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1. Introduction

The object of the present investigation is to propose and study a general class
of nonparametric tests for the various types of problems that may usually arise
in the case of two independent samples with bivariate observations. For this
purpose, the concept of permutation tests has been used in the formulation of
a class of tests based on appropriate generalized U-statistics, and the theory of
permutation distribution of such generalized U-statistics has been developed
further.
The advent of the theory of nonparametric methods in multivariate analyses

may be regarded to be still in a more or less rudimentary stage, and only a few
nonparametric contenders of some standard parametric multivariate procedures
are available in the literature. The up-to-date development of distribution-free
techniques in this field of research relates specifically to the problem of location
in the single, as well as multisample case, and the problem of independence in
the single sample case. In this study, I have confined myself to the multisample
case only.
The earliest work on this line is the permutation test based on Hotelling's

T2-statistic, proposed and studied by Wald and Wolfowitz [25], in as early as
1944. This test is, however, a strictly value-permutation test and is subject to
the usual limitations of this type of tests. Following this, there is a gap of nearly
twenty years, during which practically no nonparametric test has evolved in
this field. However, very recently, some attention has been paid to the develop-
ment of nonparametric methods in multivariate multisample analyses.
Some genuine distribution-free tests for location in the bivariate two-sample,

as well as p-variate c-sample (p, c > 2), case have been proposed and studied
by Chatterjee and Sen [2], [4]. On the other hand, some tests for the same
problem, which are only asymptotically distribution-free, have been considered
by Bhapkar [1]. Chatterjee and Sen [3] have also considered some exact
distribution-free tests for the two-sample bivariate association problem, and
some of these tests have been extended to the c-sample case by Sen [22].
However, all these tests are based on specific forms of test criteria and relate

specifically to the problem of location and association. No attempt has yet been
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made to develop a general method of constructing suitable nonparametric tests
for the different types of problems that may usually arise in the multivariate
multisample case.
The scope of the present investigation has been confined only to the bivariate

two-sample case, whereas the more complicated case with p-variates and
c-samples (p, c > 2) is intended to be considered separately. A class of per-
mutation tests based on appropriate generalized U-statistics has been studied
here, and these may be used to test the null hypothesis of permutation invariance
against various types of admissible alternatives. The present study not only
extends the scope of nonparametric tests to a more varied type of problems in
the bivariate two-sample case, but also extends the theory of asymptotic per-
mutation distribution to a more general class of statistics.
The literature on permutation tests relates mostly to the linear permutation

statistics of the type considered by Wald and Wolfowitz [25], Noether [19],
Hoeffding [11], [12], Dwass [5], [6], Motoo [17], Hajek [8], among others.
The class of generalized U-statistics, considered here, is more general than the

usual linear permutation statistics. Finally, in the univariate case, a class of
multisample permutation tests based on appropriate U-statistics, has been pro-
posed and studied by the present author [21], [22], and the present investigation
also extends these findings in the multivariate case.

2. Preliminary notions

Let X = (X(l), X(2)) be a vector-valued random variable, and let the first
sample be composed of ni independent and identically distributed bivariate
random variables (i.i.d.b.r.v.) Xi, ... , Xn, distributed according to the bivar-
iate distribution function (cdf) Fi(x), where x = (x(l), x(2)). Similarly, let
Y" ... , Y., be n2 i.i.d.b.r.v., constituting the second sample drawn indepen-
dently from another distribution with a bivariate cdf F2(x). Also, let Q be the
set of all pairs of nondegenerate bivariate cdf's, and it is assumed that

(2.1) (F1,F2) EU
It may be noted that Q is the set of all possible types of pairs of bivariate

cdf's, and it includes the family of pairs of continuous, or absolutely continuous
cdf's, as subsets. Afterwards, some mild restrictions will have to be imposed
on Q, and these will be stated as and when necessary. Let Wo be a subset of
points (Fl, F2) E Q, for which Fi(x) 1F2(x). Our problem is then to test the
null hypothesis

(2.2) Ho: (F1, F2) E Wo
against various types of admissible alternatives. Since, under the null hypothesis
(2.2), the joint distribution of the N = n1 + n2 observations of the combined
sample, remains invariant under any permutation of the coordinated variables,
the hypothesis (2.2) may also be termed the hypothesis of permutation in-
variance.
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Now, the altemative hypotheses often relate to differences of location, scale,
association pattern, or of some measurable characteristics of the two cdf's
(F,, F2). In this context, I therefore introduce the role of estimable parameters
or regular functionals (cf. Hoeffding [10], Lehmann [15]), which may be readily
employed in the specification of a variety of alternative hypotheses. Also, in the
bivariate case, we usually require a vector-valued regular functional to specify
completely the alternative hypotheses. Thus, let

(2.3) 0(F,, F2) = (01(F,, F2), * * * , 0,(Fl, F2)), P > 1;
be a vector-valued regular functional of the two cdf's (F,, F2), and (2.3) is
assumed to be estimable, so that 0(F,, F2) exists for all (F1, F2) E U.
Now to induce the nonparametric structure of the hypothesis (2.2), it is

further assumed that

(2.4) O(Fl, F2) = 90 = (0?, * * XO) for (F1, F2) E WO
where 90 is a vector with known elements.
Now let Wo be a subset of Q for which 9(F,, F2) = 00. Obviously then,

Wo C We. We are now interested in the set of alternatives

(2.5) Ho: (F1, F2) e Q-Wo CO-Q-WO
that is, 0(Fl, F2) $ 0'°. Since 0(F,, F2) is assumed to be estimable, there exists
a vector-valued kernel of it, which is denoted by

(2.6) O = (4i(X., *-- , X.Xi, Y4, ..-. , Yfm2), i = 1, - p),
where 4i is symmetric in its first mil arguments and also in its last ma, arguments,
though the roles of these two sets may not be symmetric, and where mil, mt, are
positive integers, for i = 1, * * *, p. The degree of + is then denoted by

(2.7) m - Mi(i -,. ,")
M12, , m2,2

It is further assumed that +,, * , qb are all linearly independent. Then, the
generalized U-statistic corresponding to . is given by

(2.8) UN = (UNI, * , UNp), N = nl + n2,

where

(2.9) UNi = (mi(Xa., , X &.w, Yfl1 *., ,,)

the summation Si being extended over all possible

(2.10) 1 < c < ... < am..,< n; 1 < 1 < *-- <I3 < n2,,
for i = 1, * *, p.

It is well known that under certain conditions on Q (cf. Fraser [7], p. 142),
UN has uniformly the minimum concentration ellipsoid (as well as minimum
risk with any convex loss function) among all unbiased estimators of 0(Fl, F2).
Even when these conditions on Ql do not hold, the U-statistic corresponding to
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any unbiased estimator of O(Fi, F2) has a concentration ellipsoid which cannot
be larger than that of the estimator itself. Thus, it seems reasonable to base
a test for Ho in (2.2) against the set of alternatives in (2.5) on the values of UN,
and the same has been accomplished here through a permutation approach.
We pool the two samples together into a combined sample of size N = ni + n2

and denote these N (paired) observations by

(2.11) ZN = (Z1, * *, ZN), Z, = (Z(), Z(2%) i = 1 N,
where conventionally we let
(2.12) Zi = Xi, i= 1, * , ni,

Zi= Yi-m, i = + 1, -- ,N.
In what follows, ZN will be called the collection vector, as it is a collection of

N random paired observations. Then, under the null hypothesis (2.2), ZN is
composed of N i.i.d.b.r.v., and hence, the joint distribution of ZN is symmetric
in its N arguments. Consequently, under (2.2) and given the collection matrix
(2.11), all possible permutations of the coordinates of ZN are equally likely,
each such permutation having the same conditional probability 1/N!.

Hence, all possible partitioning of the N variables into two subsets of n1 and
n2 respectively are equally likely (conditionally), each having the same permuta-

tion probability (N). Since this probability is independent of ZN as well as of

(F1, F2) E Wo, we may readily use this to formulate various tests based on UN.
Naturally, such a test is strictly distribution-free under the null hypothesis (2.2).
Now the formulation of the critical function I(UN) depends evidently on the

permutation distribution of UN. Consequently, we will study first some proper-
ties of the permutation distribution of UN and later, with the aid of these,
proceed further to consider I(UN) and its various properties.

3. Permutation distribution of UN

Let us define first

(3.1) ot¶(Z.i, ... ,=Z.+ E)- (m(i+ ... , a",+J)
where the summation St extends over all possible (mil + mi2)! permutation of
the variables
(3.2) Zm, ,Z.Mi,+M
in the ordered position of .i(. *), for i = 1, * * , p. Thus,
(3.3) (1,* I*P)
is the symmetric form of +.
Then extending the idea of Sen [21], we say that UN is a type A generalized

U-statistic, if 0* is nonstochastic for all Z,,, * * *,Z,MO+Mi2
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In this paper, we will be concerned with type A generalized U-statistics only.
It may also be noted that they include as a special case the differences of indi-
vidual sample U-statistics (cf. Sen [21]). Further, we will also assume that for
the given class of generalized U-statistics, the dispersion matrix of
(3.4) N1"2{UN - 6(F1, F2)}
(where UN and 0(F1, F2) are defined in (2.8) and (2.3) respectively), has asymp-
totically a positive definite limit (as N -X oo), for all (F1, F2) E WO (this limit
may, of course, depend on the particular (F1, F2) E WO).
Now the condition of nonstochasticness of O*, along with (2.4) and (3.1),

implies that
(3.5) *= 00 for all (F1, F2) e Q and all ZN.
Let us now write

(3.6) UNi(ZN) Mi + mi2f L Z(Za2,,Zm i2)
where the summation Ci extends over all possible
(3.7) <a < ... < am.+m. < N, for i = 1, * * p,
and let

(3.8) UN(ZN) = (UNI(ZN),- , UNP(ZN)).
Also, let (P(ZN) denote the permutation probability distribution generated by

the N! permutations of the coordinates of ZN. It is then readily seen that

(3.9) E{UNIP(ZN)} = UN(ZN),
and hence, from (3.5), (3.6), (3.8) and (3.9), we obtain
(3.10) E{UN16'ZN)} = 00, for all ZN and (F1, F2) E U.

For the time being, let us assume that
(3.11) E{+'.0IP(ZN)} < -
and later, we will establish certain conditions under which (3.11) holds. Then,
let the covariance of 4j and Oj (with respect to PY(ZN)), when c of the Xa's and
d of the Yp's are common between the two sets of Xa's and the two sets of Yp's,
be denoted by
(3.12) M1-°(ZN), 0 < c < in (mil, mjl), for i,j = 1, * * ,p.

0 < d < mln (mi2, Mj2),
It may be noted then that all these quantities are random variables, as they
depend on the random collection matrix ZN. Also, let

0 < c < min (mil, mjl),
0 < d < min (Mi2, Mj2),

be the unconditional covariance of 4, and 4j, when {X,}, {Yp} are i.i.d.b.r.v.
distributed according to the cdf F(X), and when c of the Xa's and d of the Yp's



644 FIFTH BERKELEY SYMPOSIUM: SEN

are common between the two sets of Xa's and two sets of Yp's, for i = 1, * , p.
Then, it follows by simple algebraic manipulations that
(3.14) oij(ZN) = cov {UNi, UNjl?(ZN)}

(n )-'( n2 )-1 (m"' il) (MO2
nid-~Mjl Mj2 c=o d-O0 c d

ni -M,l- ) 2(j-dM2 W(ZN),
for all i, j = 1, ,p, and
(3.15) Tij(F) = cov {UNi, UNjIF =F2 =F}

_ n, )-'( n2 )-1 En" E (Mil) (M.2)
\mjl )mj2) c od=O\ c\ d/

X MnllmC ) (Mn2-m )d (f

for all i, j = 1, , p.
Also let

(3.16) L(ZN) =((aij(ZN)))ij=1,--,p

*'(F) ((o-Jr(F)))jij=,..
Then, we have the following theorems.
THEOREM 3.1. For any real estimable O(F1, F2) and for type A generalized

U-statistics,

(3.17) '"O (ZAN) = 0 for all i,j = 1, *-* , p and all ZN.
The proof follows more or less on the same line as in Sen ([21], lemma 2.1),

and hence is omitted.
THEOREM 3.2. If (3.11) holds and (F1, F2) e Wo, then

(3.18) P O ' (ZN) -cd*(F)
a.s.

for all 0 < c < min (mi1, mj1), 0 < d < min (mi2, Mj2), i, j = 1, * , p (where
F1 F2 F). Further, if 0 has finite fourth-order moments and iffor the distribu-
tion F, the associated order statistic is complete, then L(ZN) has uniformly (for all
(F1, F2) E WO) the minimum concentration ellipsoid (as well as minimum risk
with any convex loss function) among all unbiased estimators of C(F).

PROOF. Let us write

(3.19) g,d'°(Za,,, * * Zam,j+mi2+mji+mj,2-c-d)
c!(mil- c)!(m;l - c)!d!(mi2 - d)!(m2 -d)!

(mi1 + mi2 + Mil + Mj2 - c -d)!

X E* 4>i(Za., * * Zam.i+mji)rkj(ZAgi ... I Zsmn+mp'),
where

(i) a, =Aufor t f 1 * *, c;
(ii) amil+t =- #mjj+e for t ..1,* d;
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(iii) and ai 5$ /j for any other (i, j),
(iv) and where the summation E* extends over every possible choice of a's and

('s from a,, - * * , ami,+m.7+mii+m,-c-d.
It is readily seen that

(3.20) (ZN) = (mi + mi2 + Ml mJ2 - c- d)
X E, gcld'I(Zaly ...**X Zamt+li,+mri+mj -C-d)
- UNi(ZN)UNj(ZN)-

Thus, ,t') (ZN) + UNi(ZN) UNj(ZN) is again a U-statistic of the N observations ZN,
and hence, using the property of almost sure convergence of U-statistics (cf.
Hoeffding [13]), it readily follows that if EJg-I) < X (which is implied by (3.11)),

(3.21) P cd(ZN) + UNi(ZN) UNj(ZN) -PC(F) + O?Oj.
Further, from (3.4), (3.9), and (3.10), we have UN(ZN) = 00, for all ZN, and

hence, from (3.21), we obtain

(3.22) ¢f1n(ZN) - _C"-n(F),
a.s.

for all 0 < c < min (mil, mjl); 0 < d < min (Mi2, Mj2), i,j = 1, ,p. Conse-
quently, from (3.14), (3.15), and (3.16), we find that

(3.23) NL(ZN) -- NE(F) for all (F1, F2) E WO.

Again if F1 =F2 F, and if for F, the associated order statistic is complete,
it follows from a well-known theorem on U-statistics in the vector case (cf. Fraser
[7], p. 142) that a vector-valued U-statistic has uniformly a minimum concen-
tration ellipsoid among all unbiased estimators (having finite second moments)
of the same parameter vector. Thus, from (3.20), we obtain after a few algebraic
manipulations that *J! (ZN)'s jointly have uniformly the minimum concentration
ellipsoid among all unbiased estimators of P<V(F)'s.

Hence, from (3.14) and (3.15), we directly get that if 4 has finite fourth
moments, E(ZN) has uniformly the minimum concentration ellipsoid among all
unbiased estimators of E(F). Hence the theorem.

Let us now consider the properties of E7(ZN) when (F1, F2) ( WO. In this case,
no small sample property can be properly studied, and we shall consider here
some asymptotic results. The term 'asymptotic' is used in the sense that N -X oo
subject to

(3.24) n1/N- X:0 < X < 1.

Also, let us define

(3.25) TN(X) = (n1/N)F1(x) + (n2/N)F2(x),
F(x) = XF1(x) + (1 - X)F2(x).

Finally, by virtue of our assumption regarding UN, we have for F1, F2 F,
(F1, F2) E WO,
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(3.26) rim NL7(F) = r(F)
N=X

where F(F) is positive definite and finite for all (F, F) e Wo.
THEOREM 3.3. If q has finite fourth-order moments for all (Fl, F2) E 2, and if

(3.24) holds,

(3.27) P(fn(ZN) A> ( (F),

for all 0 < c < min (mil, mj1); 0 < d < min (mI2, mj2), i, j = 1, ,p; where
F has been defined in (3.25). Further, if (3.26) holds for both UN and NE(ZN), and
the associate order statistic is complete, then NZ(ZN) is asymptotically the minimum
concentration ellipsoid estimator of F(F), for all (F1, F2) e Q.

PROOF. In an earlier paper [23], it has been shown by the present author
that a pooled sample U-statistic converges in probability to the associated
regular functional of the cdf F, (defined in (3.24)), when F1, F2 are not identical.
From this result, it readily follows that if 4 has finite fourth-order moments for
all (F1, F2) e Q and (3.24) holds, then

(3.28) n (ZN) A+ (F),

for all c, d, i, and j. Hence, the first part of the theorem.
In the same paper, it has also been shown that if the variance of a pooled

sample U-statistic multiplied by the pooled sample size has a nonzero finite
asymptotic limit (under F1 F2 F), then the pooled sample U-statistic will
asymptotically be the minimum variance unbiased estimate of the regular func-
tional of the cdf F, for all (F1, F2) E U.
The same result can be extended in a more or less straightforward manner to

vector-valued U-statistics, and the asymptotic minimum variance unbiasedness
can then be generalized to asymptotic minimum concentration ellipsoid un-
biasedness. In our case, NE(F), by virtue of (3.26), is asymptotically equal to
r(F), which is positive definite for all (F1, F2) e U. Hence, it follows from (3.14),
(3.15), (3.16), and (3.26) that for all (F1, F2) e Q,

(3.29) NE(ZN) -A r(F).
Finally, it follows from (3.14) and (3.16) that NL7(ZN) is a p X p matrix,

whose elements are linear functions of a set of pooled sample U-statistics. Since,
these U-statistics are also assumed to satisfy a condition similar to (3.26), we
readily get from (3.14), (3.15), and the discussion made above that NE(ZN) is
asymptotically the minimum concentration ellipsoid unbiased estimator of Fr(F),
for all (F,, F2) E U. Hence the theorem.
Thus the permutation covariance matrix L(ZN) possesses some convergence

properties in both the situations when (F1, F2) e 'WO and (F1, F2) ¢ WO.
THEOREM 3.4. If (F1, F2) e Wo and 0 has finite moments of the order 2 + 6

(6 > 0), or if (F1, F2) E Q-Wo and 4 has finite fourth-order moments, then subject
to (3.26),
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(3.30) £(NI2[N -0]) A N(0, r(F)),
where S stands for the convergence in distribution generated by the permutation
probability function 6'(ZN), N for the p-variate normal distribution, and 0 for a
null p-vector. Further, with respect to the same permutation probability measure

(3.31) 5 £([UN - OO](r(ZN))-l[UN - 00]') XP,
where X2 has the chi square distribution with p degrees of freedom.

PROOF. Let us define for each i(= 1, p),
(3.32) Oi(10)(Za) = E{rk(Za, Za,, -

* , Zamii+m,,,)jP(ZN)}
= (N -lPm.g+m,2- -1 * E d(Za, Za., * , Zam.i+m.),

Si.*

where the summation SZa extends over all possible a2 . *-- = 1,
*--,N($a),and

(3.33) 0ji(Ol)(Za) = E{4(Z., *, Zami+m.,, Za)16'(ZN)}
= (N- 1pmi+m_1)-1 E ¢(Za2y ...* ZamIl+m.,2 Za)-

Si.*

Also, let
nl

(3.34) VNi = (mil/nl) E {f0i(lo)(Xj) - ot}
j=1
n2

+ (mj2/n2) E2 {fi(ol)(Y,) - , i = 1, ** ,p
j=1

(3.35) VN = (VN1, * , VNP).
It then follows from the results of Nandi and Sen [18] and of Sen [21], with

direct extension to the vector case, that if 0 has finite second-order moments,
then with respect to the permutation probability measure P)(ZN),

(3.36) N12 {f[UN - 00] - VN} O.

We will now show that, under (3.26), N112VN has a permutation distribution
which is asymptotically a p-variate normal one. For this it is sufficient to show
that if 6 = ('h, * * *, 5,) is any real nonnull vector, then N"12(6VN) has asymp-
totically a normal permutation distribution. If we now write

p
(3.37) 9N(Za 16) = E 5i{mil[5bi(10)(Za) - 6?]

i=1

mi2[40i(01)(Za) - O?]}, a = 1, ...* N;
n2

then using (3.9), (3.10), (3.37), (3.38), and (3.39), we have, after some essentially
simple steps,

N
(3.38) 6VN = E CNa9N(Z.a16),

a=1
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where
(3-39) npCa = {0, if Zax belongs to the first sample,(3.91C.I = NO, otherwise; for a = 1, * * *, N.
Now, we apply WvVald-Wolfowitz-Noether-Hoeffding-Dwass-Motoo-Hajek the-

orem on the asymptotic permutation distribution of linear permutation statistics
to our particular case of 6VN, defined in (3.38). For this, it appears to be sufficient
to show that {CNa} satisfies the condition

N

(1/N) E (CN. - 1/N)r
(3.40) a=l r/ = 0(1) for r = 3, 4,**

{(IIN) E (CN.- 1/N)2}

and {g.(Z,f6)} satisfies in probability, the condition
N

E, 9N (Z. 16i)
(3.41) iim =, = 1 Z = 0, for some r > 2.

N=o tt IgN(zaj16)jy12}
Since n, of the CNa's are equal to 1/n, and the rest equal to 0, it is easily seen that
if (3.24) holds, (3.40) also holds. Further, if 0 has finite moments of order
2 + 56(> 0), it is then readily seen that gN(Zaj6) has also a finite moment of
order 2 + 6, uniformly in N. Proceeding, then, precisely on the same line as
in Sen ([21], (3.6), (3.7)), we get that

(3.42) 1 N(Z.16)l = Np(1),
for any given r > 2. Further, extending the results of Sen ([21], (2.23)) to the
vector case in a more or less straightforward manner, it can be shown by
following the lines of Nandi and Sen ([18], (3.10)) and using the results of
Sen [23], that under (3.24),

1N p~ P
(3.43) F1 [gN(Z. 16)]2 l i1 - E j{Mf{m11m61j10(F) + mi2mj2tih(F)},

a=1 ~~~~~i=1 j=1

provided either (F1, F2) E 'Wo and i has finite second-order moments or
(F1, F2) E Q- Wo and * has finite fourth-order moments. Since, by (3.26),
r(F) is positive definite, we get from (3.43) that the right-hand side of it is
essentially positive for any nonnull 6. Consequently, from (3.42) and (3.43) we
get that (3.41) holds, in probability. Hence, N1I2(6VN) has asymptotically, in
probability, a normal distribution with mean zero and a finite variance for all
nonnull 6. Thus, N"12VN has asymptotically, in probability, a p-variate normal
permutation distribution. The first part of the theorem then follows readily
from (3.36) and the preceding two theorems.
To prove the second part of the theorem, we note that by virtue of theorems

3.2 and 3.3, under the conditions stated in the theorem,
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(3.44) NL(ZN) A(T)
for all (F1, F2) E Q, and hence,
(3.45) [UN - 00] (L(ZN))ft[UN - 00],

P{N"12[UN - O]}(r(F))-1{N112[UN - O0]'} = SN (say).

Now by a well-known theorem (cf. Sverdrup [24]) on the limiting distribution
of a continuous function of random variables, and from the distribution theory
of quadratic forms of multinormal distributions, it follows from the first part
of the theorem that SN has asymptotically a chi square distribution with
p degrees of freedom. Consequently, we get from (3.45) that

(3.46) C([UN - 00o]((ZN))1[UN - o0]') A xP.

Hence, the theorem.
With these theorems, we will now proceed to consider our desired class of

permutation tests.

4. The permutation test procedure

In the preceding two sections, the rationality of using UN in the formulation
of the tests as well as some properties of the permutation distribution of UN have
been discussed. Now, we are in a position to construct a suitable test func-
tion I(UN) for testing the null hypothesis (2.2) against the set of alternatives
(2.5). Since I(UN) associates with each UN a probability of rejecting Ho in (2.2),
and as this probability is determined by the permutation distribution function
of UN (conditioned on ZN), it follows readily that I(UN) possesses the property
of S-structure of tests (cf. Lehmann and Stein [16]). Consequently, it is a strictly
distribution-free test.
Now UN assumes values on a p-dimensional lattice, and conditioned on a

given ZN, the number of points on this lattice is equal to Ni though UN can

assume only (N) values out of these, and at the remaining (N)P - (N) points,
the permutation probability is zero. The permutation center of gravity of these
mass points on the p-dimensional lattice is the point 80, and if (2.2) actually
holds, then the permutation distribution will have a dense cluster around 00.
Thus, we are to demarcate a set of points of this lattice, which will constitute

the critical region. In small samples, all possible (N) partitionings may be

considered, and this set of points may be isolated. However, this procedure be-
comes prohibitively laborious as the sample sizes increase. In large samples, we
are thus faced with the problem of using some suitable function of UN as the
test statistic and in approximating the permutation distribution of this statistics
by some simple form.
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Now using the usual concept of distance in the multivariate normal distribu-
tion, and noting that UN has asymptotically, in probability, a multi-normal
permutation distribution, it seems quite reasonable to propose the following
test statistic,

(4.1) TN = [UN - 00](L(ZN)) '[N - 00],
and to reject (2.2) for large values of TN. Thus, we consider the following test
function:

I(UN) = 1, if TN> TN,.(ZN),
(4.2) I(UN) = aE(ZN), if TN = TN,. (ZN),

I(UN) = 0, if TN < TN,E(ZN),
where TN,.(ZN) and a,(ZN) are so chosen that

(4.3) E{I(UN)16(ZN)} = E, 0 < E 1;
e being the given level of significance. It then readily follows that
(4.4) E{I(UN)|(F1, F2) E Wo} = E,

so that the test (4.2) has exactly the size e. In small samples, the values of TN. (ZN)
and a,(ZN) can be found out using the permutation distribution of UN, whereas
in large samples, we have by virtue of theorem 3.4 that as N increases, subject
to (3.24),

(4.5) a.(ZN) o0 and TN,E(ZN) P,- E

where X2,e iS the 100(1- e)% point of a x2 distribution with p degrees of freedom.
Hence, asymptotically, the test (4.2) reduces to

I(UN) = 1, if TN 2 XP,EX
I(UN) = 0, if TN < XP,e-

Equation (4.6) will be termed the asymptotic permutation test and (4.2), the
exact permutation test.
THEOREM 4.1. If @ has finite fourth-order moments for all (F1, F2) e Q and

if (3.26) holds, then the permutation test I(UN) in (4.2) or (4.6) is consistent against
the set of alternatives H:(Fi, F2) E -We.

PROOF. It follows from the well-known properties of generalized U-statistics
that for (F1, F2) E Q- EWo,

(4.7) UN - 00 0I(Fi, F2)- 00 = k(F1, F2),
where t(F1, F2) is nonnull for all (F1, F2) e - 'We. Also, it follows from our
theorem 3.3 that under the stated conditions

(4.8) NL'(ZN) --E r(F),
where r(F) is positive definite. Consequently, from (4.1), (4.7), and (4.8), we
obtain for (F1, F2) E -we,
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(4.9) TN/N A t(F1, F2)(r(F))-' '(F1, F2) > O,
and thus,
(4.10) lim P{TN > x2,ej(Fl, F2) e o-W)} = 1.

Hence the theorem.
Let now N2(F) be defined as in (3.16), and let N.(F) be any consistent

estimate of NE(F). Then, we consider a statistic TN of the form

(4.11) TN = [UN - 00](E(F))-1[UN - 00]'.
It may be noted that TN can be easily shown to have asymptotically, under Ho
in (2.2), a x2 distribution with p degrees of freedom. Consequently, an asymp-
totically distribution-free test for Ho in (2.2) may be based on TN, using the
following test function:

if TN > XP,,, reject Ho in (2.2),
if TN < x2(, accept HO in (2.2).

This type of test has been proposed by Bhapkar [1] for the location problem
only. We will term this test an asymptotic unconditional test. It then follows
from our results in the preceding two sections that under HO in (2.2),

(4.13) TN ' TN.
In the next section we will consider some further relations between TN and

TN, and here we only note that the consistency of TN-test follows similarly
as in theorem 4.1.

5. Asymptotic power properties of the tests

For studying the asymptotic power properties of the test (4.2), (4.6), and
(4.12), we require to study the asymptotic nonnull distribution of TN and TN,
defined in (4.1) and (4.11) respectively. First, these have to be considered for
some sequence of alternative specifications for which the power will lie in the
open interval (0, 1), and second, we are to consider the unconditional distribu-
tions of TN and TN, as the same will be required to study the power.

Thus, we assume that the two cdf's Fi(x) and F2(x) are replaced by two
sequences {F1N(x)} and {F2N(x)} of cdf's, each converging to a common cdf F(x)
as N -* o, in such a manner that

(5.1) HN: 0(FuN, F2N) = 00 + N-1"2X,
where X is a p-vector with finite elements, and it is assumed to be nonnull. Then
we have the following results.
THEOREM 5.1. Under the sequence of alternatives {HN},

(5.2) £(TN) A
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where X2, has the noncentral X2 distribution with p degrees of freedom and the
noncentrality parameter

(5.3) A = x(r(fl)-W,
provided (3.24) and (3.26) hold, and 4 has finite fourth-order moments for all
(F1, F2) e U.
PROOF. It is well known (cf. Fraser [7]) that whatever be (F1, F2) e Q2,

under the stated regularity conditions N112{UN - e(F1N, F2NV)} has asymptot-
ically a multinormal distribution with a nonsingular dispersion matrix, as (3.26)
holds. Using now the results of Sen [23], it can be readily seen that under {HN},
the dispersion matrix of N112{UN - O(FIN, F2N)} converges to r(F), defined in
(3.26). Consequently, it follows that

(5.4) [N"/2{UN - oo} (r(F)) 'N"12{UN - Oo} ] = SN (say),
has asymptotically a noncentral x2 distribution with p degrees of freedom and
the noncentrality parameter A, defined in (5.3). It also follows from theorem 3.3
and condition (5.1) that under {HN},

(5.5) INL'(ZN) - r(PN)I4 0; FN =
N

FIN + NF2N ;

and from (5.1) we obtain, using the results of Sen [23], that under {HN}
and (3.24)
(5.6) r(FN) -- r(F) as N -.oo.
Consequently, we get from (4.1), (5.4), (5.5), and (5.6) that

(5.7) TN -SN, £(TN) > N(S) - P.A.

Hence the theorem.
THEOREM 5.2. Under {HN}, TN ,-' TN.
PROOF. Since NL(F) estimates NE7(F), and as under {HN} the dispersion

matrix of N"12{UN - o(F,1, F2N)} converges to r(F), which is also the limiting
form of NL(F), it follows from (5.4) and a well-known convergence theorem
that TN is asymptotically equivalent to S*, for the sequence of alternatives {HN}.

Hence, from (5.7), we obtain under {HN},

(5.8) TN I TN SN.
Hence the theorem.

Thus, it follows from a well-known result by Hoeffding ([12], p. 172) that
the permutation test based on TN and the asymptotically distribution-free test
based on TN are asymptotically power equivalent for the sequence of alterna-
tives {HN}.
The asymptotic power efficiency of the test based on TN with respect to any

other rival test can only be properly studied and made independent of X in
{HN}, if the other test criterion has also (under {HN}) a noncentral x2 distribu-
tion with the same degrees of freedom and the two noncentrality parameters
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are proportional for all X. Usually, these two tests may have noncentral x2 distri-
butions with the same degrees of freedom, but their noncentrality parameters
are not generally proportional (for all X). Thus, in general, the power efficiency
depends on X, and in such a case, either one has to show that for all X, one of
the two noncentrality parameters is at least as large as the other, or, one has
to compute the supremum and infimum of the ratio of the two noncentrality
parameters (with respect to X) and study the bounds for the asymptotic effi-
ciency. The usual concept of Pitman efficiency is, generally, not adaptable in
the multivariate case.

6. Illustrations and applications

Now, we will consider the two-sample bivariate location, scale, and association
problem and study suitable nonparametric tests based on our results in the
preceding sections. Let us first consider the location problem.

Here, let Q be the set of all pairs of bivariate distributions, which are non-
degenerate in the sense that the grade correlation of either of the cdf's is bounded
away from -1. These two cdf's may be continuous or they may also be purely
discrete distributions. Let us then define (with the same notations as in earlier
sections)
(6.1) Oi(F,, F2) = P{X") < Y(")} + IP{X(") = Y%i)}, i = 1, 2;

O(F1, F2) = (01(F1, F2), 02(Fl, F2)).
Then for (F1, F2) E Wo, O(F1, F2) = (2, 1), whereas if for at least one of the
two variates, the first sample observations are stochastically larger or smaller
than the second sample observations, e(F1, F2) $ (Q, 2)- Moreover, if we let

(6.2) F2(x) = F1(x + 6), where 6 = (51, 52),
then for nonnull 6, it is easily shown that O(FI, F2) $ (2, 2).

Thus, for the location problem, we may use a permutation test based on the
individual variate Wilcoxon-Mann-Whitney statistics, being compounded to-
gether as in (4.1). This follows more or less on the same line as in Chatterjee
and Sen [2], with further generalizations to cover the case of discrete bivariate
distributions too. Thus, we let

UN = (UN1, UN2),
(6.3) 1 m n2

nlin2 a=1 i=2

where

4O(a, b) = 1 if a < b,
(6.4) O(a, b) = if a = b,

O(a, b) = O if a > b.
Also among the N values of Z,2, Nij are equal to
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(6.5) ZaiXj = 1 ,... , kiA, i = 1, 2,
where Ni1 > 0. It is then easily shown that

(6.6) V{UNiIlP(ZN)} = nn2( - 1) {A [ (NiN) ]} i = 1, 2;

and the permutation covariance of UN1, UN2 is the rank correlation between
{Za), Za)2;a = 1, * N}, when both the sets of observations contain ties, and
the expression for the same is available in Kendall ([14], p. 38). Once these are
obtained, we can define TN as in (4.1) and proceed similarly as in Chatterjee
and Sen [2]. This test thus generalizes Putter's [20] Wilcoxon test to the bivar-
iate case, and also Chatterjee and Sen's [2] test to the more general case of any
pair of nondegenerate bivariate cdf's.

Let us next consider the scale problem. Extending the idea of Lehmann [15]
to the bivariate case, let us define

Oi(F1, F2) = P{IX(P - X()J < IY(Y, _ YS1I}
(6.7) + 4P{IXaP - X -I= Y-(t) ya}, i = 1, 2;

O(F1, F2) = (Oti(Fl, F2), 02(F1, F2)).
Here also, for (F1, F2) E Wo, O(Fl, F2) = (4, 4), while for any heterogeneity of
scales, O(F1, F2) -£ (2, 2). Thus, if we define

,O(a, b; c, d) = 1, if la-bl < Ic-dl,
(6.8) O(a, b; c, d) = 2' if la- bl = c- dl,

4(a, b; c, d) = 0, if la-bl > Ic-di,
and write
(6.9) UNi = (2 2 L (X(P, Xt1; y(, y(i)) i-1, 2;

UN = (UN1, UN2);
an appropriate permutation test may be based on UN. Let us also define

(6.10) gN(Z.) = (N- 1)(N2)(N - 3)E (Zq) ZP,B), Z",), Z(t)),

where the summation Sa extends over all possible choices of distinct ,B, y, a
which are not equal to ca, and where a = 1, * ,N, i = 1, 2. Finally, let

l N
(6.11) aNi; = 1 E 9N(Z )9N(Z ) , i, j = 1, 2.

It is then easily shown (cf. Sen [21] for the univariate case) that neglecting
terms of the order N2,

(6.12) cov (UNiUNJl6'(ZN)) = -aNj + O(N-2), for i, j = 1, 2.

Thus, neglecting terms of the order N2, we may construct TN as in (4.1)
and proceed as in section 4. This test is thus an extension of Lehmann's [15] test
to the bivariate as well as discrete type of cdf's case.
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Finally, let us consider the association problem. Extending the notion of
Hoeffding [9] to cover also the case of bivariate discrete distributions, let us
define

(6.13) 0(F1, F2) = 0(F1) - 0(F2),
where

(6.14) 0(F1) = P{sign (X,(1)- X,'9) sign (X,(2) -X,2)) > 0}
(6.14) + 1P{(X(')_- X-1))(X(2) _ X,B ) =°,

and 0(F2) is defined precisely on the same line with Ya and Yp. It may be noted
that 0(F) may be treated as the probability of concordance in the general case,
and it is related with another well-known measure of correlation, namely rank
correlation r (cf. Kendall [14]) by means of the simple relation

(6.15) r(F) = 20(F) - 1.

Thus for (F1, F2) e Wo, 0(F1, F2) = 0, and it also implies that r(Fi) = T(F2).
Now, if we define for two vectors a and b

k(a, b) = 1 if (a(l) - b())(a(2) -b(2)) > 0,
(6.16) 4(a, b) = a if (a"() - b())(a(2) -b(2)) = 0,

4(a, b) = 0 if (a(l) - b())(a(2) -b(2)) < 0,
and

(6.17) UN = (n)-l E ¢(Xa, Xa) - (n2)-1 _ '(Y., YI),

then the permutation test is based on UN.
This test has been considered by Chatterjee and Sen [3] in the case of con-

tinuous cdf's, while Sen [22] has also extended the test to the c-sample as well
as discrete case. Hence, this is not considered in detail.

In this paper, we have not considered the asymptotic power efficiency aspect
of the tests, discussed above. It may be noted that for bivariate continuous cdf's,
Chatterjee and Sen [2] have considered the asymptotic power efficiency of their
location test with respect to Hotelling's T2-test. The asymptotic power efficiency
of the association test is also under investigation. The details of this aspect of
the tests is being kept pending for a further investigation.

REFERENCES

[1] V. P. BHAPKAR, "Some non-parametric tests for the multivariate several sample location
problem," Inst. Statist. Univ. North Carolina, Mimeo. Ser. No. 415 (1965).

[2] S. K. CHATTERJEE and P. K. SEN, "Non-parametric tests for the bivariate two sample
location problem," Calcutta Statist. Assoc. Bull., Vol. 13 (1964), pp. 18-58.

[3] - , "Some non-parametric tests for the two sample bivariate association problem,"
Calcutta Statist. Assoc. Bull., Vol. 14 (1965), pp. 14-35.

[4] - , "Non-parametric tests for the multisample multivariate location problem," Ann.
Math. Statist., submitted.



656 FIFTH BERKELEY SYMPOSIUM: SEN

[5] M. DWASS, "On the asymptotic theory of certain rank-order statistics," Ann. Math.
Statist., Vol. 24 (1953), PP. 303-306.

[6] , "On the asymptotic normality of some statistics used in non-parametric tests,"
Ann. Math. Statist., Vol. 26 (1955), pp. 334-339.

[7] D. A. S. FRASER, Nonparametric Methods in Statistics, New York, Wiley, 1957.
[8] J. HiJEK, "Some extensions of the Wald-Wolfowitz-Noether theorem," Ann. Math.

Statist., Vol. 32 (1961), pp. 506-523.
[9] W. HOEFFDING, "On the distribution of the rank correlation when the variates are not

independent," Biometrika, Vol. 34 (1947), pp. 183-196.
[10] , "A class of statistics with asymptotically normal distributions," Ann. Math.

Statist., Vol. 19 (1948), pp. 293-325.
[11] , "A combinatorial central limit theorem," Ann. Math. Statist., Vol. 22 (1951),

pp. 558-566.
[12] ,"The large sample power of tests based on permutation of observations," Ann.

Math. Statist., Vol. 23 (1952), pp. 169-192.
[13] , "The strong law of large numbers for U-statistics," Inst. Statist. Univ. North

Carolina, Mimeo. Ser. No. 302 (1962).
[14] M. G. Kendall, Rank Correlation Methods, New York, Hafner, 1955.
[15] E. L. LEHMANN, "Consistency and unbiasedness of certain non-parametric tests," Ann.

Math. Statist., Vol. 22 (1957), pp. 165-179.
[16] E. L. LEHMANN and C. STEIN, "On the theory of some non-parametric hypotheses," Ann.

Math. Statist., Vol. 20 (1949), pp. 28-45.
[17] M. MOTOO, "On Hoeffding's combinatorial central limit theorem," Ann. Inst. Statist.

Math., Vol. 8 (1957), pp. 145-154.
[18] H. NANDI and P. K. SEN, "On the properties of U-statistics when the observations are not

independent. Part two: Unbiased estimation of the parameters of a finite population,"
Calcutta Statist. Assoc. Bull., Vol. 12 (1963), pp. 124-148.

[19] G. E. Noether, "On a theorem by Wald and Wolfowitz," Ann. Math. Statist., Vol. 20
(1949), pp. 455-458.

[20] J. PUTErR, "The treatment of ties in some non-parametric tests," Ann. Math. Statist.,
Vol. 26 (1955), pp. 368-386.

[21] P. K. SEN, "On some permutation tests based on U-statistics," Calcutta Statist. Assoc.
Bull., Vol. 14 (1965), pp. 106-126.

[22] , "On some multisample permutation tests based on a class of U-statistics,"
J. Amer. Statist. Assoc., submitted.

[23] "U-statistics and combination of independent estimates of regular functionals,"
Ann. Math. Statist., submitted.

[24] E. SVERDRUP, "The limit distribution of a continuous function of random variables,"
Skand. Aktuarietidskr., Vol. 35 (1952), pp. 1-10.

[25] A. WALD and J. WOLFOWITZ, "Statistical tests based on permutation of observations,"
Ann. Math. Statist., Vol. 15 (1944), pp. 368-372.


