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1. Introduction

In this paper, we shall give a brief account of the main ideas in the theory of
differential games. Our presentation will be limited to two player, zero sum,
differential games, except for a few words regarding the situations where there
are more than two players or where the game is not zero sum.
To begin with, recall the game formulation when there are two players, I and

II. The actions (strategies) available to I are represented by a set A = {,
whereas those available to II are described by the setB = {fl}. There is specified
a payoff function P: A x B -~ R, and I chooses a in A to maximize P while II
chooses P3 in B to minimize P. In general, we know that the order in which the
choices are made is essential, and we can only assert that

(1.1) sup infP(a, fl) _ inf sup P(a,/3).
A B B A

When equality holds in (1.1), we say that the game (P, A, B) has a saddle value,
and this common number is called the (saddle) value of the game. If there exist
a* in A and /3* in B such that,

(1.2) P(O, P*) _ P(a*,/*) <P(a*,A), a E A, P3B
then we say that (a*, P*") constitute a saddle point for the game. It is easy to see
that in this case the game has a saddle value, and it is equal to P(M*, j*). Let us
call games of this kind matrix games, since P has an obvious matrix representa-
tion when A and B are finite sets. The theory of matrix games started with the
result of von Neumann, and since then many generalizations have appeared.
A typical result is the following.
THEOREM 1.1. Suppose A and B are convex, compact topological spaces.

Suppose for fixed fl in B, P(., /3) is concave, and upper semicontinuous, over A,
and for fixed a in A, Pc(a, * ) is convex, and lower semicontinuous, over B. Then,
the game (P, A, B) has a saddle point.
Although the concave-convex assumption on P can be weakened slightly

[14], it appears that in general this assumption (or an equivalent hypothesis) is
essential [12]. This is in apparent striking contrast with the situation in
differential games.
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We can think of a differential game as matrix games played continuously
over some time interval, say [0, 1]. At each time t, the states (positions) of I
and II are represented by n dimensional vectors x(t) and y(t), respectively.
Having observed the past history {(Tr, y(r))1 0 . r _ t} of his opponent, player I
chooses an action (control) u (t) from a specified set U, to guide his state
according to the differential equation

(1.3) x(t) = f(t, x(t), u(t)), x(0) = XO.

Similarly, II chooses a control v (t) from a set V, based upon the past history
of I, to steer his own state according to the differential equation

(1.4) (t) = g(t, y(t), v(t)), y(O) = yO
At the end of the time interval [0, 1], we obtain the continuous trajectories
x: [0, 1] -S R', y: [0, 1] -s R' of the two players, respectively, and II gives to
I the amount P(x, y) where P: C x C -~ R is a specified payoff function.
Here, C is the space of all continuous functions from [0, 1] into R'.

Difficult technical problems arise when we try to specify precisely the set of
strategies available to each player. Since the controls u (t) and v (t) will in general
be functionals of the past histories of y and x, respectively,

(1.5) u(t) = P(t, Y~o tj) v(t) = G(t, X[Ot]),

when we insert these back into the differential equations, we are likely to lose
the results of existence and uniqueness of solutions even if f and g are "nice"
functions. Furthermore, elementary examples [10] show that there is no natural
way to limit the arbitrariness of the functionals F and G. In the next section,
we shall give a natural extension of the notion of solution which avoids these
difficulties.

After defining strategies accurately, we shall discuss the questions of existence
of saddle values and saddle points. We will indicate why saddle values and
saddle points exist for a large class of differential games. In Section 3, we shall
consider the synthesis problem: how do we find the saddle value and a saddle
point when we know they exist? We shall also present a stochastic version of a
differential game which sheds some light on the synthesis problem, and also
exhibits an intriguing connection with Theorem 1.1. In the final section, we
shall discuss generalizations.

2. Game formulation and existence results

Consider the differential equations:

(2.1) ix(t) = f(t, x(t), u(t)), x(0) = xo,

(2.2) P (t) = g(t, y(t), v(t)), y(O), Yo.
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We assume that U and V are compact subsets of R' andf: [0, 1] x R' x U R'
is measurable in the first, Lipschitz in the second, and continuous in the third
variable. Furthermore, If(t, x, u) | grows at most linearly in jxi, uniformly in
t, u. Similar assumptions are placed on g. Finally, we assume that the sets
f(t, x, U) and g(t, y, V) are convex.

By an admissible control for player I (II), we mean any measurable function
u: [0, 1] -~ U(v: [0, 1] ~ V). For any admissible control u, there is defined a
unique continuous trajectory x: [0, 1] ~ R' satisfying (2.1) for almost all t in
[0, 1]. Let X be the set of trajectories obtained from all the admissible controls
of I. Similarly, let Y be the set of trajectories obtained from all the admissible
controls v of player II. We consider X and Y as subsets of the Banach space C
ofallcontinuousfunctionsz: [0, 1] ~ R'underthenorm,I1zII = max {Iz(t)I|te
[0, 1]}. The following result is well known [13].
THEOREM 2.1. The sets X and Y are compact subsets of C.
At each time t, player I chooses u(t) e U based on the past history of the

trajectory y of II. Since the result of his actions determines a trajectory x in X,
we can define a strategy for I as a map from Y into X, taking care to insure that
only the past history is used, that is, the maps should be causal. This motivates
the following definition.

DEFINITIoN 2.1. An (admissible) strategy for I is any map a: Y ~ X such
that if y, y' in Y, satisfy y(r) = y'(z), 0 _ T < t, then a(y)(l) = a(y')(z), 0 <
r _ t.

Let A be the set of all strategies of I. Similarly, we define the set B = {fi} of
strategies of II.
The notion of solution of an ordinary differential equation is generalized as

follows.
DEFINITIoN 2.2. Let a E A and Pi E B. A pair of trajectories (x, y) of X x Y

is said to be an outcome of (a, fi) if there exist sequences {x"} c X, and {y,} c Y
such that

(2.3) lim X,, = lim a(y") = x
nf- nj;

and

(2.4) lim y' = lim /3(xn) = y.
n- 00 nf0l

Let 0(a, f3) be the set of all outcomes of (a, f3).
PROPOSITION 2.1 (Varaiya and Lin [16]). For all (a, /), 0(a, ) is a nonempty,

closed subset of X x Y.
We remark that the most natural definition of an outcome of (a, /3) should be

a pair (x, y) such that a(y) = x, P3(x) = y. Indeed, if a, /3 are continuous, we
get the same definition. The generalization consists in considering the closures of
the graphs of a and /3 instead of a and P3.
The payoff function is any map P: C x C R.
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DEFINITION 2.3. Let 7r be the set valued map defined on A x B by

(2.5) 7C(a, p) = {P(x, Y)I (x, y) E 0(a, /3)}.

DEFINITION 2.4. The game (A, B, P) has a saddle value if

(2.6) sup inf [inf 7(o, /)] = inf sup [sup 7r(a,( 3)]
zacA PeB PeB teA

and this number is called the value of the game. The game has a saddlepoint
(a*, 3* ) if
(2.7) 7C(a, /3*) 7it(a* /3*) _ it(a*, /3)

for all a EA, P cE B.
Here we adopt the convention that il(al, /3) _ 7t(a2, /32) if P1 < P2 for

Pi E 7t(ai, pi), i = 1, 2.
A basic result of the theory of differential games is the following theorem [16].
THEOREM 2.2. If the differential equations (2.1) and (2.2) satisfy the assump-

tions stated earlier, and if P: C x C -s R is continuous, then the game (A, B, P)
has a saddle point.
We shall sketch the basic idea involved in showing existence of the saddle

value for the game (A, B, P). The idea is due to Fleming [3]. We approximate
the continuous time game G = (A, B, P) by a sequence of discrete time games
C" = (Ad, Ba, P) and G' = (Ad, BY, P) in such a way that in the game G6, the
information pattern is biased in favor ofplayer I whereas the situation is reversed
in the game G6. The bias in information vanishes as c approaches 0. More
precisely, consider the following definitions.

DEFINITION 2.5. Let 6 be any number of the form 2-k, k = 0, 1, *. Let AS
(respectively, Ad) be the set of all functions oa (respectively, a6): Y X such that
if y, y' in Y satisfy

(2.8) y( ) = y'(z), 0 _ I _ i5,
then

(2.9) ca (y)(z) = ad(y)Qr), 0 < T _ (i + 1)6,i = 1, * * 1,

{respectively, ac.(y) (,) = cc'(y) (r), 0 < c < ic, i = 1, * , 1/5}.
Similarly, we define the sets Bd and B'. Note that,

(2.10) Ad2 ' A, ' A c A' cA
for 61- 62
The game G6 is played as follows. Player I chooses a' e Ad and II chooses

/36 E Bp. The outcome is a unique pair (x, y) in X x Y, which we write o (ac, /,3),
such that ac5(y) = x and /,3(x) = y. We define
(2.11) V6 = inf sup P(o(W', P3)).

fieB6 steAd
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Dually, we define the game G% = (A,, BM, P) and the number

(2.12) Vs = sup inf P(o(oc, B')).
d eAs #6eB6

It is useful and elementary to observe that we also have

(2.13) V' = suy inf P(o(aa,Ol6))
A B6

and

(2.14) V, = inf sup P(oc(ac,fJ))-Bd A6

Also from (2.10), we can immediately conclude that V62 _ V&1 < V'' . V62 when
1 _ 32,so that we can define

(2.15) V = lim Va, V = lim V'.
6-0 ~~~~6-0O

We can now see that the original game G = (A, B, P) has a saddle value if
V = V.
The crucial observation at this point is to note that when the dynamics are

modeled by (2.1) and (2.2), the advantage due to the information bias in favor
of player I in the game G, and to II in G6, disappears as 6 approaches 0.
Specifically, we can prove the following proposition [16].
PRoPoSITION 2.2. For every a > 0, there is a 3>O and a map r6:X-~X

such that

(2.16) 117r6(x) -x|| _ E for all x E X,
and if x and x' in X satisfy

(2.17) x(T) = x'(r) for ._ ._ t,

then, % (x)(r) = i,,(x')(r)for 0 . r < t + 6.
As a corollary we get the following crucial result.
COROLLARY 2.1. If c6 e A", and PB"E B, then (7ti 0Ot) e As and (fi o-r6) E B6.

Furthernore,

(2.18) ||(aoca6)(y) - c(y)II _ 8, y E Y,cc eA.

whenever %a satisfies (2.16).
Now let tl > 0 be arbitrary and let g > 0 be such that

(2.19) IP(x, y) - P(x', Y')l < 2,,
whenever
(2.20) |y - x' |

ly - mY'1 _E
for x, x' E X, y, y' E Y. Next let 6 be small enough so that (2.16) is satisfied with
c = g. Let oe" e A' be such that (see (2.13))
(2.21) P(o(ca, Pf)) > Va- j,1 for all f,e B'
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and define

(2.22) = 7,ocX".

Finally, let fp' in B8 be arbitrary and let (x, y) = o(c8, B8), that is,

(2.23) -oc(:)y &13(X)
But, if we let fai= 738oir, and x = a(y), we see from (2.33) that (x, y) =
o(a8, 13s) so that P(x, y) _ V& - l by (2.21). However, Ix - x'i _ g by (2.18),
so that we get

(2.24) P(o(a, (3)) = P(x, y) > P(x, y) - _VkV -

from (2.19). Since P'8 is arbitrary, we can take the infinum over f38 on the left
and conclude that a7 V' - i. This proves that the two limits in (2.15) coincide
and the game (A, B, P) has a saddle value. It is fairly straightforward to show
from this fact that the game also has a saddle point. See [16] for details.
Subsequently, in a series of papers [5], [6], [7], Friedman extended Theorem

2.2 to the case where the dynamics are not separated but are mixed as in

(2.25) z = h(t, z(t), u(t), v(t)), x(O) = zo.

The payoff function P is assumed to be of the form

(2.26) P(u, v) = ho(t, z(t), u(t), v(t)) dt.

If we let U be the set of all admissible controls of I and V be the set of all
admissible controls of II, then for this case strategies of I are defined as causal
maps a: V ~ U, and strategies for II are causal maps 1: U soV, just as in
Definition 2.1. Using approximations, similar to the games 08, Ga, Friedman
shows that a saddle value exists provided that the functions A, ho in (2.25) and
(2.26) separate in the form

(2.27) h(t, z, u, v) = h' (t, z, u) + h2(t, z, v),

(2.28) ho(t, z, u, v) = h'(t, z, u) + h2(t, z, v).

Such a separation is crucial in showing that the advantage to players in the
games G0, G0 vanishes as C approaches 0. This point is easily demonstrated by
considering the following example. Take i(t) = (u(t) - v(t))2, z(O) = 0, 0 <
t < 1, and P(u, v) = z(1). We require that u(t) E [0, 1], v(t) E [0, 1]. Now
suppose player II chooses a strategy first. Player I then chooses his strategy
according to,

(1 if 0 < v(t) _
(2.29) U(t) = -2
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Clearly then, independent of the choice of II, P _ 4. On the other hand, if I
chooses a strategy first and II follows according to the formula v(t)- u(t),
evidently P = 0. Hence a saddle value cannot exist.

3. The synthesis problem

Let us consider games with dynamics of the form (2.25) and payoff in the
form (2.26). We assume that (2.27) and (2.28) hold. Furthermore, h and ho are
required to be continuous, u(t) e U, v(t) e V, where U and V are compact.
Instead of starting in a fixed initial condition zo at time 0, let us consider games
starting in different initial states z at times t in [0, 1], the game being defined over
[t, 1]. Let r(z, t) be the value of the game starting in the initial condition (z, t).
It can be shown [5] that X is continuously differentiable and satisfies the partial
differential equation

(3.1) 0 = a t + min max <
DV

(z, t), h(t, z, u, v)> + ho(t, z, U, v)

Of course, we have the boundary data

(3.2) ir(z, 1) 0.

Note that because of (2.26) and (2.27) the min and max in (3.1) can be inter-
changed. Equations (3.1) and (3.2) have been solved formally in numerous cases
by Isaacs [10]. Indeed, he was the first to discover this equation and it is called
Isaacs' equation. In the case of one player, it reduces to the Hamilton-Jacobi
equation of the calculus of variation.

In a significant paper, Berkovitz [1] considers solving (3.1) and obtaining a
saddle point as a pair of "feedback" strategies

(3.3) u(t) = u(t, z(t)),
v(t) = v(t, z(t)),

by constructing a field of trajectories.
In a different direction, Fleming [4] studies the parabolic equation obtained

from (3.1) by adding the term

(3.4) £ a327rut) > 0,

to the right side. If we denote by n' the solution to this equation, then Fleming
shows that irE converges to the value X as a approaches 0, uniformly on compact
sets. Furthermore, he shows that nE can be regarded as the value of the
stochastic game with dynamics

(3.5) dz(t) = h(t, z, u, v) dt + (2i))112 dB(t),
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and with payoff

(3.6) P(u, v) = E ho(t, z, u, v) dt.

In (3.5), B(t) is a standard n dimensional Brownian motion, and in (3.6), E
denotes expectation.

This brings us to the final part of this section. Consider the stochastic game
defined by the differential equation

(3.7) dx(t) = f(t, x(t), u(t), v(t)) dt + dB(t), x(0) = xO, 0 _ t _ 1,

where f is of the form

(3.8) f (t, x, U; v) = (fi (t, v)

In (3.7), B(t) is an n dimensional Brownian motion process. We shall define the
solution of (3.7) in such a way that x(t) has continuous sample paths, so that we
will suppose that the sample paths of x belong to C, the Banach space of con-
tinuous functions from [0, 1] into R'. For each t E [0, 1], let at be the a-field
generated by all subsets of the form

(3.9) {zlzeC,z(r)eA},

where 0 _ r < t, and A is a Borel subset of R'.
Suppose that u and v are m dimensional and U and V are compact subsets

of R'.
DEFINITIoN 3.1. A strategy for player I is any function a: [0, 1] x C -~ U

such that:
(i) a is measurable with respect to the product a-algebra Y ® f, on

[0, 1] x C (here Y is the set of Lebesgue measurable subsets of [0, 1]);
(ii) for each fixed t in [0, 1], a(t, * ) is measurable with respect to t.
Let A denote the set of all strategies of player I. Similarly, we define B as the

set of all strategies of player II consisting of all jointly measurable, causal maps
fi:[0,1] x Co- V.
We impose the following conditions on f
(i) f(t, x, u, v) is measurable in (t, x, u, v), continuous in (u, v) for fixed (t, x);
(ii) f(t, x, U, v) andf(t, x, u, V) are convex;
(iii) there is an increasing function fo: R -~ R such that if(t, x, U, v)I _

fo(IxI)forallxeR',ueU,ve V, te[0, 1].
The following fundamental existence result is due to Girsanov [8].
THEOREM 3.1. For each a E A, fi E B, there exists a solution x(t) of (3.7) with

sample paths in C such that the measure JU(.,#) induced by x on (C, W,) is mutually
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absolutely continuous with respect to the Wiener measure pu on (C, W) and the
density n(,,p) = dpu,p)/dp is given by

(3.10) 1 = exp {J<f (t, B(t), a(t, B), P3(t, B)), dB(t)>

- If(t, B(t), ct(t, B), 13(t, B))12 dt}.

(In the above formula the first integral should be interpreted as a stochastic
integral.)
When the functionf has the form (3.8), we see that (3.10) becomes

(3.11) ?1(fp)(X) = tia(X)qp(x)
where

(3.12) . = exp {J <fl (t, B(t). a (t, B)), dB1 (t)> - Ifl (t, B(t), c(t, B))|2 dt}

and

(3.13) ip = exp{ <f2(t,B(t),/3(t,B)),dB2(t)> 12f f2(tB(t),,B(tB))12dt}.

Let P: C -s R be any bounded function measurable with respect to W,. For
any a e A, ,B e B, we define the payoff to I as E(.,p)(P), where E(, p)(P) is the
expectation ofP with respect to the measure 11(a p) induced on C by (a, f/) via x.
In view of (3.11), we see that

(3.14) E(.p)(P) = JPP(x) %(x) %p(x) dp(x).

From (3.14), we see that the choice of a or ,B affects the payoff only through the
densities ti, tqp. Let

(3.15) D, = {tacIA},
D(1 = {tlpIc- B}.

The following result is a useful characterization.
THEOREM 3.2 (Duncan and Varaiya [2]). The sets D, and D,, are strongly

closed, convex subsets of L1 (C, %, i).
As a corollary of Theorems 1.1 and 3.2, we have the following existence result.
THEOREM 3.3. There exists a saddle point for the above stochastic game.
PROOF. The sets D, and D,, are weakly compact. The payoff (3.14) is linear

and continuous in ta for fixed Y1p and linear and continuous in tlp for fixed t1.
By Theorem 1.1, there exists a saddle point.



696 SIXTH BERKELEY SYMPOSIUM: VARAIYA

4. Generalizations and comments

In the results presented in the previous sections, the game started at a fixed
initial state and ended at a fixed final time. It is important in many cases to have
a variable end time. Usually, this situation is formulated by requiring that the
termination of the game occur when the state of the players enters a specific
target set. A specific game of this kind-the pursuit-evasion game-has been
considered in [16]. Generalizations have been studied in [6] and [7].

Essentially, the only class of games for which explicit solutions are available
is the case where the dynamics in (2.25) are linear and the integrand of the payoff
function (2.26) is quadratic. Numerous special cases have been solved and the
literature on differential games is growing rapidly. An exhaustive bibliography
classifying the literature, up to October 1969, appears in [11].
As is well known, unlike the situation in zero sum games where saddle point

is the natural solution concept, in the case of more than two players or where
the payoff is not zero sum, there are many solution concepts. Roughly speaking,
these concepts separate into two classes, cooperative and noncooperative, but
the distinction becomes less clear in dealing with a dynamic situation. Although
most results in general (as opposed to two person, zero sum) differential games
are concerned with noncooperative solutions, there are the beginnings ofa theory
(or theories) in the richer area of cooperative solutions. Reference [15] exhibits
the wealth of possible solution concepts in the general case, and [9] is an
attempt to place differential games within the context of decision theory.
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