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1. Introduction

Since the publication of the first clear human karyograph by Tjio and Levan
[13], much research, both theoretical and experimental, investigating the be-
havior of the chromosomes in the human cell during mitosis, has been carried
out. Encouraged by L. S. Penrose and using karyographs made by him and by
scientists working under him at the Galton Laboratory and, more recently, at
the Kennedy-Galton Centre for Mental Retardation Research, Harperbury,
we have carried out an intensive statistical study of the positions of the chro-
mosomes as indicated by their centromeres. A typical karyograph is illustrated
in figure 1.

It is the purpose of this present paper to present this study as a connected
whole—it has previously been reported piecemeal as results were obtained—and
to give such further work as has been done. Further, since such tests as we
have devised may all be considered as variants of randomization tests in the
plane, we advance here a way in which the randomization set might be weighted
(or distorted), which leads to an approximate power function for the tests.

The experimental difficulties in the production and labeling of the karyograph
are considerable. We may note that owing to the method of preparation used
it appeared probable that any pattern in the chromosome centromeres would
be largely destroyed and we ourselves were told at the beginning of our investiga-
tion that we might expect a completely random arrangement. We showed that
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Ficure 1

Karyograph of a normal female cell.
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this random arrangement was not present in karyographs from normal women
and men. We may also note the difficulty of distinguishing and numbering the
different chromosome pairs. The cell is three dimensional while a karyograph
is necessarily flat. It is probably true that in some cases the chromosomes lie
nearly in the metaphase plate which is conceptually flat but randomly oriented
to the photographic plate. For this and other reasons, the effect of projection
may be considerable.

At the beginning of the development of the karyograph technique, cyto-
geneticists believed that it was possible to be entirely consistent in the assigning
of the appropriate number to a chromosome. During recent months there has
been a falling away from this position and now the pendulum has perhaps
swung too far, and it is customary only to consider the chromosomes in certain
rather arbitrary groups. Finally, from a statistical point of view we were faced
with undoubted selection in the material chosen for photography. The cytologist,
entirely reasonably, did not photograph those preparations which he could see
under the microscope were not spread out with the chromosomes in a state
where they had a chance of being identifiable. It was principally for these
reasons, coupled with the fact that the cell wall is not visible in more than 50
per cent of our photographs, that we turned to the development of randomiza-
tion tests in order to test the hypothesis of randomness and to describe the
contiguity (or otherwise) of the various chromosome pairs. For the purposes of
setting up the alternative hypothesis, it is necessary to describe the experimental
techniques of preparation of the karyograph in more detail. This is done in
section 6 where some discussion of the general cytobiological background is also
given.

2. Statement of problem studied

The normal human cell has twenty three pairs of chromosomes: consisting of
the autosomes labeled 1 up to 22, with 1 being the largest and 22 the smallest,
and two sex chromosomes (a pair of X’s for the female and an X and a Y for
the male), that is, 46 chromosomes in all. The X chromosome is approximately
the size of the number 6 and the Y (roughly) the size of the number 21 or 22.
The abnormal cell often has more or less than this number. Thus, for example,
mongols (that is, those with Down’s syndrome) are known to have an extra
chromosome of number 21 in addition to the normal complement, while Kline-
felter’s syndrome in males is associated with an extra X chromosome (that is,
an XXV constitution).

Studying first normal cells, we began by investigating whether the distances
between chromosomes of like number (homologous pairs) were such that they
could be regarded as randomly placed each to the other. Sex chromosomes are
treated as homologous even when, as in males, they differ.

We assume N positions in the plane (i, y:), 2 =1, -+, r,,t =1,2, -+ | m,
with Y71 7. = N, which are almost certainly not randomly situated each to
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the other. That is, they are not uniformly distributed; nor do they have any
assignable distribution law. The null hypothesis to be tested is that the chro-
mosome numbers are randomly placed over these space points and the alter-
native hypothesis that if they are not randomly placed then like numbers tend
to be placed close together. Departure from the null hypothesis in the opposite
sense is less likely but not ruled out.

Treating the ¥C; distances between points as a randomization set, we first
considered the criterion

12 3 [ =20t + (G = yo)?
(21) D = -n 1:= := ry
Z; 5 & B L = 26) + (e — yo)’]

If Z, § are the means over all N points and if we write
1 n Tt . _
map =z 3. 3 (@ — 2y — 9)°
t=1,7=1
(2.2) | = | =
-_— . e— ! —_ . — 47
klt - T igl (xh x): klt . igl (yh y),

then D reduces to
MQ£?E;ZUM%+Mﬂ
It is thus immaterial whether we consider D or D* where
1 2

N F meg) & 2 ro(k + kif).
The first form of D, when the 7, are all equal (or without the factor 1/r,, in
general) is evidently a bivariate intraclass correlation coefficient. It was in this
form that Professor Penrose introduced the statistic to our attention.

It will be noticed that both D and D* are invariant under a rotation and
translation of the axes of reference, an important point when it is remembered
the axes of reference are arbitrarily chosen. We have

BD) = =% 0<D<1,

@5) Var (D) = m{%n DWFWQDN—ZM—Jq+xN2 J
— RIN® [1 + 2¢; — ¢ N-_i—_i]}’

_ mjo + 2mfy + mgz’ _ Mo + 2may + Mot
(mao + Me2)? (maeo + Mez)?

n 1 n
RI—EI(;:'N)’

which latter is zero for the normal cell, since r, = 2fort =1, -+, n.

2.3) D=1-

(2.4) D* =

where

(2.6)
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We calculated the third and fourth moments of D using bivariate symmetric
function tables constructed by David and Fix ([10], pp. 144-177) and also con-
structed the exact distribution of D for some small values of N. On the basis of
these investigations we concluded (Barton and David [3]) that the distribution
of D could be accurately described by a beta distribution (a Pearson Type I
curve), but that the assumption of a normal distribution was unlikely to lead
to serious error.

3. Technique employed

The effect of projection may be neutralized by rotation to principal axes and
then scaling by the dispersions in these directions. This is merely a transforma-
tion of the randomization set; any tendency of pairs to be too close or too
widely separated will be only marginally affected. The D statistic based on these
circularized points when written in terms of the actual measured coordinates
becomes (say)

N-1 [ 1
N—n 2N(meo’moz - mu)t
when scaled so that E(T*) = 1. We have, further,

3.1) T*=

Z Tz(mozk%z - 2mukuku + mzoku)]

9)  Varrt= L =D by 2(n — 1)V
(3 ) ar m 1 (x + )Rl - H(n - )(A - n)
—oNwR, 4 2= 1 ( — D - v 3N + 4]
where
(3.3) b = (mwmds — dmamumes + 4maem?s + 2maamogmes

— 4mumama + mosm3o)/ (Magmes — mi1)2.

Multiplying by the appropriate factor so that the reduced, standardized
statistic has a mean zero and a standard deviation of unity we obtained table I.
The number of cells in the category is k.

The expressions mg + Mg, Mao + 2ma2 + Moy, Mo + 2mi + mdz, and so forth
(which are invariant to rotation of axes) were systematically studied by us and
were given in the appendix to Barton and David [2].

A more statistical way of regarding this circularization process is to say that
the axes of reference have been rotated so that the correlation between x and y
is zero and these have then been scaled to new variables according to the stand-
ard deviations along the new axes of reference. Thus, we write

_mmE oy mal— ) = = B)
(3.4) X (m20)1/2 Y' - [m‘zo(mgomm - m%l)]l/2

The D criterion as function of the coordinates referred to the new axes of ref-
erence is
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(T* — 1) (Var T*)7V2 ror 238 NORMAL AND ABNORMAL KARYOGRAPHS

47 Abnormal 40 Abnormal
77 Normal Female Cells 74 Normal Male Cells Female Cells Male Cells
Code Code Code Code Code Code
1 —1.9618 158 ~1.8756 100 +0.4860 160 +0.2745 2 —1.4267 4 —0.9075
11 403192 159 —0.4458 12 —0.2690 161 —0.2025 3 +40.7454 8 +0.4258
17 —0.8653 162 —0.3932 13 +40.5367 178 +1.7953 5 +0.4993 9 —0.4488
20 —2.0843 163 —2.3190 14 -—0.0707 179 +1.1997 6 +0.1597 24  +0.5257
21 —1.5926 164 40.1073 15 ~0.0175 203 -—0.0183 7 +0.2618 38 +2.1200
22 403005 165 ~1.0141 16 —0.9441 204 —1.2817 19  +1.0039 39 —1.4463
23 —0.4693 166 --0.0908 18 40.1408 205 ~—1.6522 25 —1.2076 40 —0.5558
28 ~—1.2893 167 +40.5929 27 -=27519 213 —0.0505 26 —0.9692 4 —09171
29 —1.8433 173 —1.4622 30 413893 214 —1.6439 43 —1.6018 54 —1.3083
33 —1.0153 174 —0.4338 31 407701 215 -—1.3729 49  +0.9594 56  -1.4474
34 -0.2036 175 +1.3328 32 —1.4735 216 -2.0246 50 —-0.4290 57 —0.7628
36 —1.5826 200 —0.9937 35 —0.2849 219 —2.2444 66 —0.8881 62 —0.1602
37 -0.7569 201 —1.4573 41 409177 220 +40.5184 67 —0.0245 63 ~—1.1432
42 402832 206 -1.6363 45 —1.6100 224 —0.0233 68 +1.1768 76  —0.2881
46 —0.5272 207 +40.1150 47 +1.4827 225 +0.8671 69 +40.1046 78 —0.9766
59 —0.0159 208 +2.2509 48 +40.4623 226 —1.0047 70 —-0.7767 79 —0.3280
61 +0.3963 209 —1.0725 51 —0.6643 227 +1.1671 71 —0.8768 80 —0.6171
64 —2.1510 210 —0.1741 52 —0.8230 232 —0.1749 75 —1.1973 81 +40.1816
73  +1.1966 211 —1.8112 53 +0.4587 233 +41.0080 82 +1.6016 87 —0.1976
94 +1.4268 212 +40.5708 55 —0.0307 234 —2.2729 83 —0.7330 88 —0.5275
97 —1.5100 217 +2.3809 58 —1.5104 235 —1.5638 84 +1.7131 90 —1.1616
102 -—0.6161 218 —0.3081 60 —1.1861 236 —1.7982 85 —0.7294 92  +40.5446
103 —2.2603 239 —2.1236 656 +0.2038 237 -0.2235 95 —1.6512 93 —0.1444
104 +40.2117 243 —1.1103 72 —0.4653 238 —0.6077 96  +1.3457 113 +40.8991
106 +1.6426 244 —0.7194 74 —0.8584 240 +1.0691 98 +40.2082 114 —0.7246
109 -~0.4351 245 +40.1211 77 +1.2567 241 +2.0613 112 —1.0957 131 +41.8490
117 403338 246 —0.3715 86 —2.4942 251 +40.0701 120 —2.0692 132 +40.2664
118 —0.1687 254 ~0.1509 80 —1.5583 252 +40.3616 126 —~0.6806 147  +40.6489
119  40.2528 255 —1.0557 99 —0.1287 253 —0.9538 127 —1.7727 149 —~0.3573
121 +0.2177 256 +1.7822 100 -—0.9882 257 41.9427 128 —0.1088 153 +0.6197
122 —2.5744 264 40.1252 101 —2.2747 258 +4-0.0529 129 4-0.2290 176  —1.0539
123 -0.3903 265 40.1741 105 —0.5800 259 -+-0.2076 134 —0.0982 177 —0.2137
124 —~1.9367 266 +40.5990 110 —0.4025 141 —1.6879 202 —0.2429
125 —0.8860 115 +4-0.0318 146  +0.9219 221 —0.4357
130 +1.4864 116 —1.4897 154 —0.4832 222 +1.7252
137 —0.9367 133 —1.2209 155 +40.2192 223  +40.0952
138 —1.6273 135 +40.5886 156 +0.4315 228 —~0.8655
139 —2.0620 136 —1.1947 168 +0.2758 229 —0.5500
140  +40.9059 143 —0.1624 172 —0.5745 230 —0.5440
142  40.5695 144 4-1.3886 247 —0.0670 231 +40.6395
145 —0.5740 150 +40.7547 248 —0.2820
148  +40.5595 157 —1.6019 249 —0.3220
151 —0.6418 250 —0.9368
152 +0.6121 260 —2.0542
261 —2.3054
262 +0.4941
263 —0.0210
Z(T* — 1)(k Var T#)-12 = — 3.3819 —2.6396 —2.1471 —0.7718

(3.5)

with

E(T) =

i=1j=1

- I 5
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(3.6) VarT =~ {(M«, + 2Mn + M)[N(N + DBy — 2(n — DN — )]

N@
n— (N —n)(N* — 3N + 4)}
N -1

— ONOR, + (
where

(3 7) A{ab = N Z (Xh - X)G(Yh - Y)b

Further details of the application of these techniques are given in [4] and [5]

Merrington and Penrose [11] used this technique to test the validity of
chromosome associations which had been asserted to exist, but which had not
been verified statistically. It has been asserted that: (1) the six chromosomes
of 13, 14, 15 tend to lie close together; (2) the four chromosomes 21 and 22
tend to lie close together; (3) the pair of chromosomes 1, 2, and 3, each pair
taken separately tend to lie close together; (4) there is an association between
the pair of the 1 chromosomes and the four chromosomes 21 and 22. The sum
of all the squared distances, ¢;; = (x; — ;)% + (y: — ¥;)?, between pairs (z;, ¥:),
(z;, y;) of members of a given group of r chromosomes were averaged over the
C, pairs of members of the group and the statistic

3.8) 2 Cij

z<.1

was computed. This was done for 62 cells, a mixed sample of normals and
abnormals of both sexes. Since E(¢) = 1 under the null hypothesis, ¢ — 1 was
compared with its empirical standard error s/(62)'/2 where s? is the observed
value of the variance of ¢ among 62 cells. These results are reported in table II.

TABLE II

MEAN STANDARDIZED SQUARED DiISTANCES BETWEEN CENTROMERES
AVERAGED OVER Sixty Two CeLLs

Difference
Number Number Average from 3
Alternative Chromosomes of of of Cell S.D. Expected S.E.of Difference
Hypotheses Examined Cells (Distances)? Means 8 Value Difference S.E.
1 13, 14,15 62 15 0.852 0.310 —0.148 0.039 —3.8
2 21, 22 62 6 or 10 0.866 0.477 —0.134 0.061 —2.2
33) 1 62 1 0.925 0.881 —0.075 0.112 -0.7
3(ii) 2 62 1 1.083 0.891 +0.083 0.113 +0.7
3 (iii) 3 62 1 © 0.954 0.737 . —0.046 0.094 —0.5
4 1 and 21 or 22 62 8 or 10 0.910 0.430 —0.090 0.055 -~1.6
4 All homologous 62 — 0.939 0.145 -0.061 0.018 -3.3

pairs or groups

Merrington and Penrose concluded that there was strong evidence that the lai'ge
acrocentrics (numbers 13, 14, 15) lie closer together than would be expected
on the null hypothesis and that the same is true for small acrocentrics (21, 22).
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4. Possibility of outlying chromosomes

Following the work of Merrington and Penrose, further suggestions appeared
in the scientific press (for example, Mittwoch [12]) to the effect that some types
of chromosome tended to lie to the outside of the karyograph. We investigated
this [6] by calculating the radial distance of each chromosome (after having
first circularized as above) and then ranking the N distances in order of mag-
nitude, the largest distance being given the lowest rank of one. Again, we should
emphasize that the radial distances will (almost certainly) not form a random
set, but we are interested only in the randomness of the chromosome numbers
attached to the radial points. Let there be a group of m chromosomes of the
type we are interested in, supposedly indistinguishable each from the other. Then
the joint distribution of the rth and sth of these (say z., 2z, with 7 < s) will be

4.1) P{rank z, = u, rank 2z, = v; r < s, u < v}
= u_ICr—lo_u_ICs—r—-lN—oCm—sNCm~

The mean values in repeated samples, the variances and covariances, may be
obtained from the general formula

(42)  Elw+ B*ON —v+ @]

_(m— s+ OOF + BEDIN + k + £+ DEHHD.
= m + &+ £+ DED

Thus,
E(u) = %, EQ@) = %{-_11_),
N+ D = m)(m —r+ 1)
“3 BV TE
. Vary = SV + DNV —m)(m — s + 1)
T (m + 1)*(m + 2)

The independence of N exhibited by the correlation is noteworthy. It suggests
what is in fact the case, namely, that there is an extremely close continuous
variable approximation to the distribution of u and ». Thus, when N is large
(as here) and when m is not too big (also, as here), then /N, v/N are, to an
extremely high order, approximated by the rth and sth members of an ordered
sample of m rectangular variables. Thus, if z = u/N and y = v/N, we have the
approximating distribution with p.d.f.

m!
plx, y) = r—1Dls—r—Dlm—y9)

(4.4) !x"‘(y — z) (1 — y)m,

O<e<y<l

This is indeed the exact limiting distribution when N — .
This radial analysis was carried out [7] for 114 karyographs of six types
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TABLE III

TABLE oF MEAN RANKS (OVER k DIFFERENT KARYOGRAPHS) OF THE INNER AND OUTER
CHROMOSOMES OF EacH PaIR, FOR S1x DIrrERENT CATEGORIES [7]

Category

Chromosome I 1I 111 v v VI

Outer 1 17.2 16.4 15.6 154 16.8 13.3
Inner 1 36.0 33.8 29.0 29.3 33.0 31.0
Quter 2 13.6 17.1 17.4 18.8 12.8 15.4
Inner 2 26.6 28.6 29.3 36.0 26.4 30.6
Outer 3 14.8 13.9 13.2 16.4 8.4 13.5
Inner 3 31.1 29.1 28.0 31.2 30.2 30.9
Outer 4 16.3 14.3 10.8 13.3 15.2 15.0
Inner 4 28.3 27.6 25.2 28.8 39.2 28.4
Outer 5 18.7 18.4 214 15.3 12.8 16.5
Inner 5 32.3 32.6 31.2 30.7 26.0 30.7
Outer 6 12.0 14.4 12.0 17.6 10.4 13.3
Inner 6 314 25.7 25.1 27.6 29.0 30.0
OQuter 7 14.1 11.0 12.7 18.8 7.6 14.6
Inner 7 30.0 22.4 30.5 32.4 19.2 27.8
QOuter 8 15.6 13.1 18.4 14.2 17.6 14.7
Inner 8 314 33.8 30.4 26.9 37.0 36.5
Outer 9 13.2 11.8 12.5 12.2 8.2 12.2
Inner 9 32.0 29.1 30.3 28.8 18.2 28.4
Outer 10 13.1 16.8 17.7 15.7 18.2 14.0
Inner 10 29.5 31.3 34.1 31.2 35.6 31.8
Outer 11 14.8 14.0 18.3 16.9 17.4 17.8
Inner 11 28.4 32.5 32.2 32.7 33.0 34.3
Outer 12 17.1 19.6 16.1 15.4 22.0 20.5
Inner 12 32.5 35.3 30.2 36.2 41.6 37.1
Outer 13 16.6 13.6 19.6 19.3 25.4 15.1
Inner 13 31.4 31.9 35.0 344 34.8 33.5
Outer 14 16.9 17.2 17.8 17.0 25.0 13.9
Inner 14 29.8 33.9 29.5 30.1 35.8 27.7
Outer 15 19.1 22.3 19.4 16.7 21.6 15.8
Inner 15 33.5 37.3 35.1 31.8 38.2 35.3
Outer 16 17.3 16.7 16.2 149 15.4 21.4
Inner 16 32.8 33.4 30.5 27.7 29.2 35.3
Outer 17 17.0 18.5 14.0 14.5 10.0 13.6
Inner 17 28.8 32.6 31.3 33.7 314 29.7
Quter 18 14.8 14.5 14.7 13.7 14.6 19.8
Inner 18 30.3 324 33.8 31.3 28.8 35.6
Outer 19 13.1 104 14.6 13.6 12.0 20.0
Inner 19 33.6 27.0 28.5 28.8 27.0 33.6
Outer 20 19.7 22.2 20.0 16.2 15.8 16.3
Inner 20 32.6 34.3 34.0 33.6 33.8 32.7
Outer 21 16.5 18.8 17.8 16.4 22.6 11.9
Central 21 — —_ — — 38.0 24.0
Inner 21 31.5 31.0 33.7 32.8 414 34.7
Outer 22 21.1 18.6 19.8 18.1 13.4 21.1
Inner 22 33.7 31.8 32.2 33.7 36.2 33.5
Outer X 11.3 X17.6 X13.2 X20.6 X134 X20.3
Inner Y 29.9 Y22.3 X29.9 Y20.8 X28.4 Y25.5

k 24 19 20 26 5 20
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(categories), for a variety of chromosome pairs or groups. The values of « and »
were averaged over the karyographs in each group. Denoting the number in
each category by k, we found the figures given in table III. In the table m = 2
and r = 1, s = 2 and so we refer to u and » as “inner” and ‘“‘outer” ranks.

Assessing the significance of the pairs of mean ranks for any chromosome
number is best effected from the percentage points of the joint distribution of
(%, 7), where (Z, ) are the means of k independent variables, each distributed
as (z, y) above. This is a hitherto unsolved problem in distribution theory, and
because of the extensive mathematical derivation required, we have reserved
further discussion of this for another occasion. For present purposes, it is suffi-
cient to use the normal approximation for the joint distribution of (Z, 7), which
is very good for k of the order of 20, as in five out of the six categories here.

This method of analysis treats the different chromosomes of a given number
distinctly. It thus permits observation of any differential behavior which may
occur, either because one of the chromosomes has been wrongly labeled or
because for convenience, different chromosomes (as the X and Y or the large
acrocentrics) have been grouped together.

A collective test is provided by simply averaging the radial ranks of a given
group. Thus, if the ranks are u;, -+ , umand @ = (1 + -+ + um)/m, we have
a simple Wilcoxon statistic. The statistics % for different chromosome groups
were averaged over the k cells in each category and the reduced standardized
deviate tabled. This summary table is given in table IV.

TABLE 1V

SuMMARY OF REDUCED STANDARDIZED DEVIATES

Chromosomes No. I II III IV \" Vi
Group in Group m

A 1 2 41616 +40.766 —0.590 —0.644 40212 —0.872
2 2 —-1792 -—0.297 -—0.096 +2.144 —1.037 —0.483
3 2 —0275 —0927 —1.409 +40.158 —1.108 —0.860
B 4,5 4 4028 —0.196 —0.959 —1.162 —0.239 —0.912
C 6, X 4(3) —1.822 —2495 —2.423 —1.064 —1.262 —1.635
7, 8,11 6 -—1.079 —2.020 +0.182 -+0.135 —0.870 +0.228
9, 10, 12 6 —0.559 +0.404 —0.029 -—0.326 —0.014 —0.021
D 13, 14, 15 6 +1.012 42170 +2.225 +41.382 +2.623 —0.399
E 16 2 +40.803 40717 —0.096 —1.204 —0.401 42.051
17, 18 4 —0.581 +40.689 —0.052 —0.161 —0.955 +0.452
F 19, 20 4 40947 —0.018 +0.532 —0.367 —0.631 41.108
G 21, 22 4(5) +1.663 +1.064 +1.647 +1.399 +2.438 +0.795
Y 1 —0.389 —1.019 +0.495

k, number of cells 24 19 20 26 5 20

In the circumstances envisaged here where m is small but N large, it is clear
that /N behaves to a high degree of approximation, like the mean of m in-
dependent variates each distributed uniformly in (0, 1). The statistic used (that
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is, the mean of k independent values of %) is thus one whose distribution is
given by Barton and David [1]. For values of & at all large the normal approx-
imation is quite adequate.

b. Like pairs of chromosomes

There are many other types of nonrandomness which might be tested, but on
the whole it has seemed most profitable to confine ourselves to confirming (or
otherwise) statements made by the cytologists. Enough statistical evidence is
gradually becoming available to enable by an informed guess, possibly, to see
more of the way in which the chromosomes were arranged before the pattern
was almost destroyed by the method of karyograph preparation, but it is prob-
ably better to wait for the cytological theory before developing too wide a
variety of tests. There is, however, another simple test for position which is
quickly carried out. It has been suggested that like pairs of chromosomes lie
in the same sectors of the karyograph.

Confining ourselves to cells with either pairs or isolated chromosomes and
assuming that it is possible for the chromosomes to have been accurately labeled,
let us choose an arbitrary axis of reference through the centroid and assign
ranks to the chromosomes according to the angle which is made (by the radius
from the chromosome centromeres) with the arbitrary axis of reference. If R; is
the rank of the first chromosome of the 7th pair and R; that of the second, let

(5.1) ti=min {R; — R;, N — Ri + R.}.
Then we have
y_N+1 1 _N*—-2N+3 _ 1
E(t;) = 1 +4(N —7y Vart; = 18 6 — D
(5.2) N even.
N+1 _N?2—2N -3
E(t) = —4—: Vart; = _48 y N odd.

Putting I = (1/n) 37-1t;, a frequency table of # for ten normal male and ten
normal female karyographs is given in table VI. The X and Y chromosomes in
the male are counted as a pair. In table V are given valuesof {;,7 =1, ---, 23
for the ten males and ten females where I; denotes the average value of ¢; over
a series of cells.

Restricting consideration to the mathematically simplest case, where there
are n pairs of like chromosomes, so that N = 2n (and » = 23 for the normal
cell), two sorts of test function suggest themselves analogous to the two tests
of the previous section.

The first is the overall test #, for heterogeneity of angular ranks. We have

N2 1 N(N — 2)%(N2— 2N + 4)

(53) E@ = AN =1y Vari = n N — 1N — 3) ’
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TABLE V

TaBLE oF #; FOR TEN NorMAL FEMALEs AND TEN NorMAL MaALES
wrtHh REbuceEp DEvVIATE [# — E(t;)]/[Var t;/10]¥

N? N(N — 2)(N? — 2N + 4)
E@) = pr—py = 117556, Var & BE o - 4221
Female Karyographs Male Karyographs
Chromosome Pair A Reduced Deviate i Reduced Deviate
1 10.0 —0.854 10.3 —0.708
2 7.9 —1.876 9.3 —1.195
3 10.7 —0.514 10.5 —0.611
4 10.3 —0.708 13.0 +0.606
5 9.7 —1.000 11.3 —0.222
6 8.7 —1.487 12.8 +0.508
7 11.6 —0.076 8.1 —1.779
8 7.6 —2.022 12.5 +0.362
9 13.4 +0.800 12.7 +0.460
10 10.6 —0.562 10.3 —0.708
11 13.8 +0.995 9.9 —0.903
12 12.4 +0.314 8.3 —1.682
13 9.4 —1.146 9.7 —1.000
14 10.0 —0.854 6.5 —2.557
15 8.2 —1.730 9.9 —0.903
16 8.8 —1.438 9.3 —-1.195
17 8.3 —1.682 8.3 —1.682
18 9.5 ~1.098 13.1 +0.654
19 10.2 —0.757 13.1 +0.654
20 10.0 —0.854 10.7 —0.514
21 119 +0.070 11.0 —0.368
22 11.2 —0.270 11.5 —0.124
XX or XY 14.2 +1.190 8.2 —1.730
TABLE VI
TABLE oF {, w = min &, w’ = max §;
ForR TEN NorMAL FEMaLEs AND TEN NorMAL MALEs
Code No. Normal Females Code No. Normal Males
of Cell 7 w' w of Cell 7 w’ w
20 9.1739 20 1 14 . 12.0435 23 1
21 9.2609 20 1 18 12.0870 22 1
33 10.1304 21 1 52 10.4783 22 1
64 9.4348 23 1 72 11.0870 22 1
106 13.6957 23 5 99 11.0870 22 1
117 '11.3478 22 1 101 8.2174 22 1
122 8.3043 22 1 157 9.1739 21 1
164 11.6087 22 1 205 9.5217 22 2
210 11.4348 23 2 216 9.0870 23 1
124 9.2609 22 1 224 1.2609 23 2
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since, as may be seen from elementary combinatorial arguments

(5.4) Corr (t;, t;) = 2/(N — 2)(N — 3).

It seems safe, on general heuristic grounds, to use a normal approximation for
the distribution of f. (Indeed it is clear that {t;/n} behave very closely as a set

of independent uniform variables.) Enumeration of the probabilities for small
N confirm this; for example, N = 8 gives for the p.d.f. p(f) the values

l 1 13

[

2 3 3 4

N
[

105p@) 2 16 32 36 14 4+ 1

To test whether any particular pair are significantly close in angular measure
(or significantly far apart), the statistics w = min {{;} (or w' = max {{;}) sug-
gest themselves.

Looking first at w, the heuristic approximation given by the smallest of n
uniform variables suggests that its p.d.f. will be approximately p(w) = e=*(e — 1),
w= 1,2, --+, and this in turn suggests that it will not be possible to test for
small values of w at any of the usual levels of significance. The exact distribu-
tion for N = 8 is

w 1 2 3 4

105 p(w) 74 24 6 1

and confirms the suggestion of a large probability, about e~!, that w = 1 is its
minimum value.
The precise value for P{w = 1} follows from elementary combinatorial
argument; it is given by
n

(5.5) 1 —p(1) =,»>:0 "C(=1)2//(N — 1)®

which has integral representation

1 )
(N"_—lj—"/o x"“(x - 2)"@—‘" dx.

This tends to e~! as n — <, thus verifying the suggested form. Indeed, we have
the asymptotic formula

- _ 3 3 1
To assess significance in the lower tail of w, we study the statistic g, the number
of the {t;} which take the value of 1. We have

(5.6)

(58)  plo) = "Co T, IO DRIYN = D, g =01,

~ e /g, n large,
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so that we may compare g with the upper percentage point of a Poisson variable
with expectation unity.

Similar considerations apply to the distribution of w’ which has a chance of
attaining its maximum possible value of n which tends to 1 — ¢~/2 for large N.

This section presents the results of a preliminary study of statistics arising
from the joint distribution of the circular rank differences contingent on the
N!/27n! arrangements of n pairs on a circle. We hope to pursue this new com-
binatorial problem in a later paper. Tables V and VI give some numerical
results.

6. A contraction model for the alternative hypothesis

Before setting up the model it is useful to pursue the experimental and cytolog-
ical background to the karyograph preparation in more detail. The picture of
this given here is as it appears to the statistician: we merely describe, ten-
tatively, the biological framework for the statistical formulation of the alter-
native hypothesis based on our understanding of the situation as presented to
us by our medical geneticist colleagues. The picture is not intended to be
definitive, or complete, from the cytogenetic standpoints.

The preparation of the karyograph may be described as follows. A culture
of skin or blood cells is first treated with colchicine. This is thought to inhibit
spindle formation, with its consequent arraying of chromosomes in the met-
aphase plate (recently this step has been omitted by some cytologists without
apparently affecting the issue, though it had previously been deemed essential).
Second, the cells are “blown up,” osmotically, to about twice their previous
size. Third, the cells are killed by acid treatment. This acts by precipitating
their protein, converting the fluid protoplasm to a firm gel. Fourth, the jellied
culture is squashed flat, either by mechanical pressure or, more usually now-
adays, by desiccation. Fifth, the resulting single layer of flattened cells is stained
and the small proportion of cells found to have been in the metaphase state of
mitosis are microphotographed. The resulting photograph is the karyograph of
about 15 em diameter.

The nuclear membrane appears less sharp in prophase and is thought to
disappear by metaphase but the nucleus retains its ellipsoidal shape. The phys-
ical squashing or desiccation is much more distorting, particularly in that propor-
tion of cases where the cell wall is actually ruptured by the process, and in
many cases it may be the major cause of “projection.”’ It is surprising that any
residue of pattern could be thought to survive this process of preparation. How-
ever, there are certain cells showing the phenomenon of ‘“endoreduplication”
which have 92 chromosomes (two chemically identical chromosomes for every
one in the normal cell) and in the karyographs of these the pairs of “sister”
chromosomes lie side by side and indeed closely parallel. For example, the value
of T* on a typical such karyograph, treating it as a cell with 46 pairs of sisters,
and not assorting the homologues, was 0.0047. This is minute compared with
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a null hypothesis mean of 1 and a standard ecrror of 0.1. A karyograph with
endoreduplication is shown in figure 2.

Some further blurring of the picture is provided by misidentification of mem-
bers of the homologous pairs. This misidentification has been possibly over-
emphasized recently. The degree to which 1t persists clearly depends on the
quality of the karyograph preparation and the care with which the identifica-
tions are made. It seems probable that the karyographs with which we have
dealt have been particularly well favored in respect of these factors and that
this has colored our view of the risk of misidentification. Certainly, it is nec-
essary only to use statistics which are robust in the face of this possibility.
Equally, it may well be that more information is obtained from the greater
number of karyograph measurements obtainable for the same effect by use of
less careful mass production techniques.

Studies are at present in progress to check up on the validity of identification
procedures, and it is to be hoped that these will clarify matters considerably.

Two general lines of biological reasoning bear on the type of alternative
hypothesis envisaged. The first is the pattern of behavior in species other than
men. In the Diptera (for example, Drosophila spp), there is ‘‘somatic pairing”
and homologous chromosomes almost invariably behave like the sister chro-
mosomes in endoreduplicated cells. In the Urodeles the chromosomes lie at the
circumference of the metaphase plate. In the reptiles the large chromosomes
lie to the outside of the metaphase plate with the smaller ones in the middle.
This is said to be a general characteristic when there is considerable diversity
in chromosome size (see White [14]). All these effects tend to group the homol-
ogous pairs relatively nearer together (if anything). A contrary effect could be
associated with the phenomenon known as “affinity’”” which has been observed
in certain inbred strains of mice where in anaphase the paternal chromosomes
tend to separate toward one centrosome and the maternal to the other.

In men it is thought that the sex chromatin bodies may be associated with a
slightly out of phase behavior of the X chromosome (or chromosomes). Thus,
there are analogues which suggest models of general clustering of homologues,
of groupwise clustering, of clustering of particular chromosomes, and the op-
posite of clustering. This justifies the variety of tests proposed. The model we
discuss below is appropriate to general clustering and its opposite (that is,
dissociation of homologues).

The second set of ideas is specifically human and they are contingent on what
is believed about the human ovum. It is thought that her ovaries are laid down
in a woman whilst she herself is an embryo (fetus) and that these consist of
cells which have undergone the first meiotic division, but that the second is
suspended. When she is adult, it is thought that each month one cell undergoes
the second stage of meiosis and that of the two daughter gametes, one descends
to the uterus as the ovum and the other degenerates. An important class of
congenital defects (such as the Down’s, Turner’s, and Klinefelter’s syndromes
discussed earlier) are caused by the ovum having an irregular complement of
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FIGURE 2

Karyograph showing endoreduplication
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chromosomes, particularly an extra one or more. This may originate in an
irregular meiosis at either stage. There is evidence that a tendency to such
irregularity may run in families and it is conceivable that such tendencies could
be reflected in a tendency for homologous pairs to associate to some degree in
mitotic divisions of abnormal relatives of defectives or that a tendency to such
association would be found in the mitotic division of cells of defectives. This is
part of the background to the medical interest in human mitosis and helps to
determine the sort of effect it would be important to detect.

The model we propose here supposes a random arrangement of chromosomes
in metaphase followed by a “contraction” of homologous chromosomes toward
their centroid which reduces the distance of these from their centroid by a uniform
proportion p. For p < 1, this is a contraction but we also conceive that p may
exceed 1 giving a “negative contraction,” that is, an expansion or dissociation.
This is not to be thought of as a physical model, though it could be, but as an
empirical description of a graduatory nature. It provides a guide to the number
of karyographs it is necessary to examine in order to give a reasonable power
for testing for a given degree of contraction.

The model is a very simple one; it has the effect on T* of multiplying its
numerator by p? and multiplying its denominator by a lesser factor. In the case
where there are n = N /2 homologous pairs, this factor is, on average, (1 + p2)/2
and will differ only marginally from this in the abnormal cells of the types con-
sidered. Since the null hypothesis variance is very closely 1/50 (when N = 46),
we have under the alternative hypothesis

2p?

¥*)

6.1) E(T*) == T+
Similarly, we have to this degree of approximation

ot

1
50 [(1 + p%)/2]*

At this level of approximation we may assess the effect of testing significance
using the mean of m independent values of T*, by a normal approximation to
the distribution of such a mean. For example, if p = 0.95 and we test at the
five per cent level of significance, we should need to average about 110 values
of T* to get a 0.975 power. These figures are fairly typical of the kind of power
to be aimed at and the degree of contraction one might reasonably aim to
detect. The inference is that it is necessary to compute 7* for the order of one
hundred karyographs and average the results in order to have a reasonable
chance of detecting a relative contraction so small as 5 per cent.

A more precise expression of the effects of the model is to say that under the
alternative hypothesis

(6.2) Var T* =

U

N— )
=1 A —mU

(6.3) T* =
1 —
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where U is distributed as T* under the null hypothesis. We may thus employ
the technique of David [9] to get a more accurate approximation to the power
of a single value of T*. Thus we require, for some number a,

(6.4) P{T*<ad) = P{U < a/[p2 + a(l — %) (% = ’;)]}

For example N = 46, n = 23, and Var U = 1/50, (it may be remarked that the
reciprocals of the variances of U in the cases of the first ten normal females in
table I are 49.5, 49.3, 49.0, 48.8, 48.8, 48.5, 49.3, 49.0, 49.3, 48.8), then using
the 5 per cent lower level of significance of T* there is a 95 per cent chance of
detecting a contraction of p = 0.615.
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