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1. Introduction

Many of the classical fixed sample size tests and estimates have sequential
counterparts which are more economical, needing on the average fewer observa-
tions to ensure a given performance. It turns out, however, that under some
circumstances, admittedly artificial, a sample of fixed, nonrandom size is optimal.

We determine here rather inclusive conditions ensuring that for a sequence of
partial sums of independent, identically distributed random variables, a fixed
sample size is optimal with respect to a given nonnegative payoff function.

2. Notations

Let Xi, X, - - - be independent and identically distributed replicates of a ran-
dom variable X, and set Sy = 0,8, = X; + Xo + -+ + X, n 2 1.

Let M be the set of all real numbers « for which ¢(e), the moment generating
function of X, is finite: ¢(«) = E(exp {¢X}) and M = {a|¢(a) < ®}. The set M
is'an interval containing @ = 0, and may consist of all the real numbers, a subin-
terval of them, or the sole value zero.

The nonnegative function 7,.(x), n = 0, 1, - - - , z real, will be called the payoff
function in the sense that if one stops observations after n trials his income is
7n(Sn)-

The optimal stopping problem is to determine a stoppmg time N, if possible,
such that

(1) E(rn(Sy)) = sup E (TT(ST)),

where the sup on the right is taken over all stopping times 7. When such a stop-
ping time N exists, we denote its “value” by V; that is, V is the maximal ex-
pected payoﬁ' given by (1); V = E'(rN(SN))

The pair (n, ) is called accesstble if S, is contained in every nelghborhood of z
with positive probability. Clearly, the value of r.(x) at maccesmble points 1s
irrelevant.
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3. The main result

THEOREM. The fixed integer no is an optimal stopping time for S, if there exists
a measure p over the set M such that

(2) /M €xp {le} ‘P_‘"(a)ﬂ(da) 2 1a(x), n=2012---, —o <z <o,

with equality holding in (2) at all x for which the pair (no, ) 1s accesstble. The value is
(3) V = E(ra,(Sx) = u(M).

To prove this theorem, we introduce the space-time chain (n, S,), n = 0, 1,

-, and the harmonic functions h.(z) with respect to it. These are functions
with the property that h,(z) = E(hnua(z + X)), and it is known that any such
function can be represented by the integral on the left side of (2), for an appro-
priate p. This fact is proved for discrete valued random variables in [1] and [3],
and is easily extended to the present case. The set M in the theorem is called the
Martin boundary.

Suppose now that x and n, are as stated in the theorem. Then for the corre-
sponding harmonic function h.(x), the sequence k,(S,) is a martingale, and if N
is any bounded stopping rule, hy(So) = u(M) = E(hy(Sy)). Thus, denoting by
a A b the minimum of ¢ and b we have, by Fatou’s lemma for any stopping time
T,

@ W(M) = B(iaan(Sran) = lim B(hran(Sran)

2 E(hr(81)) 2 E(rr(8r)).

Consequently, for any T, E(rr(Sr)) < u(4), and by the definition of accessibility,
equality holds everywhere in (4) for the stop rule given by T = n,. Thus, T = ng
is optimal and V = E(r,(S,,)) = w(M).

There is a certain sense in which the conditions of the theorem are necessary
in order that T = n, be optimal, but we do not discuss them here.

4. Some examples

Let the variables be normally distributed N (6, 1) with unknown mean 6 and
variance 1. Suppose we always estimate 8 by taking the sample mean X, =
(1/n)8.,. Suppose the payoff for stopping after n trials with a sample mean X,, is

(5) | 'rn(Sn) = €xXp {2(,,1’%5 (Yn - 0)2} dm

where d,. is some numerical sequence. Then if the sequence d.(n + 1)* attains
its supremum at n = ne, the fixed stopping time 7, is optimal and the value is
V = duy(no + DX,

To prove this assertion let W = d,, (no + 1)> = sup d. (n + 1)*, and note
that ¢(a) = exp {fa + «?/2}. If we take

©) u(da) = (%r%exp{—%z} da, o <<,
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we obtain for the integral on the left side of equation (2)

(M ha(z) = .(E;ru—;?f .[_: exp {a:c — nab — n?az - 5; da
= w (x — nh)?
BRCEEE e""{2@ 1)
=W @)
T+ 1% d,

Hence, h.(z) = rq(x) if and only if W 2 d. (n 4+ 1)%. By the definition of W
this is true, equality holds when n = ng, and V = W.

As a second example, consider the case of the exponential payoff 7.(S,) =
exp {aS,} dn, where a € M and d, is a numerical sequence. Dynkin [2] has
shown in this case that a fixed number of trials is optimal, using quite different
methods.

This is a special case of the theorem when u assigns a mass ¢ tothe point a, and
4 assigns zero measure to any set not containing a.

Then
8 ha(z) = f exp {az} ¢ *(@)u(da) = ¢ exp {ax} ¢"(a).
The condition A,(x) = r.(x) becomes
) cexp {az} ¢™(a) 2 exp {az} dy,

orc = o™a)d,n=0,12---.
If we suppose that ¢"(a) d,. assumes its supremum at n = ny, and we set ¢ =
¢™(a) dn,, the stopping rule T = nq is optimal by the theorem, and V = ¢.
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