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1. Introduction

The results obtained by the application of the conventional.techniques of the
theory of renewal processes and the theory of semi-Markov, or Markov renewal,
processes to the general fertility model, as described in [1] and [2], for example,
are interesting and quite possibly of some practical value. There remain, how-
ever, a number of important respects in which the problem does not yield to the
application of these techniques, at least in our present state of knowledge. For
example,most of theresultsthat exist thusfar for the most general modelof human
reproduction are asymptotic results (see references in [2]) with respect to time
and hence are relations which are at best only approximately true during any
short period of observation of the system. It would be of interest to know how
well the distribution of the numbers of renewals of a given event, such as a live
birth, that occur in a given time period for an individual woman is approximated
by the respective asymptotic distribution, given a particular set of parameters.
What does the exact family size distribution really look like after short periods of
marriage under a given model, and how long must the process be observed before
this distribution is reasonably well approximated by the asymptotic results ob-
tained from the results of renewal theory?
As a second area of consideration, there is tihe very important problem of the

generalization of the set of stochastic models by the relaxation of some of the
more restrictive assumptions in order to allow the mathematical system to con-
form more closely to the biological system which it is attempting to describe.
For example, it is clearly important to investigate the behavior of the particular
model of the reproductive process described in [2] when the fecundability of the
individual female is allowed to be a function of factors such as age, parity, and
so forth. There are a number of directions in which this and other models could
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be similarly modified, with most of the important modifications yielding systems
in which a reasonably complete mathematical analysis is at present impossible.
For both of these problems-the question of the goodness of fit of asymptotic
results and of modifications of the basic model which prove mathematically
intractable-it is natural to turn for further insight to an analysis involving the
use of data from a simulation of the system unider the coilditioins in question.

2. The model

The fertility model which will be investigated by simulation is the stochastic
version with the three different pregnancy outcomes described in [1] and [2].
The important components of the system are presented in table I. Briefly, a

TABLE I

STATES OF THE REPRODUCTIVE PROCESS

Probability the Next
Probability Density Function State Visited Will Be

State Description of State of Length of Stay in State So S1 B1 B2 B3

So nonpregnant, susceptible X(t) 0 1 0 0 0
S1 pregnant fj(t), given B;, i = 1, 2, 3, 0 0 01 02 03

visited next
B1 post live birth,

nonsusceptible g,(t) 1 0 0 0 0
B2 post still birth,

nonsusceptible 92(t) 1 0 0 0 0
B3 post early fetal death,

nonsusceptible 93(t) 1 0 0 0 0

married woman is assumed to be in one and only one state with respect to
reproduction at any time during her active reproductive period. The states in
which a woman can be found are designated So, SI, B1, B2, B3, respectively, and
represent the susceptible, nonpregnant state So, pregnancy Si, and the post-
partum infecundable state following a live birth B1, a still birth B2, and an early
fetal loss B3, in that order. The length of time spent in any state is for each
woman assumed to be a random variable, as is the outcome of each pregnancy,
with probability density function as designated in table I. The important
physical events of the system are, of course, the passage of a woman from So into
S1, that is, a conception, the passage from S1 to B1, that is, a live birth, and so
forth. It is the relationships between such events, that is, the birth rates, the
distribution of birth intervals, and so forth, in a population that we generally
seek to investigate and many results of a general nature currently exist for this
model (for example, [1], [3], [4]).
Although the choice of time unit for this model is quite arbitrary, the calendar

month will be taken to be the standard time unit here, primarily because of its
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biological significance but also for the added simplicity of dealiing only with
distributions of integral valued random variables in the simulation procedure.

3. The simulation procedure

Considerable literature exists on the use of Monte Carlo procedures on high
speed computers for the solution of specific problems (see, for example, [5]).
The direct simulation of a probabilistic problem is the simplest form of the
Monte Carlo method and has been used successfully in many areas of research,
including in conjunction with biological investigations [6], [7]. As a technique,
it has often been useful in supplying background material in understanding
qualitatively some of the properties of stochastic models and also in making
possible the study of particular problems and extensions of the models not ame-
nable to mathematics. It will be our aim to illustrate both of these uses in
connection with the present fertility model.
The actual simulation procedure for this model, written for the IBM-7094

computer, consists, of course, of putting an individual woman through the
process for a given number of months, randomly selecting at the proper point
and according to the specified distributions both the state to which the individual
will pass next and the length of stay in that state. This process is repeated for a
specified number of women, with the major programminig effort being directed
toward keeping track of the proper variables for an entire cohort of women. The
output for the simulated cohort of females is designed to provide the usual
information of demographic interest, together with some optional features. A
typical output includes, for example, the observed distribution of the length of
the intervals between live births by birth number; the distribution of number
of occurrences of live births, still births and fetal losses, annually and accumu-
lated by five year periods; the mean length of birth interval by birth number, for
each completed family size, and so forth. For this particular program there also
exists the option, which is seldom used, of obtaining a print out of the path
traced by each individual woman through the system. Although the computer
time involved in the simulation varies somewhat with the complexity of the
distributions specified and the present program is not claimed to be optimal in
any sense, the reproductive experience of a cohort of 1000 women can be simu-
lated for a period of 15 years under this model in approximately one minute of
7094 time for an average set of parameters.

4. Results

The results presented here are selected to illustrate as simply as possible the
use to which the simulation procedure is being put, to gain some insight into
certain facets of the process. The data are specifically directed toward answering
the following two questions.

(1) How good are the asymptotic results concerning birth rates, birth intervals
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and expected family size for a case where the assumptions of the Markov renewal
process hold?

(2) What is the effect of a simple form of age dependence on the birth rates,
birth intervals and expected family size in an otherwise homogeneous population?

In table II are specified the various component distributions for what will be

TABLE II

ASSUMPTIONS FOR THE "CONSTANT" CASE

(1) Monthly probability of conception: X(t), a geometric distribution, parameter p = .20,
that is, constant monthly probability .20 of conception.

(2) Probabilities associated with various pregnancy outcomes: 0, = .8, 02 = .02, 83 = .18.
(3) Distributions of length of stay in pregnancy and post pregnancy states:

No. of months (t) f,(t) f2(t) fM(t) g,(t) 92(t) g3(t)

1 - - .05 - - .25
2 - - .15 - .10 .50
3 - - .30 - .25 .25
4 - - .30 - .30 -
5 - - .10 .05 .25 -
6 - - .10 .10 .10 -
7 .05 .25 - .20 - -
8 .10 .25 - .30 - -
9 .60 .25 - .20 - -
10 .25 .25 - .10 - -
11 - - - .05 - -

Mean 9.05 8.50 3.55 8.00 4.0.) 2.00

Variance .55 1.25 1.65 2.10 1.30 0.50

(4) Length of follow up: 1000 women followed for 15 years (180 months) each.

designated the "constant" case, that is, a case for which the parameters are not
time dependent in other than the restricted sense of a Markov renewal process.
Whereas this particular selection of probabilities cannot necessarily be defended
as the best or the most natural, it is typical of the distributions observed for these
particular variables in many noncontracepting populations around the world.
An average post live birth infecundable period of eight months is not unusual,
for instance, in a society practicing breast feeding extensively [8]. Likewise, a
pregnancy wastage rate of 20 per cent is probably often close to fact [9], and
so forth.
Tables III, IV, and V give the results of a single computer run in which the

reproductive experience of 1000 women was simulated for 15 years under the
assumption that each woman was subject to the probability distributions given
in table II and that these probabilities remained constant over the period. Table
III gives the average length of the interval from the (n - 1)st to the nth live
birth. The average length of the interval for all except the first live birth would
be predicted to be
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1 Pl-p 3
(4.1) = + Oi(i + vi)p

where /ui and vi are the means of fi and gi, respectively.
For this set of parameters, ,ull = 23.61. Likewise, the average length of the

interval to the first live birth would be so, = All -v. Here uol = 23.61 - 8.00 =
15.61.
Each of these tables illustrates the kind of insight into the process that can

be provided by a simulation procedure. Table III shows, for example, that

TABLE III

AVERAGE INTERVALS FROM (n - 1)ST TO nTH LIVE BIRTH
"CONSTANT" CASE, 1000 FAMILIES, 15 YEARS

Number Completing Average Length of
n Interval Interval Observed

1 1000 15.55
2 1000 23.23
3 1000 23.78
4 1000 23.60
5 999 23.19
6 980 23.96
7 853 22.85
8 521 21.78
9 130 19.38
10 6 18.50

whereas both the predicted average interval length of 15.61 months from
marriage until the first live birth and the predicted average interval of 23.61
months between subsequent live births approximate the average observed (that
is, simulated) intervals well for the lower birth orders, there is a decided depar-
ture from the predicted interval length in the higher order births. It is significant
that this decrease in average time between births of successive parity number
comes about without any change in the birth parameters during the period of
observation. This decrease is, of course, directly related to the fact that the
population was observed cross sectionally after a given period of time (15 years),
in effect, truncating the process abruptly so that the longer birth intervals did
not have a chance to become completed. This effect would also be present in a
collection of completed families under the assumption that the monthly proba-
bility of conception p becomes zero for each female at the end of a given period.
The fact that the average interval between births does decrease sizably for
higher birth orders even with no change in birth parameters should serve as
somewhat of a caution regarding the inferences which can be drawn when changes
in these measurements are observed in the population.

Table IV is an examination of the agreement between the birth rates and
family size observed in the simulation process and the essentially asymptotic
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TABLE IV

BIRTH RATES
"CONSTANT" CASE, 1000 FAMILIES, 15 YEARS

Observed Observed Predicted Average Family Size
AnIIual Birth Average Family

Year No. Rate Size (end of year) Uncorrected Corrected

1 .408 .408 .508 .403
2 .488 .896 1.017 .912
3 .581 1.477 1.525 1.420
4 .445 1.922 2.033 1.928
5 .547 2.469 2.541 2.436
6 .467 2.936 3.049 2.944
7 .550 3.486 3.558 3.456
8 .469 3.955 4.066 3.961
9 .542 4.497 4.574 4.469
10 .508 5.005 5.082 4.977
11 .480 5.485 5.591 5.487
12 .512 5.997 6.099 5.994
13 .499 6.496 6.607 6.502
14 .514 7.010 7.116 7.011
15 .500 7.510 7.624 7.519

results derived from the application of renewal theory to the model. The asymp-
totic annual fertility rate, that is birth rate, predicted for the process is 12/M1j =
12/23.61 = 0.508, where ll1 is the expected waiting time between births. The
predicted average family size (uncorrected) is t/ull = 0.0424t, where t is in
months. The predicted average family size (corrected) is t/.1 + 1/21/2 1 -
/yoi/11 = 0.0424t - 0.105, where ,Ao, is the expected waiting time from marriage

to the first birth.
Whereas the annual birth rate shows a good deal of cyclic fluctuation in the

early years of the cohort it settles down reasonably well in 15 years to the
asymptotic annual birth rate predicted (that is, 0.508). The predicted average
family size agrees rather impressively with that observed, especially when the
predicted value is corrected for the fact that all 1000 women began in the non-
pregnant susceptible state So. Although this is a particularly simple case, it is
interesting that the average family size at the end of 15 years of simulation
(7.510 children per family) actually does not differ greatly from that observed
in noncontracepting populations, for example the Hutterites of central Canada
[10].
Table V is a summary of the average interval length between successive births

by completed family size generated in the simulatioii run. It shows what you
might expect, namely, that as completed family size increases the average
interval between births decreases, since the births must occur more closely to-
gether for the larger families in order to accomplish the eventual larger size. It is
enlightening to see the relatively large variation in completed family size and
length of the respective birth intervals, keeping in minid that each woman is
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TABLE V

AVERAG(E LIVE BIRTH INTERVAL BY COMPLETED FAMILY SIZE
"CONSTANT" CASE, 1000 FAMILIES, 15 YEARS

Number of Completed
Families Family Size 1 2 3 4 5 6 7 8 9 10

0 1 -
0 2 - -
0 3 - - -
1 4 14.0 37.0 26.0 45.0

19 5 19.8 34.3 34.8 35.2 30.4
127 6 20.1 28.2 29.3 27.5 26.7 28.7
332 7 17.0 24.2 24.5 24.1 24.2 25.4 24.7
391 8 13.9 21.5 22.2 22.4 21.9 22.5 22.3 22.4
124 9 11.8 19.4 19.6 20.2 20.3 20.1 19.8 20.1 19.4

6 10 10.7 18.2 18.0 19.5 18.2 18.7 16.8 18.2 18.3 18.5

1000

subjected to the same probabilistic phenomenon and that any differences ob-
served are due to random variation alone, and are not due to differing fecun-
dability or other parameters.
The next set of results illustrate the use of simulation procedures to investigate

TABLE VI

AVERAGE INTERVALS FROM (n - 1)ST TO nTH LIVE BIRTH
"AGE DEPENDENT" CASE, 1000 FAMILIES, 15 YEARS

Number Completiing Average Length of
n Interval Interval Observed

1 1000 15.60
2 1000 23.73
3 1000 23.73
4 1000 24.21
5 988 24.04
6 911 24.69
7 659 23.62
8 302 23.13
9 61 22.30

a simple time dependent extension of the basic model. This version, called the
age dependent case, employs the same assumptions as the constant case, except
that the monthly probability of conception is assumed to remain constant until
month 120 and then to decrease linearly to zero by month 180. This is a simple
example of a case where, because of the dependence of a parameter on time, the
asymptotic results from renewal theory are not valid and little is known of
methods to predict the behavior of the model.

Table VI illustrates the interesting and perhaps obvious finding that the
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TABLE VII

BIRTH RATES
"AGE DEPENDENT" CASE, 1000 FAMILIES, 15 YEARS

Observed Predicted Average
Observed Average Family Size Family Size (Corrected),

Year No. Annual Birth Rate End of Year "Constant" Case

1 .413 .413 .403
2 .457 .870 .912
3 .571 1.441 1.420
4 .426 1.867 1.928
5 .565 2.432 2.436
6 .449 2.881 2.944
7 .534 3.415 3.456
8 .461 3.876 3.961
9 .540 4.416 4.469
10 .496 4.912 4.977
11 .471 5.383 5.487
12 .477 5.860 5.994
13 .425 6.285 6.502
14 .352 6.637 7.011
15 .284 6.921 7.519

average length of the intervals between the middle order births increase as the
fecundability of the population decreases. In the absence of age dependence, the
expected (birth) interval length to the first and higher order births would be
15.61 and 23.61, respectively. It is seen, however, that the truncation effect
noted previously here more than offsets this declining fecundability, resulting in
a reduced interval between higher order births, again illustrating the difficulty
in making inferences about changes in birth parameters from observed data on
field populations.

TABLE VIII

AVERAGE BIRTH INTERVAL BY COMPLETED FAMILY SIZE
"AGE DEPENDENT" CASE, 1000 FAMILIES, 15 YEARS

Number Completed
of Family Order of Birth Interval

Families Size 1 2 3 4 5 6 7 8 9

0 1 -
0 2 - -
0 3 - _ _
12 4 38.3 31.1 21.0 39.8
77 5 19.5 28.7 30.1 29.5 34.9

252 6 18.5 25.2 25.6 25.9 25.7 30.4
357 7 14.2 24.0 23.5 24.1 23.2 23.6 25.4
241 8 13.0 21.1 21.2 21.2 21.3 21.8 21.9 23.9
61 9 12.3 18.3 20.1 20.1 19.1 19.1 19.9 20.0 22.3
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Table VII shows the effect of the age dependent decline in fecundability on
the birth rate (which would tend to 0.508 in the absence of age dependence).
The effect is that the birth rate declines in the last five years of observation
although perhaps not so rapidly as one might expect, with the result that the
average family size in 15 years is about 0.6 child less than in the previous case.
Table VIII shows the magnitude of the effect of the decline in fecundability on
the distribution family size and length of birth interval by completed family
size. Again the effect is felt throughout, but most strongly in the late births.

Obviously this latter case can be extended greatly to study a more complex
dependence of fecundability on age, the current program being designed to accept
any functional dependence which can be approximated by a large number of
connecting linear segments. Likewise, for example, a very general distribution
may be placed on the time of entry of a woman into the process (that is, age at
marriage) and on the time of exit from the process (that is, age at menopause).
Results of simulation runs under more general assumptions such as these are
currently being studied. As one would expect, of course, the complexity of inter-
pretation increases with the complexity of the model simulated, a fact perhaps
not always fully appreciated by the (uninitiated) beginner.

5. Conclusions

It would seem that the use of Monte Carlo techniques, as illustrated in the
previous section, to simulate human reproductive patterns for the purpose of
understanding the processes more completely both qualitatively and quantita-
tively and for the purpose of extending existing models beyond present mathe-
matical limitations can be a valuable adjunct to more classical techniques of
investigation of population dynamics. The implications for those involved in the
task of evaluation of public population policies are obvious and real. It may be
only through such simulation techniques, for example, that we can realistically
estimate the effect of a changing pattern of age at marriage on the birth rate
or the effect of shifts in differential fertility in certain segments of the population
on general population growth, or the importance of age and parity in the over
all effectiveness of various plans for population control. Already some attempts
have been made to estimate the level of effort necessary to achieve a given level
of population control in the face of varying public acceptance under a simple
model [11]. One would naturally want next to extend this, as is being done, to
more complex specific situations by examination of the output of a simulation
procedure.

In short, then, despite the fact that the problems of computer programming
and output interpretations are real and not to be ignored and in spite of the
additional fact that simulation data is by definition specific to a particular choice
of parameters, it appears that there is sufficient information anid iiisight to be
gained in the output of a simulation process to justify its use in the inivestigation
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of populationi dyniamics and in the accompanying problem of evaluation of
population policies.
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