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1. Introduction

Many of the classical fixed sample size tests and estimates have sequential
counterparts which are more economical, needing on the average fewer observa-
tions to ensure a given performance. It turns out, however, that under some
circumstances, admittedly artificial, a sample of fixed, nonrandom size is optimal.
We determine here rather inclusive conditions ensuring that for a sequence of

partial sums of independent, identically distributed random variables, a fixed
sample size is optimal with respect to a given nonnegative payoff function.

2. Notations

Let X1, X2, * be independent and identically distributed replicates of a ran-
dom variable X, and set So= 0,S. = X1+ X2+ + X.,n 2 1.

Let M be the set of all real numbers a for which p(a), the moment generating
function of X, is finite: so(a) = E(exp {aX}) and M = {aIqp(a) < oo}. The set M
is an interval containing a = 0, and may consist of all the real numbers, a subin-
terval of them, or the sole value zero.
The nonnegative function rn(x), n = 0, 1, * , x real, will be called the payoff

function in the sense that if one stops observations after n trials his income is
rn(Sn) -

The optimal stopping problem is to determine a stopping time N, if possible,
such that

(1) E(rN(SN)) sup E(rT(ST)),
T

where the sup on the right is taken over all stopping times T. When such a stop-
ping time N exists, we denote its "value" by V; that is, V is the maximal ex-
pected payoff given by (1); V = E(rN(SN)).
The pair (n, x) is called accessible if S,, is contained in every neighborhood of x

with positive probability. Clearly, the value of rn(x) at inaccessible points is
irrelevant.
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3. The main result

THEOREM. The fixed integer nO is an optimal stopping time for S,, if there exists
a measure ,u over the set M such that

(2) fM exp {ax} 'p"(a)M(da) > r.(x), n = 0, 1, 2, . -00 < x < X,

with equality holding in (2) at all xfor which the pair (no, x) is accessible. The value is
(3) V = E(rn0(Sn,)) = A(M).
To prove this theorem, we introduce the space-time chain (n, Sn), n = 0, 1,

... , and the harmonic functions hn(x) with respect to it. These are functions
with the property that hn(x) = E(hn+I(x + X)), and it is known that any such
function can be represented by the integral on the left side of (2), for an appro-
priate ,u. This fact is proved for discrete valued random variables in [1] and [3],
and is easily extended to the present case. The set M in the theorem is called the
Martin boundary.

Suppose now that A and no are as stated in the theorem. Then for the corre-
sponding harmonic function hn(x), the sequence hn(Sn) is a martingale, and if N
is any bounded stopping rule, ho(So) = ,u(M) = E(hN(SN)). Thus, denoting by
a A b the minimum of a and b we have, by Fatou's lemma for any stopping time
T,
(4) ,I(M) = E(hTAn(STA.)) = lim E(hTAn(STAO))

> E(hTp(ST)) _ E(rT(ST)).
Consequently, for any T, E(rT(ST)) < ,u(A), and by the definition of accessibility,
equality holds everywhere in (4) for the stop rule given by T = no. Thus, T = no
is optimal and V = E(r,,(Sn,)) = (M)
There is a certain sense in which the conditions of the theorem are necessary

in order that T = no be optimal, but we do not discuss them here.

4. Some examples

Let the variables be normally distributed N(O, 1) with unknown mean 0 and
variance 1. Suppose we always estimate 0 by taking the sample mean X,, =
(1/n)Sn. Suppose the payoff for stopping after n trials with a sample mean X" is

(5) r.(S.) = exp {2(n+ 1) (Xn _ f)2} d.,

where dn is some numerical sequence. Then if the sequence dn(n + 1)% attains
its supremum at n = no, the fixed stopping time no is optimal and the value is
V = d4.(no + 1)%.
To prove this assertion let W = dn0 (no + 1)% = sup d. (n + 1)y, and note

that (p(a) = exp {0a + a2/2}. If we take

(6) (da) =
j

s ep {a2 } da, < a <
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we obtain for the integral on the left side of equation (2)

(7) h.n(x) = exp ax-na --2 - 2}da(27r)~ expfa -2aO2

= W x,xnO)2}
n(+l).exp{~2(n+ 1)f

_ W r,(x)
(n + 1)3- dn

Hence, hn(x) _ r,,(x) if and only if W 2 d,, (n + 1)-4. By the definition of W
this is true, equality holds when n = no, and V = W.
As a second example, consider the case of the exponential payoff r,,(S,,) =

exp {aSn} dc,,, where a E M and d. is a numerical sequence. Dynkin [2] has
shown in this case that a fixed number of trials is optimal, using quite different
methods.

This is a special case of the theorem when I assigns a mass c to the point a, and
p assigns zero measure to any set not containing a.
Then

(8) hn(x) = f exp {ax} so-"(a)p(da) = c exp {ax} ,-n(a).

The condition hn(x) _ rn(x) becomes
(9) c exp {ax} so-"(a) _ exp {ax} dn,
or c _ f"(a) d"., n = 0, 1, 2, ... .

If we suppose that so"(a) dn assumes its supremum at n = no, and we set c =
ono(a) dn,, the stopping rule T = no is optimal by the theorem, and V = c.
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