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1. Introduction

1.1. In the following we shall consider some questions concerning the compar-
ison of two samples. The test around which our investigations will center is the
Kolmogorov-Smirnov two-sample test, restricted always to the case of equal
sample sizes.

In the first part we shall treat the power function for certain alternatives and
make some remarks on the efficiency of the test considered in the case of small
samples. In the second part some remarks will be given on distributions and
limiting distributions occurring in connection with the treated problems. The
investigations given here are closely connected with the author's work presented
at the Fourth Berkeley Symposium.

1.2. For diminishing the difference in efficiency between parametric and non-
parametric tests, the author has in his papers [9], [11] proposed the use of a
pair of statistics instead of one statistic. In consequence of the Neyman-Pearson
lemma, this results, for given alternatives, in a better test than the one based
on either single test statistic. We apply the maximum deviation of the two
empirical distribution functions as the first statistic, which ensures the asymp-
totic consistency of the test. Then we can add to this for several types of alter-
natives a suitable corresponding pair, for example, the first maximum index,
the number of intersections, the Galton statistic, and so on. In order to examine
the increase in the efficiency of the two-sample Smirnov test, we shall treat the
situation in the case of a special alternative, for which the computation is
relatively easy.

In our treatment we make use of the power functions of the original test and
of the two-statistic test as well. The power function can be constructed easily
in case of a (continuous) alternative containing piecewise linear parts. With
such alternatives we can approximate any given alternative. Following Z. W.
Birnbaum [1], these kinds of alternatives (for instance, the maximum and min-
imum alternatives) were treated by many authors in the one-sample case. As
we shall see in section 1, this power function can be easily obtained in the two-
sample case for all tests for which the distribution of the test statistic under
null hypothesis is known; the idea used is the extension of the method used by
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Z. W. Birnbaum in his mentioned paper. Nevertheless, this is simple enough
for further considerations only when the number of linear sections of the dis-
tribution function is small. Further, we need the power function for the more
complicated case of two-statistics tests, so we shall work in this first occasion
with a very simple alternative knowing that our aim is to discover what we can
expect at all from the use of pairs of statistics. We shall consider the power
for moderate or small sample sizes which occur very often in the applications.
Our formulae give the possibility of carrying out the program of D. Chapman [2]
which was done for the one-sample case.

2. The power of two-sample tests for piecewise linear alternatives

2.1. Notations. Let t and q be random variables with continuous distribution
functions F(x) and G(x) resp. for which the null hypothesis Ho: G(x) and F(x)
are equally and uniformly distributed in interval (0, 1). We shall treat piecewise
linear alternatives depending on vectors:

(2.1) Z (zo, Zi ..*Zr), (O= Zo < Zl < Z2 < ... < Zr,1)

(2.2) g = (91, , ...*
r

(gi 2 0, i = 1,2,2 * , r) with E gi(zi- ) = 1:

FF(x) as in Ho,
(2-3) H() 1 )(()) {gi if zi-. < x < zi, i = 1, 2, ,r,(2.3)H1. LG(x) = g(x) = 1fo otherwise.

In this case J| g(x) dx = f0' g(x) dx = 1.

Let further ti, t n* ,* and 7h, 7f2, * 7* be independent observations on t
and X resp. We denote the elements of the ordered samples by t* and 71, resp.,
and the union of the two samples in order of magnitude by
(2.4) <T*1 < Tn2< ... < T2n.
Let us define further the random variables for i = 1, 2, , 2n,

(2.5) gi = 1=if * =

for some j and t. With the usual notation s0 = 0, Si = 41 + 42 + * + gi,
(i = 1, 2, ... , 2n), 82n = 0. The points (i, si) in the plane give the path of a
random walk starting at the origin and returning after 2n steps to the point
(2n, 0).
In the present paper we shall consider the following statistics:

(2.6) D+ = max (F.(x) - Gn(x)) = - max si,D,n =(x) n m(i)

(2.7) D.,, max IFn(X) - Gn(X)l = - max isil,
(X) nl (i)



TESTS OF SMIRNOV TYPE 659

(2.8) Rnn = min{: Si = nDn+n}

(2.9) An,n = the number of intersection points in the above mentioned random
path, that is, the number of i's for which si = 0 and sis8i+1 = -1
occurs, adding the point (2n, 0).

As to the numerical determination of the values of these statistics we mention
the following. As it was pointed out in [3], nDn+n agrees with that index, for
which in the translation scheme

(2.10) 0, ,Sx(+2 ,(+X Xi
71* **X s *** n-* * *Xtr

it first occurs that each ,+j exceeds the corresponding n*. Translation in the
opposite direction leads to Dn,n and in this way to D,n,. Further nRn+n = K + 2s
where s = min {i: t*+ < tj*+ }, which can be seen easily.
Having the two ordered samples, let us define the random variables

(2.11) ,={+1 if V > 71)

Then An,,,n- 1 equals the number of changes of sign in the sequence El, E2,
... , e-n (see [12]).

2.2. The power function of the two-sample Smirnov test under the hypothesis
Ho against Hi"). As is known the a-size critical region for one-sided alternatives
F(x) = G(x)-this case will be treated in more detail later in this article-is
determined by the relation

2n

(2.12) P Dnn> IH)O (nTk) =

( n

with k = k(a, n).
Let us denote by the vectors v = (v,)2, *..., v.) and = (Ml, /.2, ...* * r)

the events that out of the n (i's exactly Vj and (independently) out of the n 7i'S
exactly Iii are contained in the intervals (zj-i, zj) j = 1, 2, * , r. The prob-
abilities of these events are clearly

P(vjHo) = P(YIH1) = n! II (zj -z
(2.13)

j=lvji
P (,A Ho) = n! II (z3-_j=l ,Aj.

(2.14) P(ujHITP) = n! II [(zI-
further, for i = 0,1,
(2.15) P(v, ,AjHj) = P(PIHj)P(,.&Hi).
Denoting now for j = 1, 2, . .. , r by ni and mj the partial sums vl + V2 +
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.** + VP and Al + A2 + * * * + ,j resp., (no = mo = 0), then the following holds.
THEOREM 2.1. For the a-size one-sided two-sample Smirnov test the power

function under HP") against Ho is given by

r

(2.16) Wn(HI(T a) = 1- (n!)2 E* * II
(vC) ) j= 1

Pj + Aj 0
X 1_ + k-nj_1 + m ) (zj - zj 1)vi+Pig'

x(1 (~+kP3Ai ______

where , and , denote r-summation for all possible v and , vectors with 0 < Vj,
A < n and _2=1 vj = , j = n with the further restriction nj - mj < k, j =
1,2, *-- ,r.

Before outlining the proof we make some remarks.
(a) The expression of the power function seems to be suitable for asymptotic

considerations or computational work in general for small values of r. For r
large and for small intervals (zi-1, zi) we are interested in the mutual order of
sample elements inside the intervals only for very peculiar alternatives. In these
cases the problem can be reduced into the consideration of the null hypothesis
(2.17) Ho: P(Q E (zi-1, zi)) = P(,q E (zi-1, zi)) for i = 1, 2, *.. , r.

This means that our problem is the comparison of two multinomial distributions,
which is treated recently by Hoeffding [6].

(b) If n remains finite and r tends to infinity, then we come essentially to
the evaluation of the probabilities of each different array of the sample elements,
arrays which belong to the critical region. This kind of expression was given
by Hoeffding [5] and considered by Lehmann [7].

(c) In the two-sided case the combinatorial quantity just after the product
sign is to be replaced by the expression corresponding to the two-barrier case

v, + 'j _ (v, + 2-yk) (v; + n1 - m,_l + (2 y + 1)k)]

where for the summation the restriction Inj- mIj < k, j = 1, 2, * , r is to be
made.
The proof is the consequence of some simple arguments which are used often

for similar purposes and which are the following.
LEMMA 2.1. Let t' be a continuous random variable in the interval (0, 1) whose

density function is constant in a subinterval (a, b). Then i' is uniformly distributed
in (a, b) under the condition {a < t' < b}.
A consequence of this is the following lemma.
LEMMA 2.2. Let t' and q,' be continuous random variables in the interval (0, 1),

the density functions of which are (not necessarily equal) constants in a subinterval
(a, b). Let t', 2, * , t and t1, 12, *. ,*, be independent observations on t' and
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t10 resp. falling in the interval (a, b). Under this condition, all possible arrays of

the mentioned v + A sample elements have the common probability (i + )l.

A consequence of this lemma is that in each interval the conditional prob-
ability that si < k given {,u, v}, can be calculated under Ho.

Turning now to the determination of the probability

(2.19) 1 - Wn(HIr), a) = P (D+,n < k IHir))

we calculate this conditionally given {,u, v} and multiply this by P(v, jAjHiT);
then we have to sum over all v and ,u. But under the mentioned condition the
random walk falls into parts with division points (ij = nj + mi, sii = n, -m),
(j = 1, 2, * - *, r) and according to the Markov property of the random walk,
the relation

(2.20) P (D+n <
k I , v, HP))

= II P(s < k, for n1_1 + mj_l < i < n, + mjl,u, v, H'P)
j=1

holds. Taking into account the elementary formula
(2.21) P(s8 < k, for n1_1 + mi-i < i < n, + miIpA, v, H)

( vj + ,j \

(1_ A + k -ni + mj_,iJ
( + A)

and the relations (2.13), (2.14), and (2.15), we come to theorem 2.1.
2.3. A special case. For our comparative considerations we shall treat the

following very simple alternative
(F(x) uniformly distributed in (1, 1),

(2.22) Hi {GI(x) =(x)={l if 0 < z <z,
if z<x<1.

For this kind of alternative the first index of the maximum will occur with
higher probability for smaller values than in the case of the null hypothesis.
This alternative being simple enough, I have chosen it for a first comparison
of tests based on 1 and on 2 statistics respectively.
Making use of the notation Pi = v, then P2 = n - v, and further, knowing

that P(Mu = 0, ,2 = nIHi2H) - 1, we obtain for the power function

(2.23) Wn(H(2), a) = 1 - E (n) z2(1 - z)", (1- (2n-+)
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This simple case shows that in determining the power, the normal approx-
imation of the binomial terms is not suitable, since v < k(a, n) - y'\a2n when
n -* m. A similar remark was made by J. Rosenblatt [8].

After some modification we may obtain the following form:

(2.24) Wn(Hi('), a) = 1 - Bl.,2(n - k + 1, k) + (1 aZ), B,.2(n + 1, k),

where B is the beta-function

fZ t-1(1 - t)q- dt
(2.25) B2(p, q) = 1fo tP-(1 - t)-1 dt

This is suitable for immediate computation of the power against this simple
kind of alternative. Now we give some numerical values for small samples using
(n, k) pairs for which a is near 10% and z = max(.) (F(x) - G(x)) = 0.1;
0.2; 0.3. The following table gives the errors of the second kind for these values
of z.

TABLE I

n k a z = 0.1 z = 0.2 z = 0.3

20 7 0.0873 0.8177 0.6163 0.3363
30 8 0.1197 0.7230 0.4039 0.1164
40 9 0.1331 0.6587 0.2640 0.0377
50 11 0.7190 0.7190 0.2700 0.0200

2.4. The power function of the test based on a pair of statistics. Let us consider
the two statistics Dn+n, and Rn+n for the decision between Ho and 1 , defined in
2.3. We shall introduce the random variable Sn+n = R,n-Dn+n. As nDn+,n and
nR+n are of the same parity, Sn+ is always even. Let us use the following nota-
tions:

(2.26) P (Dn+,n - n,n = Ho) = ks

and

(2.27) P (Dn+,n = nS,nH=z= = -

Denoting the best critical region of the a-size test (restricting ourselves to
the (k, s) plane) by 5CaX this is defined with the aid of a suitable constant ca,
and can be written in the form

(2.28) = {(s, k): Q, > c.}
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and

(2.29) pn =k .
(k,s)ESC

The power function is
(2.30) Wn(Hl2) a) = E Q (n.

(k,2)0 WHC
We need the probabilities pk and kQ(,)
As it was proved in [10] the following relations are valid:

12s) (2n -2s

(2.31) POs = 2(2s-l)(n-s + 1) 2n 1, 2,*** n,

k + 2s -k + 2n-2s\
)p(n) _ k(k+l) k s 1 n-s(2.32) k =-(k + 2s)(n - s + 1) (2n

\n/
s=0,1,2,*-- ,n-k.

We turn now to the determination of the probabilities Qk,). The number of {i's
in the interval (0, z) may be v = 0, 1, 2, * * *, k. As was mentioned, u,u = 0 with
probability 1. For k = 0, v must be 0 and P(i') = P(v = 0, n-v = n) =
(1 -z)n. In this case it can be seen immediately that

(2.33) QO)= P=(1 z), s=1, 2,***,n.

The case s = 0 (that is, Rn+n = Dn+n) can happen only when v = k. In this
case we have the second part of the path starting with probability 1 from the
point (k, Sk = k) and ending at (2n, 0). The probability that this path will never

reach the height si = k + 1 multiplied by P(v) = P(v = k) = (n) Zk(J - z)-k
gives the required probability

(2n - k + 1\
(2.34) Q(n) k + 1 n+1 (n) zk(1 _ n-k
(2.34 k,O 2n - k + 1 (2n~-kk)

k /2n-k\n-
n + I (2n) k ) ( k =1, 2, * ,n.

n

At the end, for s > O, k > 0, we can construct the power function as given
in 2.2 and evaluate the joint probabilities for the maximum and first maximum
index in the case of the several v's.
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The resulting formula is
) +1 (-k+2n-2s)

(2.35) Qk.s n-s+1 (2n) E0-l -

(k-v + 2s) (2n) z(1 -Z)
Using the above formulas for numerical calculation we can compare the

second kind of errors for the use of D+, alone and of the pair (D+ , Rn+,) respec-
tively. The results are tabulated in table II. (The computation was carried out
on a GIER electronic computer. I am indebted to A. B6k6ssy and G. Tusnady
for their kind help in accomplishing these calculations.)

TABLE II

Error of first kind Error of second kind in the case of using
D+n (Dn+,n, Rn+,n D+n (Dn+,wRn+,) Dn+ (D+,n ]n+,)

n if A = z = 0, 1 if A = z = 0, 2

10 0.0739 0.0839 0.8581 0.8071 0.7532 0.6198
0.2005 0.2038 0.6815 0.5849 0.5215 0.3683

30 0.0675 0.0675 0.8263 0.6149 0.5573 0.2568
0.0893 0.5636

0.1197 0.1197 0.7230 0.5036 0.4039 0.1703

50 0.0562 0.0562 -0.8017 0.5105 0.3812 0.1179
0.0893 0.0893 0.7190 0.4299 0.2700 0.0780
0.1362 0.1362 0.6133 0.3488 0.1733 0.0473

3. The maxim and the number of intersections

3.1. The nonconsistency of the number of intersections. In our paper with E.
Csaki [3] we considered the statistic An,n (see 2.1), that is, the number of inter-
sections. As a test statistic this has the following advantages. As we mentioned
in 1.1, its value can be determined very easily. The distribution of A.,n under
Ho is very simple too:

(3.1) P(A,In = tlHo) =
n (2n) t = 1, 2,** ,n.
(n)

In addition to these, the test based on A,,,, has the same properties for one-sided
and two-sided alternatives.
We conjectured that this statistic is consistent against all continuous alter-

natives. The grounds for this conjecture were the following: if max(.) (F(x) - G(x))
= /vA> 0, then with probability greater than zero the statistic nDn+, will take
values of order of magnitude n. Now the following theorem is valid.
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THEOREM 3.1 (E. CsAki and I. Vincze). Let 1 4, be independent ran-
dom variables with P(4i = 1) = P(4i = -1) = 1/2. Let So = 0, Si = 9, +
42 + *-- + g,, i = 1, 2, *** , and let us define Xn as the number of i's for which
Si = 0, Si,Si+, = -1, 1 < i < n. Then the following relation holds with
0 <c 1,

(3.2) lim P(Xn = tSSn, cn) = +c +c)'= 0,1,2,

Further if A(n) -X oo and 4'(n)/nl/2 < 1, then

2~~~~~~~~~~~e(3.3) lim P (7n<l{(n) YI|Sn -c4,(n)nl/2 )= 1e- 2 {y > O.

Now from this argument we would think that for n large enough the case
F(x) _ G(x) will lead to the greatest number of intersections (in probability),
and thus the critical region will be the small values of An,n.
But E. M. Sarhan (unpublished) has given an example that A.,. is not con-

sistent against the following alternative in (0, 1) for z > 0,

(3.4) F(x) =_ x, 0 < X < 1

x, if 0 < x < z,
(3.5) G __x_2_(1 +z, if z < x <

On the other hand, he showed that the test based on An,n, using for the decision
between Ho and Hj2) defined in 2.3, is more efficient than the one-sided
Kolmogorov-Smirnov test. This way An,n as a test statistic-by itself or in
addition to the Smirnov statistic-seems not to be without interest.

3.2. Joint distribution of the maximum deviation and the number of intersections.
In our paper [4] with E. CsAki the generating function of Dn,n and An,n is
determined under Ho, which is the following

(3.6) P( D)P <n' An,. = 4IHO) zn

= 2 (1kw)W) k,y = 1, 2,

where

(3.7) W = 1 +V[1+ 4E
We can obtain without any difficulty the probabilities by series-expansion;

these are the following:

(3.8) P (Dn.n <n An,n,. 4IH0) = (2n (-1) (i)(4
o

/

n

4~Jk2n + i(k -1) + j(k + 1) + t
X \n + i(k -1) +j(k + 1) + n
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This formula is not suitable for the determination of the limiting distribution
as n -> oo, because in the sum each term tends to infinity. The way of solving
the problem was the evaluation out of the integral form

(3.9) lim V 2 w w yd
(3 (2n) 2ri G1-w Zn+

where the integration path is a small circle around the origin. This was kindly
done by N. G. de Bruijn, which we give in the following theorem.
THEOREM 3.2 (N. G. de Bruijn). If x > 0, y > 0, then

(3.10) lim P(.fDn,n< Y, X < 1 An, < x +AxH

__ 2 1+ r eu + e- y

= GL exp -2xu uy + u du Ax +d(Ax)iV2r ~~~euy - e-uy x (
hold.
To the proofs of theorems 3.1 and 3.2 and a detailed treatment of the ques-

tions of the joint distribution law, we should like to return later.
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