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1. Introduction

In the papers [8]-[11], [14] the author studied stochastic processes and
channels, stationary, or nonstationary, with discrete time and arbitrary sets of
states. In these papers, for regular processes and channels, two basic theorems of
Shannon type [15] are proved for the case in which the states of the process and
the channel input states are discrete and the output states arbitrary.
In this study, the essential role of the differential entropy of probability fields,

processes, and channels appears. Obviously, if the sets of states are discrete,
instead of the differential entropy, the correspondent entropy appears. Here we
study the problem of approximation of processes with continuous sets of states
by discrete processes and also of channels with continuous input-sets by channels
with discrete input-sets.

In this study an essential role is played by the concept of t-entropy of a set,
of a probability field, of a channel, and of a complex source-channel. We may
observe also the role played by differential entropy in the approximation prob-
lem. The constructions used here in the approximation problems are such that
the essential properties of the given object are preserved.

2. The differential entropy of probability fields

Let us consider the measure space (X, S, ,u) where X is a set of elements x and
S a v-algebra of subsets of X and ,u a measure in S. Over X let us consider a
probability field A, defined by the probability density p(x) with respect to ,u.
By M we denote the expectation.
DEFINITION 2.1. The value h(A) = -M log p(x) is the differential entropy of

A with respect to ,u.
Obviously, h(A) exists only if M Ilog p(x)l < +o, and from Ih(A)l <
M Ilog p(x) it follows that in this case it is finite.

Let (X, S, ,.), (Y, 1, v) be measure spaces, 7r(X, y) the probability density of
some field C over their product, A the field defined by the probability delasity
p(x) induced by 7r(x, y) in X, and qz(y) = 7r(x, y)/p(x) the conditional proba-
bility density of some probability field B. over Y. We denote C = AB (the
union).
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DEFINITION 2.2. The conditional differential entropy of B with respect to A,
for a given measure v is hA(B) = h(BIA) = Mh(B,).
THEOREM 2.1. If from h(A), hA(B), h(AB), two exist, then the third of them

exists also and h(AB) = h(A) + hA(B).
The proof is analogous with that of the corresponding theorem of the entropy

case, using Fubini's theorem.
Different properties of the differential entropy of a field may be found in [8]-

[11], [14]. In another publication by the same author will be given an axiomatic
approach to the differential entropy of probability fields.

3. The approximation of probability fields

3.1. The E-entropy of a set. Let us consider the measure space (X, S, ,A),
separable with respect to the distance p(x, y), x e X, Z E S.
DEFINITION 3.1.1. The sequence 0 of measurable sets Zi e S, (1 < i < n) is a

cover of X if (a) these sets are nonoverlapping, and (b) X is their sum.
DEFINITION 3.1.2. The sequence 0,e of measurable sets Zi e S, (1 < i < n) is an

e-cover ofX if it is a cover of X, and if d(Z') < 2e, (1 < i < n), (d = the diameter).
DEFINITION 3.1.3. The space X is centering if in it, for every set Z C X with

d(Z) = 2r, there exists an element x, the center of Z, for which p(x, y) < r for any
y e Z. (See [6], p. 8.)
We may proceed as if every separable metric space were centering. Indeed,

in [6] by means of the known theorem of Mazur-Banach ([1], chapter XI,
section 8, theorem 10) and of theorem VI from ([6], section 1), it is proved that
every separable metric space X may be imbedded in a centering space X. [16]. For
totally bounded spaces let us denote by N,(X) the minimal number of elements
in any E-cover 0,.

DEFINITION 3.1.4. The number Ke(X) = log N,(X) is the (minimal) e-entropy
of the set X. (See [6], [16].)
DEFINITION 3.1.5. The number Ke(X) = log [N,(X)/M(X)] = Ke(X) -

log ,u(X) is the normed (minimal) e-entropy of the set X.
3.2. The discrete e-entropy of a probability field.
We shall use the following symbols:

(i) D(X) will denote the totality of probability fields over (X, S); A and A'
will be elements of D(X);

(ii) if x and x' are elements of X, the probability density of A with respect to ,u
will be denoted by p(x), and the corresponding conditional probability will be
written as p(xlx');

(iii) D°(X) will denote the totality of discrete fields with states xi c X, and
I(A, A') = h(A) - h(AIA').

DEFINITION 3.2.1. If Zz, is the sphere in X with center xi and radius e, let
W,(AA') denote the property that for every state xi of the discrete field A' E DO(X)
the condition
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(3.2.1) PAA'{ZjIjXi} = 1
is satisfied.

If the property W,(AA') is satisfied, the conditional field Ax, possesses a set
of states Zi C Z2i; obviously, we may consider Zi E OfX where Of is any e-cover
of X.

DEFINITION 3.2.2. The quantity HE(A) = inf I(A, A'), where the lower bound
is considered for all pairs AA' for which the property W, (AA') is satisfied for the
given A, is the discrete e-entropy of the field A.
THEOREM 3.2.1. The discrete E-entropy H.(A) is equal to H(A) + KE(X).
PROOF. (a) From the definition of H,(A) it follows that Hf(A) = h(A) -

sup h(AIA') where the upper bound is taken over all pairs AA' for which the
property W,(AA') is satisfied for the given A; consequently, we must prove only
that sup h(AIA') = -Kf(X). We shall prove that for any given probability field
A' we may construct another probability field A° so that h(A IA') < h(A A0)
-K (X).

(b) If Of is any e-cover of X, Zi e Of (1 < i < n), and xi the center of
Zj(1 < i < n), let us consider the probability field A' with elementary events
xi and any arbitrarily determined probabilities P(xi), (1 < i < n). Obviously, if
p(xlxi) does not vanish only for x E Zi, the condition W,(AA') is satisfied. In
this case h(Alxi) < log M(Zi); h(A IA') < Et'., P(xi) log p(Z1).

(c) In the same conditions as above, if we consider p(xlxi) = 1/1,(Zi) for
x e Zi and zero in the rest, we define the field A" so that h(A Ixi) = log M(Zi);

n
(3.2.2) h(A IA") = P(xi) logg(Zi).

i=l

(d) If G. is any E-cover of X, Zf E Of', (1 < i < n'), with all elements Z' of the
same ,u-measure defined by

(3.2.3) u = F P(xi)M(Zi)
j=1

and n' given by the entire part of ,u(X)/u, let us define the probability field A"'
with elementary events xt, (1 < i < n') the centers of Z', and any arbitrarily
determined probabilities P(xs), (1 < i < n'). If we consider that p(xlx') = 1/u
for x e Zt and zero in the rest, then obviously the condition Wf(AA"') is satisfied
and
(3.2.4) h(Ajx') = log u; h(A IA"') = log u.

From the convexity of the function log x we obtain the inequality
n

(3.2.5) L P(xi) log 1s(Zi) < log u
i=l

so that h(AIA') < h(AIA") < h(AIjA'..) < log u < log (,u(X)/n').
(e) Let us consider any ecover O'. of X, Z°, e G°, (1 < i < nO = Ne(X)), with

u(Z°) = A(X)/no, (1 < i < no), xo the centers of Z°, (1 < i < no), and P(x°) any
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arbitrarily given probabilities. We define the probability field Al by p(xjx°) =
1/,u(Z°) for x e Z° and zero in the rest. Obviously,

(3.2.6) h(AA0) = L P(x4) log U(Z4) = log (X) = -K6(X).
no

Because no < n', it follows that h(AIA"'.) < h(AIA0) = -K,(X) so that

(3.2.7) h(A IA') < h(AIA") < h(AIA"') < h(AIA0) = -K,(X).
Consequently, the upper bound of h(AIA') for all A' which satisfies the

condition W.(AA') is equal to the upper bound of h(A A0), that is to -K,(X),
and our theorem is proved.
THEOREM 3.2.2. Taking the upper bound for A G D(X) one has sup H,(A) =

Ke(X).
PROOF. Analogously, as for the entropy, it is easy to see that the upper

bound of h(A) for A e D(X) is log,u(X); from theorem 3.2.1 it follows that

(3.2.8) sup H6(A) = log ,u(X) + K6(X) = KC'(X).
Let us suppose that p(x) is a uniformly continuous function.
THEOREM 3.2.3. For any e > 0, for a given probability field A E D(X) which

possesses finite differential entropy h(A) there exists a discrete probability field
A, E D°(X) with states not depending on A, such that (a) the property W,(AA,) is
satisfied, (b) H(A.) = H,(A) + o(1), and (c) I(A, A,) = H(Ae) + o(1).

PROOF. Let us consider any -cover 0. of X, Z° E 00f, (1 < i < no = N,(X)),
with ,u(Z°) = ,.(X)/no. We define the field A, E DO(X) with the elementary
events x° (the centers of Z°) and PA6(Xo) = PA(ZO) = pi,4u(Zo°), where
(3.2.9) pi E [inf p(x), sup p(x)],
and the lower and upper bounds are considered for x E Z°. We define the con-
ditional probability field (A lx°) by means of pAIA,(xIx°) = 1/,u(Z°) for x E Z°
and zero in the rest. Obviously, W176(AA,) is satisfied and h(AIx°) = h(A IA) =
-Kf(X),

no
(3.2.10) H(A,) =- E p1/i(Z4) log [pi2l(Z°)]

i=1

n

=- E (pi log pi),.(Zo) + K,(X)
i=l

= h(A) + K,(X) + o(1).

Using theorem 3.2.1, (b) follows and

(3.2.11) I(AA,) = h(A) - h(AIA,) = h(A) + K,(X) = He(A)
= H(A,) + o(1).

4. The differential entropy of stochastic processes

4.1. Generalities. Let us denote: (i) I = the set of all entire numbers; (ii)
I+ = the set of all natural numbers; (iii) (X7, S,, Iur) = a measure space (r E I),
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xT E XT, Z, e Sr; (iv) a C I = a finite set of Jai numbersriEr I; (v) (Xa, Sa, AOa)
= X?Ea (Xr, S., Ar); (Vi) Xa = (Xe, X,.,, .. X, ) = {X, reT a}, Za Sa; (Vii)
a* = I - a, (Xa, S") = X1.ea* (Xr, S,); (viii) (X, S) = X.sI (X,, SO), x E X,
Z EF S.
Let us consider that in the spaces X" there exists a stochastic process A, that

is, a consistent system of probability measures pa(Za), and let us denote by P(Z)
the extension of the measures pa(Za) in X.
We shall suppose that the measures pa are pA-absolutely continuous, and let

us denote by 7ra(Xa) the probability density; we also denote by 7rWlaf)(xflxa) the
probability density of P ola) (ZIlxa).

If lal *fa(x) = -log 7rc(x"), it follows that IJa .MfP(x) = h(Aa) with A" =
[7ra(Xa), Xa, Aa]. If a. = [t, t + n - 1], let us denote

pa-+ (X) = 7rt +n!la, (Xl+n|Xa") =7rO"+1(Xa.+1)/7rn(Xtn);
(4.1.1) gan(X) = -log pan(x) [t + m, t + n

7r(asnleml~~a(xa-)")=

I#I -/3 t(m! ) (X) = -log 74am!ml (xam!Xfm)
It follows that

(4.1.2) IJ#J-Mptomn)(x) = h(AamA-m).
Let us also denote

(4.1.3) X( )(A) = lim M<pl (x), (t E I, m E I+)

if this limit exists and is finite.
DEFINITION 4.1.1. The limit ht(A) = limn-., n-lh(A"n) (if it exists) is the

differential entropy of the process A at the instant t.
In [14] are given different properties of h,(A).
4.2. The entropy stability.
DEFINITION 4.2.1. The stochastic process A possesses (a) the weak, (b) the

strong, and (c) in the norm the entropy stability property at the instant t, if fan(x)
converges to hi(A), respectively, (a) in probability, (b) almost everywhere, and
(c) in the norm in the Banach space L1.
We shall denote these properties by E' )(A), (i = 1, 2, 3).
THEOREM 4.2.1. In order that the stochastic process A possesses the property

E't'(A), it is necessary and sufficient that the sequence {ga-(x)} satisfies the law of
large numbers, respectively in (a) the weak sense (i = 1), (b) the strong sense
(i = 2), and (c) in the norm (i = 3).
The proof is the same as in ([14], theorem 1.2).
THEOREM 4.2.2. If one of the properties E(P (A), E°'m(A), (m E I+) is satisfied,

then in order that the other property be satisfied also, it is necessary and sufficient
that the convergence of (pt(,n)(x) to XI?4m(A) holds (a) in the probability (i = 1),
(b) almost everywhere (i = 2), and (c) in the norm (i = 3).
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The proof is the same as in ([14], theorem 3.4.).
DEFINITION 4.2.2. If the property E(f)(A) is satisfied for all t E I, then the

property E()(A) is satisfied for (i = 1, 2, 3).
Obviously, from theorem 4.2.2 we may immediately obtain the necessary and

sufficient conditions for E()(A), as in ([14], theorem 3.5). If A possesses only
discrete sets of states Xt and finite H(At), (t e I) (for example, if Xt is finite,
(t E I)), from the property Et(.)(A) for an arbitrary to E I, property E(1) follows
([7], theorem 3.2). In [14] are given different properties of E'3'(A).
DEFINITION 4.2.3. If ht(A) exists and has the same finite value for all t E I

and the property E(1)(A) is satisfied, then A is regular.
DEFINITION 4.2.4. If A, B are two stochastic processes, It(A, B)

limn. n-1-I(Aa-, Ba-) (if it exists) is the common quantity of information of A, B,
at the instant t.
For a stationary A, we denote gn(x) = g-(X).
THEOREM 4.2.3. In order that the stationary stochastic process A possess the

property E(i)(A), it is necessary and sufficient that the sequence {gn(Unx)} (U is
the shift operator) verify the law of large numbers, respectively in (a) the weak
sense (i = 1), (b) the strong sense (i = 2), and (c) in the norm (i = 3).

In ([14], theorem 3.9 and 3.10) are given different sufficient conditions for
E( (i = 1, 3). Analogous results may be obtained for E(. (The particular case
of discrete sets of states was studied in ([2], [3]).)

5. The approximation of stochastic processes

5.1. Notations. Let us consider the sequence of measure spaces (XT, S, q,1),
separable for the respective distances pT(xT, y,), and let us retain all the notations
in 4.1. Further, let pa(xa, ya) = max,ea pXT,(X YT); P(X, Y) = SUPTEI PT(XT, YT);
D(X) be the totality of stochastic processes over (X, S); 0(T), 0a, 0 , be ecovers of
the spaces XT, Xa, X, respectively. Obviously, 0? = X7Ea t0(0)e, Oe = X>EI 0(r)e;
that is, if ia = fiT, T E a}, i = fi,, T e I}, Z E r?, Z EF0f, there exist ia and
i such that za = Zi4 = XTEa Zi, Z = Zi = X7ei ,Z4Z E 0(,),( E I).

Let DO(X) denote the totality of discrete stochastic processes with states in
Z,(r E I). If ZI(xi1), Ze(xia), Z-(xi) are spheres in XT, Xa, X, respectively, with
centers xi,, xia, xi and radius E (for the distances p,, pl, p), obviously
(5.1.1) ZE(Xia) = X ZE(x4,), Ze(xi) = X ZE(xi,)

Tea TEI

Let us denote by WE(AA') the property that for every sample xi of the discrete
process A' E DO(X) the condition PAA,{Zf(xi)lxi} = 1 holds; that is, the property
W,(AaA'c) is satisfied for any a C I.

5.2. The .-entropy of a sequence of sets.
LEMMA 5.2.1. The normed 6-entropy K,(Xa) is equal to T KE(XT).
The proof follows from the definition of the distance pa(Xc, ya).
DEFINITION 5.2.1. The quantity Kt,f(X) = lim.,. n-1Ke(Xa-), if it exists, is

the normed 6-entropy of the sequence of sets {XT} at the instant t.
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DEFINITION 5.2.2. If Kt,.(X) exists and has the same finite value for all t e I,
then the sequence {Xr} is regular.

5.3. The discrete eentropy of a stochastic process.
DEFINITION 5.3.1. The quantity Ht,.(A) = limn-. n-'HE(Aa-), if it exists, is

the discrete E-entropy of the stochastic process A at the instant t.
We shall suppose that HL,E(A), h,(A), Kt,,(X) exist and are finite for a fixed

t E I.
THEOREM 5.3.1. The discrete E-entropy Ht,.(A) is equal to hi(A) + Kt,.(X).
The proof follows from theorem 3.2.1.
THEOREM 5.3.2. Let us assume that the stochastic process A possesses finite

differential entropy ht(A), the property E/')(A), (i = 1, 2, 3), and that the normed
E-entropy Kt,.(X) exists and is finite.

Then, for any E > OX there exists a discrete stochastic process A. E DO(X) with
states not depending on A, such that

(a) the property We(AA.) is satisfied;
(b) Ht,E(A) and Ht(AE) exist, are finite, and H,(A,) = Ht,.(A) + o(1);
(c) I(A, AE) = Ht(AE) + o(l);
(d) A. possesses the corresponding property Et, (i = 1, 2, 3);
(e) if {X,} is regular, from the regularity of A follows that of AC;
(f) from the stationarity of A follows that of A,.
PROOF. (a) In every X, let us consider an ecover O(,), with Zi' e O(,). such

that jA,(Zi) = g?(XT)/NE(XT). From the definition of p,a, it follows that in
this manner is generated an e.cover t0? with Ztfa = X,ea Zi'., and ,sa(Zi'.)=
ja(Xa)/N,E(Xa) for all ia.

Let us denote by xi", the center of Zt, and by x4". = {xtf,, T E a} the center of
Z1fa. We define the probability field A'? e DO(Xa) with the elementary events x4ffa
and
(5.3.1) PAta(X{.) = PAa(Zja) = pifE. (Ztfa)
where pi" EF [inf pa(xa), sup pa(xa)], with the lower and upper bounds taken for
Xa E Zta.
For any T E a, we define the union A A (,)E by means of the probability density

(5.3.2) pA,(A,).(xTlx7') = Ne(X,)1y-r(X,)
when x, E ZtfE (r E a) and by zero in the remainder, and the union AaA?, by
means of the probability density
(5.3.3) pA IA?(xaIxtE) = II pA,IAx(,,(xr|x,) = N(X-) T NE(X,)

rGa MAc(Xa) TE. I.r(XT)
for xa E Zi'., and by zero in the rest.

Obviously, the properties WE(A,A(,)E), WE(AaA?,), and WC(AAE) are satisfied.
(b) We obtain immediately, as in theorem 3.2.3, that

h(AalxJ4a) = h(A IA,) = -K,(Xa)
(5.3.4) H(Ae-) = h(A-) + KE(Xa) + o(1),

I(Aa, A?c) = H(A.) + o(1).
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We obtain immediately the results (b) and (c) if we recall the definitions of
h,(A), Ht(A,), Ht ,(A), Iet(A, Af).

(c) Obviously for x eZc ,

(5.3.5) fAe,(x) = -n l 0log PA-'(Xia) = -n1 -log pi'. + nflK,(Xa)
= -n-' log pa(x) + n-lK,(Xa) + o(1)
= -n- log pa(x) + Kt,,(X) + o(1),

and consequently,

(5.3.6) fA (xi'.) - Ht(A,) = fA(x) - h,(A) + o(1).
Because PA, is derived from PA, from E(f)(A) follows EP) (A,), (i = 1, 2, 3).
The results (e) and (f) follow immediately from the construction of the

stochastic process Ae.

6. The approximation of stochastic transition functions

6.1. The metric space of stochastic transition functions
Let us denote: (X, S), (X', S') two measurable spaces; x E X, x' E X', Z E S,

T e S', R(X', S') the totality of probability measures P'(T) with the domain of
definition (X', S'), R(X, S, X', S') the totality of stochastic transition functions
P(x, T) with the domain of definition (X, S, X', S').

If P' and Pl are elements of R(X', S'), let us denote by 3'(P', Pl) the total
variation of P' - P'.

DEFINITION 6.1.1. If P and P1 are elements of R(X, S, X', S') and if for a
given x E X we denote by P(x, .), Pi(x, *) the corresponding measures, elements in
R(X', S'), we define

(6.1.1) 3(P, P1) = sup 0'[P(x, *), Pi(x, s)]= Sup IP(x, T) - Pi(x, T)!.
zXE- xE-X,TES'

DEFINITION 6.1.2. (See [4].) The ergodic coefficient of P E R(X, S, X', S')
may be defined by
(6.1.2) a(P) = 1 - sup 0'[P(X, .), P(xi, *)].

Z,ZIEX

Obviously, 0 < ,B(P, PI) < 1.
DEFINITION 6.1.3. Two stochastic transition functions P, PI e R(X, S, X', S')

are mutually almost singular, if for each e > 0 there exist some elements xf e X,
T,. e S' such that P(x,, T..) < e, Pi(x,, TX.) < e where * denotes the complement.
LEMMA 6.1.1. (a) In order that 13(P, P1) = 0, it is necessary and sufficient that

P _ P1; (b) in order that f3(P, P1) = 1, it is necessary and sufficient that P, Pi
be mutually almost singular.
PROOF. The proof of (a) is obvious; therefore, we shall prove only (b).
Necessity. If # (P, P1) = 1, for any E > 0 there exist some x, e X and some

T.. E S', such that
(6.1.3) 1 - < P(x6, T_,) - Pl(x,, T--)I < 1.
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From the equality
(6.1.4) P(x, T) - Pi(x, T) = -[P(x, T*) - PI(x, T*)]
it follows that we may limit ourselves to the case where
(6.1.5) P(x,, T..) - PI(xe, Ti.) < 0,
so that
(6.1.6) 1 - e < 1 - e + P(x,, Tx.) < Pl(xE, Txj);

P(XE, T.,) < P1(x, Tm.) - 1 + e < e

that is P(x., T.,) < e, PI(xe, T.,) < e.
Sufficiency. If P and Pi are mutually almost singular, for any e > 0 there

exist some Xf E X, Tx, e S' such that the inequalities in definition 6.1.3 are
satisfied, and consequently,
(6.1.7) 1 -2e < 1 -e- P(xf, Tx,) < Pl(XE, T-,) - P(XE, Tx)

< Pi(x-f T..) < 1,
that is, f,(P, P1) = 1.
LEMMA 6.1.2. If P and P1 belong to R(X, S, X', S'), then Ia(P) - a(Pi)I <

23(P, P1).
PROOF. Let us suppose that a(P) < a(Pi). Obviously

(6.1.8) IP(x, T) - P(xi, T)l < IP(x, T) - Pi(x, T)l + IPi(x, T) - P(xI, T)[
+ IPI(xi, T) - P(xi, T)J.

Taking everywhere the upper bound for all x E X, xi E X, T E S', it follows
immediately that a(P1) - a(P) < 2,B(P, P1), which proves the theorem.
THEOREM 6.1.1. The space R(X, S, X', S') is a complete metric space for the

distance f(P, P1).
PROOF. (a) The function fl(P, P1) is a distance. The function i3 is symmetric,

and in lemma 6.1.1 we have seen that from #(P, P1) = 0 it follows that P = P1.
Let us consider Pi(x, T) E R(X, S, X', S'), (i = 1, 2, 3) and IPj(x, T) -
Pj(x, T)l = ui,j(x, T), (i = 1, j = 2; i = 2, j = 3; i = 3, j = 1). From
ui,3 < U1,2 + u2,3, if we take everywhere the upper bound for x e X, T e S',
the triangular inequality follows for f.

(b) The space R(X, S, X', S') is complete. Let Pn(x, T), (n E I+) be a d-funda-
mental sequence in this space, that is, fl(P., Pm) -O0, (n, m -+o).

(b1) From the definition of ,B it follows that the numerical sequence Pn(x, T),
(n E I) is fundamental for each pair offixed elements x E X, T E S', so that from
the completeness of the real line there exists a limit P(x, T) to which Pn(x, T)
converges as n -X . From P,(x, T) E R(X, S, X', S') it follows that P(x, T) E

R(X, S, X',S').
(b2) Because Pn(x, T), (n E I) is a f-fundamental sequence, it follows that

for any fixed e > 0 we may find a number N = N(e) such that fl(Pn, Pm) < i
for any m, n > N(e), that is, IP,(x, T) - Pm(X, T), < e for all x e X, T E S',
and for all m, n > N(e).
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If m increases to infinity, from (b1) it follows that IP.(x, T) - P(x, T)I < e
for every fixed x, T with n > N(E); that is, the convergence of Pn to P is uniform
with respect to all x E X, T e S' so that O3(Pn, P) < e for n > N(e); that is,
ad(P., P) -O 0; in other words, the space R(X, S, X', R') is complete.
THEOREM 6.1.2. For [3-convergence, the ergodic coefficient is continuous; that is,

from 3(P,, P) -+0 as n - oo it follows that a(P.) -+ a(P).
The proof follows from lemma 6.1.2.
THEOREM 6.1.3. The 13-convergence is equivalent to convergence in distribution

uniformly in x E X, T E S'.
The proof follows from the definition of the distance ,B.
6.2. The metric space of stochastic transition operators. Let us consider some

measurable space (X, S), and let us denote by Vx the Banach space of all real-
valued generalized measures M on the cr-algebra 8, with norm I!J'II one half of the
total variation of ,u. Obviously, for any probability measure u, it follows that
litll = 2

Let us consider (see [4]) the subspace Lx C Vx of all functions X e Vx for
which X(X) = 0. In [4] it is proved that

(6.2.1) lxii = sup iX(Z)i.zES

If P, P1, R(X, S, X', S'), it follows for any fixed x E X that P(x, *),
PI(x, *) E Vx' and v(x, *) = P(x, *) - PI(x, *) E Lx' so that

(6.2.2) IIv(x, .)II = sup Iv(x, T)i,

and consequently,

(6.2.3) #(P, P) = sup IIv(x, *)1I-
zXG-

DEFINITIoN 6.2.1. We define the stochastic transition operator Q which corre-
sponds to the stochastic transition function P(x, T) as a map from Vx to
Vx': ,U' = Q,U, by means of the equality

(6.2.4) ,'(T) = fI P(x, T) (dx)

with , E Vx, is' E Vx', T e 8'.
Obviously, Q is linear and continuous. If Gx is the subspace of all probability

measures in Vx, it is obvious that Q maps Gx into Gx' and its norm is one. If
Q1 corresponds to P1 in the same manner as Q to P, let us consider the linear
continuous operator Q - Q1 which maps Vx into Lx'. We denote by N(Q - Qi)
the norm of Q - Ql, that is,

(6.2.5) N(Q - Q1) = sup {II(Q - Q)II/IIII} = 2 sup II(Q - QI)iIAi.
M&EVX JE]

LEMMA 6.2.1. For any As E Gx, if Is' = Qis E Gx, ,.4 = Qs E Gx', the inequality
13(,u', IA') < #(P, P1) is satisfied.
PROOF. From the definition of ,u', IAu it follows that for any T' E S',
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(6.2.6) IM'(T) - f-(T)f Pi(x, T)I 1,(dx) < sup IP(x, T)I
so that

(6.2.7) 13'(p', IA4) sup, I ,'(T) - I4(T)I < xsup Iv(x, T)I
TE' xEX,T ES,

= (P, P1).
THEOREM 6.2.1. The norm N(Q - Qi) is equal to 23(P, P1).
PROOF. (a) Let ez(Z), (x E X) denote the probability measure with e.(Z) =

1, if x E Z, and e.(Z) = 0, if x e Z*, so that ex E Gx for any fixed x E X. If
e' = Qew, it follows that

(6.2.8) e'(T) = fx P(xi, T) e.(dxl) = P(x, T).

Considering also the analogous relation corresponding to e1i)x = Qiex, it follows
that

(6.2.9) [(Q - Ql)e.](T) = P(x, T) - Pi(x, T),
so that, using the definition of N(Q -Q)
(6.2.10) N(Q - Qi) > 2. lQe. - Qie.I1 = 211ex - e(1).I! = 2 - 1lv(x, )!

for any x e X. This implies the inequality
(6.2.11) N(Q - Qi) 2 2. sup jIv(x, *)II = 2-fl(P, P1).

(b) If ,u E Gx, then for any T E S',

(6.2.12) 1[(Q - Qi)p](T)I = If| v(x, T) ,(dx)I <fl sup Iv(x, T)I <(dx)
= sup I '(x, T)[ < 03(P, P1).

zX

Obviously (Q - Qi).u Lx'. Let us suppose that X+, X' are respectively the pos-
itive and negative sets of a Hahn decomposition of X' for the function (Q - QI)IA.
From the above inequality it follows in particular that [(Q - Qi). (X'+) <
,B(P, P1). Consequently, it is easy to see that [(Q - Qj)u] (X') =
-[(Q - QI)u] (X'-) = jj(Q - Qj),II so that iI(Q - Qi)AII < ,(P, PI) for any
A G Gx and N(Q - Qi) < 2,B(P, Pi), which proves our lemma. Obviously
N(Q - Qi) is a distance in the metric space of all probability transition operators.

6.3. Another expression of i3(P, P1). Let us consider the measurable space
(X, 8).
DEFINITION 6.3.1. Between two measures, 1.l and M2 c VX, there exists the

relation ,.L < ,U2 if ,ul(Z) < ,A2(Z) for any Z e S.
For p E Vx let us denote

(6.3.1) Or(/l, /A2) = SUp p(X).
p I1,P<PI

A. N. Kolmogorov pointed out ([4], section 1) that C(Al, M2) may also be de-
fined by
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m
(6.3.2) o(91, A2) = inf E min [AI(Zi), .2(Zi)]

i=l

where the lower bound is taken over all possible finite covers 0 of X, and Zi E 0,
(1 < i < m < oo). It is known ([4], section 1) that IlI -, 211 = 1 - U A2)-
If Al = P(x, ), p2 = PI(x, *), we obtain IIP(x, )- PI(x, *)1 = 1-
a[P(x, *), Pl(x, *)] so that we obtain the following theorem.
THEOREM 6.3.1. The following equalities hold:

(6.3.3) f(P, P1) = sup jiv(x, )IIxEX

1 - inf c[P(x, *),Pl(x, )].

If X, X' are denumerable sets with the states xi, (i e I), then P(x, T) and
Pl(x, T) are given by means of the stochastic matrices Q, Q, with elements
Pk,mn, Pk?.m
THEOREM 6.3.2. The distance f3(P, P1) is equal to

(6.3.4) 13(P, P1) = 1 - inf min (pk,m, pPk,m)1<k<00 m=1

PROOF. It is easy to see [4] that the expression given by A. N. Kolmogorov
for a(JAI, 92) does not change if we consider not only finite covers of X but also
denumerable covers of it.

Let us observe that the sum in this expression cannot decrease if instead of
the cover 0 we consider another cover 0', finer than 0, that is, in which each set
in 0 is a sum of certain sets in 0'. Because the cover 0o, each set of which contains
only one element Zi = xi, is finer than any arbitrary cover 0, from the expression
of o- it follows that

(6.3.5) 0r({Pk,m}, {pk,m}) = min (Pk,m, pk)).
m=l

From theorem 6.3.1, the desired result follows.
6.4. The discrete case. Here we shall prove theorem 6.2.1 using the definition

of #(P, P1) from theorem 6.3.1.
Let us consider [4] the linear space F of those infinite dimensional vectors

q = {qi}, (i E I+) for which the sum of the components vanishes and the sum
of their absolute values converges. If U = {ui,j}, U1 = {ul;)} are some stochastic
matrices and q e F, then Uq E F, Ulq e F. Let us define the norm of q by

(6.4.1) l1qll = E Iqil = 2 F_ (qi)+= -2 * (qi)-
i=l i=l ~~~~i=l

where (a)+ = max (a, 0), (a)- = min (a, 0). Obviously, (a + b)+ < (a)+ + (b)+.
Let us denote

(6.4.2) 8(U, U1) = 1 - inf min (ui,j, ui%j).
i j=l

THEOREM 6.4.1. The norm N(U - U1) is equal to
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(6.4.3) N(U - U1) = sup IjUq - Uilqf 213(U, U1).

PROOF. (a) First we shall prove that the number on the left side is not greater
than the one on the right; for this it is sufficient to prove that for any q E F,
JjUq - Uiqjj < 2Jlqll *f(U, U1).

(a,) If q has only two nonvanishing components qi, = jjqjj/2 = X, qi, -X,
using the same method as in ([4], p. 372) and the notation

(6.4.4) = 1
k=1 i=il,i2=1C

we obtain the inequalities

(6.4.5) ll(U - Uj)qfl
= 2 E [qii(Uiik U-,k) + qi2(Ui2k U-U(i!k)]+

k=1

< 2 E' [ql(Ulk - u(k))]+ = lIqll E [(uik - Uik)) + (ui1k- Ui2k)+]
k=1 k=1

= JJqJ EI {[Uiak - min (Ukk, U(tk)] + [u(1) - min (i42k, u('))]}k=1

= llqll - min (Ulk, U1(i)] < 211qll -f(U, Uj).
I =U'i2t k=1 I

(a2) If q is any vector in F, it is easy to see that it may be represented as an
absolute convergent sum

(6.4.6) q = E q(i)
s=l

of vectors q(i) E F in such a way that each vector q(i) has only two nonvanishing
components, and also

(6.4.7) lIqll = E ffq(i)fj.
1=1

From (a,) we obtain the relations

(6.4.8) jl(U - U1)qj < EIl(U- U1)q(i)ll < 23(U, U1) *- Jq(i)jj
= 2,B(U, Ui)Ijqjj.

(b) We shall prove the inverse inequality.
(b1) From the given definition of ,(U, U1) it follows that for any e > 0 there

exist two different numbers il, i2 such that for 1 = il, i2, the inequality

(6.4.9) min (u1j, ulf))-[1-,B(U, U1)] < e

is satisfied.
The existence of one value ii with the indicated property follows from the
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definition of the lower bound; in the case where another value i2 ii with the
indicated property does not exist, we may use the following method. Instead of
the matrices U, U1 with the states {xi}, (i = 1, 2, ** *), we consider the matrices
T, T1 with the states {xi}, (i = 0, 1, 2, *..) where ti,j = Uij, to,j = Ut,,j
(i, j = 1, 2, * * .), ti,o = 0 (i = 0, 1, 2, *- - ), and anialogously for T1. Obviously,
f3(U, U1) = f3(T, Ti); here i2 = 0 and i1 $ i2 = 0 have the desired property.
Consequently, from the beginning we may suppose that U, U1 possesses this
property.

(b2) For a fixed vector q which possesses only two components qi, = jjqjj/2,
qi, = -qi,, from the inequalities in (a,), using the inequality in (b), we obtain
||(U- Uj)qIj > 2||q|| [3(U, U1) - e], or

(6.4.10) N(U - U1) 2 1(U - U1)qll > 2#3(U, U1) -2,
fjqfj

and coInsequently, N(U - U,) > 23(U, U1).
THEOREM 6.4.2. The following equalities hold:

(6.4.11) N(U - U1) = 2-#(U, U1) = sup E Iui,k -Uki.
PROOF. We may observe that the next to last inequality in (b2) shows that

the upper bound in the last inequality in (b2) is attained for vectors q which
possess only two nonvanishing components. If F1 is the totality of these vectors,
it follows that

(6.4.12) I|(U - Ui)qjl = Il| * E f(Ui,,k - Ui(,k)+ + (U,k - ui2,k)+}

kc=1
X2l lll IUIk 1,k

and consequently,

(6.4.13) sup jI(U - U1)qJ= 2f(U, U1) = 2 sup E' IuI,k U-,u1qEFo lq11 i1,i2 k=

= SUp E IUi,k - U(NI|-
iEI k=1

6.5. The approximation theorems of stochastic transition functions. Let us sup-
pose that P(x, T) E R(X, S, X', S'), that 0 is a cover of X, and that x° is an
arbitrarily fixed element in Zi E 0. We define the stochastic transition function
Pi(x, T) equal to P(x°, T) for any x E Zi e 0.
LEMMA 6.5.1. The distance 13(P, P1) satisfies the inequality 3(P, P1) <

1 - a(P).
PROOF. One can write

(6.5.1) Bl(P, P1) = sup lv(x, T)l = sup IP(x, T) -P(x°, T)l
< sup IP(x, T) - P(xi, T)l < sup IP(x, T) - P(xi, T)l = 1 -c(P)

where the first upper bound is taken for x E X, T E S', the second for i e I+,
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x E Zi, T E E', the third for i E I, x E Zi, xi E Zi, T e S', the fourth for x,
x1 E X, T E S'.

Let us consider that (X, S) is a separable metric space with the distance
p(x, xi), and P(x, T) is uniformly continuous in x e X, uniform for all T E S'.
That is, for any a > 0 there exists a number e = e(a) > 0 such that

(6.5.2) JP(x, T) - P(xi, T)l < 6

for all x, xi c X for which p(x, xi) <e and for all T E S'. If Oe is an ecover of X,
Z' eE,a,x the center of Z', (i E I), let us define the stochastic transition function
Pe(x, T) equal to P(xa:, T) for x E Z'i, (i e I), T e S'.
THEOREM 6.5.1. For any a > 0, there exists a number e = e(a) such that

XPI P.) < 6.

The proof follows from the first two equalities of the proof of lemma 6.5.1
letting Zi = Z'i, x°: = xat, P1 = P, if we observe that for all T e S', x E Zei,
i c 1+, the following inequality is satisfied:
(6.5.3) IP(ax, T) - P(xa, T)I < 6.
Here we shall study the simultaneous approximation of a probability field and

of a stochastic transition function which transforms it.
Let us denote by p(x, x') the conditional probability density of P(x, T); if we

consider also the probability distribution PA(Z) of the field A, then the con-
ditional distribution PAZ'(ZIX') of the field Ax, E D(X) is completely defined for
any x' E X'. Let us denote by p(xlx') the probability density of A.,. By PA and
P(x, T), a field B E D(X') is completely defined also.

Let us denote by RO(X, S, X', S') the totality of probability transition func-
tions with domain of definition (XI, Si, X', S') where Xi is any discrete subset
of X.
THEOREM 6.5.2. Let us consider a > 0, A E D(X), P(X, T) E R(X, S, X', S')

uniformly continuous in x E X, uniformly for T E S'.
There exists a number e = e(a), discrete probability fields A, e DO(X),

(Ax,), e DO(X), (x' E X'), and a discrete stochastic transition function P.(x, T) E
RO(X, S, X', S') such that

(a) the properties W.(AAe), We[Ax(Az')e] are satisfied,
(b) if Q, Qe are stochastic transition operators defined by P, P, respectively, and

PB = Q *PA, PBe = Q *PA, = - PAE, then

(6.5.4) A (PB, PBe) < #(P, Pe) < 6X
(c) I(A, B) = I(A., Be) + o(l).
PROOF. (a) From theorem 3.2.3 it follows that for any x' e X' there is a

discrete probability field (Az), such that the condition We[Ax(Az')e] is satisfied.
Obviously, if 0, is an e-cover, then the states of (Ax,), and those of A. are the
centers xa: of Z'i E li. We may observe that xa: does not depend on x' E X'. Let us
define the probability in (Ax,)e by

(6.5.5) P(A')e(X4IX') = PA,'(Z'iaX') = f p(xlx') dx = pi(x - (Zt)
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where pi(x') is a number between the lower and the upper bounds of p(xlx'), for
X E Zt. Let us also define the union Az'(A2')X by the density PA[(Ar')c(xIx, x') =
pAIA.(xlxi) equal to Ne(X)4jA(X) for x E Zt and zero in the rest, for any arbitrary
x' e X'. Consequently,

(6.5.6) PA.'(A.')e(X X'i|X ) = PAI (A.').(XjXi x))- P(A.')e(X'jX%)
which is equal to pi(x') for x e Zt and to zero in the rest.

Obviously the condition We[Ax'(Ax')e] is satisfied. We also obtain
(6.5.7) h(AIxi, x') = h(AI(Ax,),) K,(X).

If So(t) = t log t, then

(6.5.8) H[(Axz)e] = - (p[P(A.')e(Xjx')] = - E (P[P(A.).(Ztx')]
i

= E [pi(X')jA(Zti)] = E [pi(X')]-I(Zt')

-E PA(Ztix') log I(Zt) = h(Axz) + Ke(X) + o(1).

Let us consider the probability fields defined by

(6.5.9) Pg(T) = IxPA(dx) P(x, T), PBe(T) = f PA(dx) Pe(x, T).

(b) From lemma 6.2.1 and from theorem 6.5.1, it follows that for any a > 0
there exists a number E = E(b) such that #3'(PB, PB,) < /3(P, Pe) < 5, and con-
sequently, for any Z E S, PB.(Z) = PB(Z)(1 + o(1)).

(c) Consequently,

(6.5.10) H(Ae!Be) = MB,H[(Ax')e] = MBH[(Axz)e](1 + o(1))
= h(AIB) + Ke(X) + o(1),

and using theorems 3.2.3 (b) and 3.2.1, it follows that I(Ae, Be) = H(A,) -
H(AeIBe) = I(A, B) + o(1).

7. The stochastic complex source-channel

7.1. The differential entropy of [A, A]. The stochastic channel A is defined
by (a) the input-elements XT E XT, (Tr I); (b) the output-elements y, which
form the measure space (YT, VT, vT), (T E I), (Yan, Va, v-A) = X7ea (YT, VT, VT);
(Y, V) = XTEI (Yr, VT), where yam e Ya-, y e Y; (c) the transmission law
which is defined by the probability density 7r'B"A(ya-jx) (with respect to the eam-
measure) of the realization of the element y- E Y'a- in the time an =

[t, t + n - 1] by the output of the channel, if it is known that by the input,
x e X is entered.

In this manner, for any t E I, n c I+, Tam E Van the measure PaBIA(TamIx) is
defined, and consequently, their extension PBIA(T|X) for T e V, x e X. Let us
denote the channel defined in this manner by A = [X, PBIA(- IX), Y].
We shall use the ordinary concept of a nonanticipative channel with finite
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memory. A channel is stationary if 7rBlA(Uya_J Ux) = 7r.BA(yanJx) for any ya.. e Yr.,
x E X, t c I, n e I+. Here a' = {T, t + 1 < < t + nl}, and U is the shift
operator.

If XT is simultaneously the set of states of the input process A and of the input
of the channel A at the instant r(T E I), we may consider the composite process
AB with sets of states XT X Yr and also the output-process B with sets of states
Y,. In this case, let us denote by [A, A] the complex of the input-process A and
the channel A. We also denote

gAIB(x, y) = gAB(x, y) - gsf(x); fAI.(x, y) = fM(x, y) -fB
(7.1.1) G (x, y) = gT(x) - gAiB(x, y); F7B(X, y) = fJA(x) - fAB(x, Y)-
DEFINITION 7.1.1. The differential entropy of the complex [A, A] is the quantity

(7.1.2) h,(AIB) = lim n-l.h(AanIBan)
n-*c

(if it exists). The rate of information transmission in the complex [A, A] is the
quantity
(7.1.3) It(A, B) = lim n-l-I(Aa-, Ba-)

n- -

(if it exists)
Different properties of these concepts are given in ([8]-[11], [14]).
7.2. The entropy stability for the complex [A, A].
DEFINITION 7.2.1. The complex [A, A] possesses (a) the weak, (b) the strong,

and (c) the norm entropy stability (resp. information stability) at the instant t if
fA[B(x, y) (resp. FaAB(x, y)) converges to h,(AIB) (resp. I(A, B)) respectively (a)
in probability, (b) almost everywhere, (c) in the norm in the Banach space L1.
We shall denote these properties by EP)(AfB), JP)(AB), (i = 1, 2, 3).
THEOREM 7.2.1. In orderthatthecomplex [A, A] possess the propertyEt')(AIB)

(resp. JP)(AB)), it is necessary and sufficient that the sequence {gA7B(X, y)} (resp.
{GaAB(x, y)}) satisfy respectively (a) the weak (i = 1), (b) the strong (i = 2), and
(c) the norm (i = 3) law of large numbers.
The proof is analogous to that of theorem 4.2.1.
DEFINITION 7.2.2. If the property E(t)(AJB) (resp. Jf1)(AB)), (i = 1, 2, 3) is

satisfied for all t E I, then the property E(i)(AIB), (J(U)(AB)) is satisfied.
As in the case of the processes (see 4.2), here also results may be obtained

concerning the existence of the properties E( (A IB), J(i) (AB) and also concerning
the stationary complexes [A, A], (see [8]-[11], [14]).

DEFINITION 7.2.3. The regular set of sources Fe, of the channel A is the totality
of regular sources A with the same states XT as in the input of A at the same instant,
for which It(A, B) exists, is finite, does not depend on the time, and satisfies the
property J(1)(A, B).
DEFINITION 7.2.4. The channel A is regular if it is nonanticipative and F,, is

not void.
DEFINITION 7.2.5. The regular capacity of the channel A is C = sup I(A, B)

where the upper bound is taken for A E F,,.
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8. The approximation of stochastic channels

8.1. The metric space of stochastic channels. Let us suppose that the noil-
anticipative channel A with finite memory m is given by means of the measure
spaces (X, S7, ,), (Y7, V7, v7), (T- e I) and of the probability transition func-
tions Pa.(Xa'-, Tan) E R(Xa'-, SI'-, Ya-, Va-) where an = [t, t + n-1], =
[t - m, t + n - 1], (t E I, n e I+).

Let us denote by R(X, 8, Y, V) the totality of channels over (X, S, Y, V).
DEFINITION 8.1.1. If A, A1 E R(X, S, Y, V), and pa, P'l are the corresponding

probability transition functions (ai C I), we define ry(A, Al) = sup f(Pa, P'I),
where the upper bound is taken over all a C I.
LEMMA 8.1.1. If a C a1, then 3(Pa, P'l) < /3(pa1 PI').
The proof follows immediately from the definition of the distance f.
THEOREM 8.1.1. The space R(X, S, Y, V) is a complete metric space with the

distance y(A, A1).
PROOF. The function y(A, Al) is a distance because 3(pa, pal) is a distance

for any a C I. The space R(X, S, Y, V) is complete for the distance -y(A, Al),
because R(Xa', Sa', Ya, Va) is complete for the distance ,B(Pa, Pal).

8.2. The approximation of the system (A, A). Let us consider a cover 07 of
X7 Zi, E 07, and let xi, be any arbitrarily given element in Zi,, (T e 1). In this
manner is also determined a cover O0a = X,ea 0,. in Xa such that xi. = {xi,, T E a}
E Zia e Oa. For any given channel A e R(X, S, Y, V) let us define another
channel Al by means of the probability transition functions Pa(xa', Ta) equal to
Pa(xie, Ta) for xa E Zia, a' = [t - m, t + n-i], a = [t, t + n-1]. If a(PX)
is the ergodic coefficient of PI, let us denote a(A) = inf a(PX) where the lower
bound is taken for all X C I.
LEMMA 8.2.1. The distance -y(A, A1) is less than or equal to 1 - (A).
The proof follows from lemma 6.5.1.
With the hypotheses and notation of 5.1, let us suppose that Pa(xa', Ta) is

uniformly continuous in xa E Xa, (uniformly for all a C I, Ta E Va). Let us
define the stochastic channel A, by means of the probability transition functions
Pta(xa', Ta) = Pa(xi'.,, Ta) for xa' e Z'.a. From theorem 6.5.1 follows immediately
theorem 8.2.1.
THEOREM 8.2.1. For any a > 0 there exists a number e = e(a) such that

y(A, A&) < 5. Let us denote: RO(X, S, Y, V) the totality of stochastic processes with
domain of definition (Xi, Si, Y, V) where X1 is any discrete subset of X; Cf =
SUpAe It(A., B,).
THEOREM 8.2.2. Let us consider (1) a stochastic process A E D(X), which

possesses finite hi(A) and the property E&)(A); (2) a stochastic channel A E
R(X, S, Y, V) which is defined by uniformly continuous Pa(xa', Ta) (uniformly in
a C I, Ta E Va), and possesses finite ht(A IB) and the property E")(A IB) (resp.
I,(A, B) and Jt()(A, B)).
For any given a > 0, we may determine a number e = e(a) such that
(1) there exists a discrete stochastic process A, e DO(X) with finite entropy
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(8.2.1) Ht(Ae) = h,(A) + Kt,E(X) + o(1)
and the property E(f) (A.), (i = 1, 2, 3);

(2) there exists a discrete stochastic channel A. e RO(X, S, Y, V), such that if
connected with A,, there exists finite

(8.2.2) H,(AIB) = h,(AIB) + KtL,(X) + o(1),

and the property Et")(AIB), or respectively, It(AE, B,), Jil"(A, B), (i = 1, 2, 3);
(3) the property W.(AA,) is satisfied, and y(A, A,) < 8;
(4) from the regularity of {XT}, A, the same thing follows for A.;
(5) from the stationarity of A the same thing follows for A,;
(6) It(A, B) = It(AE, B.) + o(1);
(7) C = C, + o(1).
For the proof we may use the process A. constructed in theorem 5.3.2 and

the channel A, constructed in theorem 8.2.1; the proof runs analogously to that
of theorem 6.5.2.

9. The basic theorems of Shannon type

We shall suppose here that {Xj} is regular.
THEOREM 9.1. Let us consider (1) a regular channel A with uniformly con-

tinuous probability transition functions, with continuous input sets of states, with
finite memory, and with finite regular capacity C;

(2) a regular process A with continuous input sets of states and h(A) < C.
For a given a > 0, if we determine e = e(a), A,, A, as in theorems 5.3.2, 8.2.2,

obviously W,(4A.) is satisfied and -y(A, AE) < S. If

(9.1.1) H(A.) = h(A) + K.(X) < C + o(1),

then concerning the possibility of transmission of the production of the process A.
through the channel A, with the error probability not greater than a given X, thefirst
basic theorem of Shannon type is true ([14], p. 243).

If X,, the sets of states of A are totally bounded, then A, has at each instant
a finite number nT of states. Let

n-1
(9.1.2) K.(X) = lim sup n-I E log ft+k-

n-x k=O

THEOREM 9.2. Under the conditions of theorem 9.1, if the sets of states of A are
totally bounded and K,(X) < o, then concerning the possibility of the choice of a
code such that the transmission rate in the system [A., A.] is as close to H(.A) =
h(A) + K.(X) + o(1) as one wishes, the second basic theorem of Shannon type is
true ([14], p. 244).
The proofs of these two theorems follow from the fact that A,, A. verifies the

conditions of the basic theorems in ([14], pp. 243-244).
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