
pγ2

∣

∣

∣

∣

2
}

− exp{−θ1} · exp{−θ2}

= exp{−(θ1 + θ2))} ·
[

exp

{

−θ1

(

∣

∣

∣

∣

k(0) +
Y − Y ′
√

pγ

∣

∣

∣

∣

2

− 1

)
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· exp

{

−θ2

(

∣

∣

∣

∣

k(0) +
Y ′

√
p(1 − γ)

∣

∣

∣

∣

2

− 1

)}

− 1

]

and in the Domain A

|R2| ≤ exp{−(θ1 + θ2)}
(

θ1 · D13√
pγ

+
θ2 ln p√
p(1 − γ)

)

.

This shows that in the Domain A we can replace the exponent

exp

{

−θ1| k(0) +
Y − Y ′
√

pγ
|2 − θ2| k(0) +

Y ′
√

p(1 − γ)
|2
}

by exp{−(θ1 + θ2)(k
(0))2} and the remainder will be not more than

D14 ln p√
p . This is enough for our purposes. In the Domain B the estimates

are similar because again the main contribution to the integral comes
from |Y − Y ′| ≤ D9

√
ln p, |Y ′| ≤ D10

√
ln p. In other words, in the

Domain B we can replace the product of the Gaussian factors and H(p)

by

exp

{

−1

2

∣

∣Y − Y ′∣
∣

2 − 1

2

∣

∣Y ′∣
∣

2
}

.

This is also enough for our purposes.
The next remainder of Type I comes from the difference between the

sum over γ and the corresponding integral. The remainder β
(3)
p (Y, s) is

the difference between the sum and the corresponding integral over γ
from 0 to 1. It is easy to check that this difference is not more than
D14√

p .

5.2. The Remainders of Type II and III. All remainders of
Type II appear because we use the sums (over p1) instead of the inte-
grals. We use a linear interpolation to define δ(γ, Y, s) for all γ. From

our inductive assumptions it follows that |δp(γ, Y, s)| ≤ D16√
p . Therefore,

the remainders which follow from the difference between the sum and
the integral also satisfy this estimate.

It remains to consider quadratic expressions of δp(γ, Y, s). The
Gaussian density is present in all these expressions. Therefore, all the
remainders are not more than D17

p .

6. Final Steps in the Proof of the Main Result. The

Formulation of the Main Theorem

In this section we consider our procedure for p > p0 = N . Introduce
the sequence pm, pm = (1 + ǫ)pm−1 = (1 + ǫ)mp0, m > 0, where ǫ > 0 is
small (see below). These are the values of p when we make the change
of parameters, i.e. rescaling. For p 6= pm, no changes are done.

In §4 the choice of the fixed point H(0) was explained and the cor-

responding functions Φ
(u)
j , Φ

(n)
j′ were introduced. Also we have the
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stable subspace of our linearized map. Consider p, pm < p < pm+1,
m ≥ 0. By induction, assume that we have an interval on the time

axis S(m) =
[

S
(m)
− , S

(m)
+

]

such that for all s ∈ S(m), r < p, we have the

representation (see also (24) for the definition of Λ(s)):

g̃r(Y, s) = Z · Λr(s) · r 4−n
2 · (H(0)(Y ) + δ(r)(Y, s)) · 1

(2π)n/2
e−

|Y |2
2 ,

r < p.

If γ = r
p−1 , then

δ(r)(Y, s) =

l(u)
∑

j=1

(

b
(u,m)
j,p−1 + β

(u)
j,r

)

γα
(u)
j Φ

(u)
j (Y )

+

l(n)
∑

j′=1

(

b
(n,m)
j′,p−1 + β

(n)
j′,r

)

Φ
(n)
j (Y ) + Φ(st)(Y, γ).

Remark that in this expression b
(u,m)
j,p−1 , b

(n,m)
j′,p−1 do not depend on r. The

terms β
(u)
j,r , β

(n)
j′,r are small corrections to the main terms b

(u,m)
j,p−1 , b

(n,m)
j′,p

and are also functions of b
(u,m)
j , b

(n,m)
j′ . Our next inductive assumption

says that b
(u,m)
j,pm

, b
(n,m)
j′,pm

satisfy the inequalities

−B1ρ
m
1 ≤ b

(u,m)
j,pm

, b
(n,m)
j′,pm

≤ B1ρ
m
1

where B1 is a positive constant. We can take B1 = 2. The inductive

assumption concerning the corrections β
(u)
j,r , β

(n)
j′,r says that

∣

∣

∣
β

(u)
j,r

∣

∣

∣
,
∣

∣

∣
β

(n)
j′,r

∣

∣

∣
≤ B2ρ

m
2 for all 1 ≤ j ≤ l(u), 1 ≤ j′ ≤ l(n),

∣

∣

∣

∣

∣

∂β
(u)
j,r

∂b
(u,m)
j1,r

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∂β
(u)
j,r

∂b
(n,m)
j′1,r

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∂β
(n)
j′,r

∂b
(u,m)
j1,r

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂β
(n)
j′,r

∂b
(n,m)
j′1,r

∣

∣

∣

∣

∣

∣

≤ B3 · ρm
2

Here 0 < ρ2 < ρ1 and B2 are other constants.
The function Φ(st)(Y, γ) belongs to the stable subspace of the lin-

earized semi-group (see §3) and satisfies the inequality:
∥

∥

∥
Φ(st)(Y, γ)

∥

∥

∥

X
≤ B3ρ

m
3 ,

where B3 > 0, 0 < ρ3 < 1 are constants. At one step of our pro-
cedure p − 1 is replaced by p, γ is replaced by γ′ = γ · p−1

p and

γα
(u)
j is replaced by

(

1 + 1
p−1

)α
(u)
j · (γ′)α

(u)
j , b

(u,m)
j + β

(u)
j,r is replaced by

(b
(u,m)
j + β

(u)
j,r )

(

1 + 1
p−1

)α
(u)
j

. At the end of the interval pm < p < pm+1
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the variable b
(u,m)
j,pm

acquires the factor

∏

pm<p<pm+1

(

1 +
1

p − 1

)α
(u)
j

≈ (1 + ǫ)α
(u)
j .

For the neutral part of the spectrum the variable b
(n,m)
j′,pm

remains the

same because α
(n)
j′ = 0. The stable part is contracting.

Now we discuss δ(p)(Y, 1) using (7). As in §4, δ(p)(Y, 1) consists of
three parts.

Part I. In all δ(r), r < p, the main term is the one which contains

the basic parameters b
(u,m)
j,p , b

(n,m)
j′,p . Consider the terms in (7)

which are linear in b
(u)
j,p−1, b

(n)
j′,p−1. As it follows from the def-

inition of the linearized group and its spectrum, for unstable

eigen-vectors we get the factor
(

1 + 1
p−1

)α
(u)
j

b
(u,m)
j,p−1 . For the

neutral part we get the factor 1. We put b
(u,m)
j,p = b

(u,m)
j,p−1 ·

(

1 + 1
p

)α
(u)
j

, b
(n,m)
j′,p = b

(n)
j′,p−1. The vector corresponding to the

stable subspace is transformed accordingly.
Part II. All remainders which arise because the formulas for finite p

are different from the limiting formulas. These remainders
were discussed in §4. The result is written as a linear com-

bination of Φ
(u)
j , Φ

(n)
j′ and a vector from the stable subspace.

The corresponding terms are included in β
(u)
j,p , β

(n)
j′,p and the

function from the stable subspace.
Part III. The term which is the sum of all quadratic functions of all

δ(r). Again we expand it using the functions Φ
(u)
j , Φ

(n)
j′ and

the stable subspace. The result is included in β
(u,m)
j,p , β

(n,m)
j′,p

and Φ
(st)
p (Y ) from the stable subspace.

Finally we have

b
(u,m)
j,p = b

(u,m)
j,p−1

(

1 +
1

p

)α
(u)
j

, b
(n,m)
j,p = b

(n,m)
j,p−1

and the formulas for β
(u,m)
j,p , β

(n,m)
j′,p and Φ

(st)
p (Y ).

This procedure is used until p < pm+1. When p = pm+1, then in
addition we make rescaling and introduce new variables

b
(u,m+1)
j,pm+1

= b
(u,m)
j,pm+1

+ β
(u,m)
j,pm+1

,

b
(n,m+1)
j′,pm+1

= b
(n,m)
j′,pm+1

+ β
(n,m)
j′,pm+1

.
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Let ∆
(m+1)
m+1 =

[

−B1ρ
m+1
1 , B1ρ

m+1
1

]

and

∆(m+1)
m =

{

(b
(u,m)
j,pm

, b
(n,m)
j′,pm

) : −B1ρ
m+1
1 ≤ b

(u)
j,pm+1

, b
(n)
j′,pm+1

≤ B1ρ
m+1
1

}

.

It follows easily from the estimates of β
(u,m+1)
j,pm+1

, β
(n,m+1)
j′,pm+1

that ∆
(m+1)
m ⊆

∆
(m)
m . If

∆
(m)
0 =

{

(b
(u)
j , b

(n)
j′ ) : (b

(u,m)
j,m , b

(n,m)
j′,m ) ∈ ∆(m)

m

}

,

then ∆
(m)
0 is a decreasing sequence of closed intervals. The intersection

⋂

m ∆
(m)
0 gives us the values of parameters for which δ(p) → 0 as p → ∞.

We make also some shortening of the time interval S(m). In the
formulas for δ(r) there are several remainders which appear because we
replace in all expressions s′ and s′′ by s. We estimate these remainders
using the fact that our functions satisfy the Lipschitz condition with
respect to the time variable. The maxima of these functions decay as
some power of p. We choose the interval S(m+1) ⊂ S(m) so that for

all s ∈ S(m+1) the basic inclusion ∆
(m+1)
m ⊂ ∆

(m)
m remains valid. The

difference S(m) \ S(m+1) consists of two intervals whose lengths decay

exponentially with m. Therefore
⋂

m S(m) = [S−, S+] is an interval of
positive length.

The transformation (b
(u,m+1)
j,pm+1

, b
(n,m+1)
j′,pm+1

) → (b
(u,m)
j,pm

, b
(n,m)
j′,pm

) is given

by smooth functions and is close to the identity map. The last step in the
renormalization procedure is the replacement in all δ(r), r < pm+1 the

variables b
(u,m)
j,pm

, b
(n,m)
j′,pm

by their expressions through b
(u,m+1)
j,pm+1

, b
(n,m+1)
j′,pm+1 .

The form of δ(r) in new variables remains essentially the same.
The Choice of Constants

The main constants which are used in the construction are the fol-
lowing:

1. k(0) determines the center of the domain where v(k, 0) is con-
centrated;

2. D1 is the constant which determines the size of the neighbor-
hood where v(k, 0) is concentrated;

3. ρ1,B1 determine the size of the intervals where b
(u)
j , b

(n)
j′ vary;

4. ρ2, B2 determine the upper bounds of the perturbations β
(u)
j,r ,

β
(n)
j′,r;

5. λ1 determines the power of decay of gr in the domain B.
6. N is the number of steps where the procedure was done nu-

merically;
7. ǫ determines the values of p where the renormalization is done.

The value of k(0) should be sufficiently large. The constant B1

should be small but ρ1 < 1 should not be too small in order to make
the corrections coming from the quadratic part of our formulas to be
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smaller than the main term in the linear part. Moreover, it cannot
be too small in order that we could choose the next interval ∆(m+1).
The parameter λ1 is a function of D1. The value of D1 determines the
estimates in the domain B which decay as 1

(k(0))
λ1

. The value of ǫ is

chosen so small that we can write with a good precision the action of
the linearized renormalization group.

Now we formulate the main result of this paper.

Theorem 1 (Main Theorem). Take a (n2+5n−2)/2-parameter fam-

ily of initial conditions described in §4 provided that all constants satisfy

the needed inequalities. Then one can find an interval S = [S−, S+], the

functions Z(s), Λ(s), and the values b
(u)
j = b

(u)
j (s), b

(n)
j′ = b

(n)
j′ (s) of

parameters so that

a1). For |Y | ≤ D1

√

pk(0),

g̃p(Y, s) = gp(k
(p) +

√

pk(0)Y, s)

= Z · Λp(s) · p 4−n
2 · (H(0)(Y ) + δ(p)(Y, s)) · 1

(2π)n/2
e−

|Y |2
2

and supY

∣

∣δ(p)(Y, s)
∣

∣→ 0 as p → ∞. Here H(0)(Y ) is the fixed point of

our renormalization group for which x1 = · · · = xn = 2/n.

a2). For |Y | > D1

√

pk(0),

|g̃p(Y, s)| ≤ B1Λp(s)

pλ1

The function Λ(s) is strictly increasing on S. Moreover, for s ∈ S, we

have

Λ′(s) ≥ B > 0

where B > 0 is another constant independent of s.

7. Critical Value of Parameters and Behavior of Solutions

near the Singularity Point

We return back to the first formulas:

vA(k, t) = exp {−t|k|2}A · v(k, 0)(26)

+

t
∫

0

exp {−(t − s)|k|2} ·
∑

p>1

Apgp(k, s) ds.

Take t ∈ [S−, S+] and find the values of parameters b
(u)
j , b

(n)
j′ for which

the main theorem holds. Put Acr(t) = Λ−1(t). If so then Apgp(k, t)

is concentrated in the domain with the center at κ(0)p having the size
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O(
√

p) and there it takes values O(p). This immediately implies that
at t the energy is infinite.

Consider t′ < t and denote ∆t = t−t′. It follows from the properties
of Λ(s) (see the formulation of the main theorem) that Λ(t′)/Λ(t) =

(1 − B∆t + O(∆t)) for some constant B > 0. Since Ap
cr · (Λ(t′))p =

Ap
cr ·(Λ(t))p ·

(

Λ(t′)/Λ(t)

)p
= (1−B∆t+o(∆t))p, it is clear that the terms

in (26) with p ≤ O
(

1
∆t

)

are close to the limiting terms corresponding to

t. For p ≫ O
(

1
∆t

)

the product Ap
cr(Λ(t′))p tends exponentially to zero

and dominates other terms in the expression for gp. Therefore for t′ < t
both the energy and the enstrophy are finite.

In the domain |k| ≤ O
(

1
∆t

)

, the solutions grow as |k|
5−n

2 . The extra

factor |k|
1
2 appears because for any k the values of p for which the terms

in (26) giving the essential contribution to the solution belongs to an

interval of the size O(
√

|k|) = O(
√

p). From this argument one can

easily derive that E(t′) = O(1)
(∆t)5

and Ω(t′) = O(1)
(∆t)7

.

It is interesting to understand the form of the solution at t = tcr in
the x-space. Some information can be obtained using (26). Consider
the series g(k, tcr) =

∑

p>1 Ap
crgp(k, tcr). We neglect all remainders δ

and this is reasonable. Then from our main theorem

g̃r(Y, tcr) = Z(tcr)Λ
r(tcr)r

4−n
2

1

(2π)n/2
e−

|Y |2
2 v,

where v = 2/n(1, . . . , 1) ∈ Rn corresponds to our fixed point for which
x1 = · · · = xn = 2/n. In this way since Acr = Λ(tcr)

−1 we have

∑

p>1

Ap
crgp(k, tcr) = Z(tcr)

∑

p>1

p
4−n

2
1

(2π)n/2
exp







−1

2

∣

∣

∣

∣

∣

k − k(p)

√

pk(0)

∣

∣

∣

∣

∣

2






v.

Therefore the Fourier transform of g(k, tcr) has the form

ĝ(x, tcr) =

∫

Rn

ei〈x,k〉g(k, tcr)dk

= Z(tcr)
∑

p>1

p2 · 1

(k(0))n/2
eik(p)·x · e− 1

2
pk(0)|x|2v.

This expression shows that for all x 6= 0 the function ĝ(x, tcr) is finite
but ĝ(x, tcr) tends to infinity as O( 1

|x|6 ) as x → 0. In this sense our

solution is a tornado-like solution.

Appendix I:

Hermite Polynomials and Their Basic Properties

Take σ > 0 and write

He(σ)
n (x) = (−1)ne

σx2

2
dn

dxn
e−

σx2

2 , n ≥ 0.
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It is clear that He
(σ)
n (x) = σnxn + · · · , where dots mean terms of

smaller degree. We shall call He
(σ)
n the n-th Hermite polynomial. It is

clear that He
(σ)
0 (x) = 1, He

(σ)
1 (x) = σx, He

(σ)
2 (x) = σ2x2 − σ and so

on. In general, He
(σ)
n (x) = σ

n
2 He

(1)
n (

√
σx). It is easy to check that

(27) σxHe(σ)
n (x) = He

(σ)
n+1(x) + σnHe

(σ)
n−1(x).

The Fourier transform of He
(σ)
m (x)e−

σx2

2
√

σ
2π is (iλ)me−

λ2

2λ . This implies
the formula for the convolution:

∫

R1

He(σ)
m1

(x − y)e−
σ(x−y)2

2

√

σ

2π
· He(σ)

m2
(y)e−

σy2

2

√

σ

2π
dy(28)

= He
(σ)
m1+m2

(x)e−
σx2

2

√

σ

2π
.

Take positive γ1, γ2, γ1 + γ2 = 1 and consider the convolution of

He
(σ)
m1(

x√
γ1

)e
−σx2

2γ1 ·
√

σ
2πγ1

and He
(σ)
m2(

x√
γ2

)e
−σx2

2γ2 ·
√

σ
2πγ2

. Their Fourier

transforms are (iλ
√

γ1)
m1e−

λ2γ1
2σ and (iλ

√
γ2)

m2e−
λ2γ2
2σ respectively. The

product of these two functions is γ
m1
2

1 γ
m2
2

2 (iλ)m1+m2e−
λ2

2σ . Therefore the

convolution is γ
m1
2

1 · γ
m2
2

2 He
(σ)
m1+m2

(x)e−
σx2

2 .
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