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1. Summary

The problem of statistical decisions when there is a partial lack of prior infor-
mation is considered, and a definition of the optimality of a statistical procedure
in such a case is given. This optimality is a generalization of both the minimax
property and the Bayes property, in the sense that the former property yields
optimality in the case of a complete lack of prior information, whereas the latter
coincides with the optimality in the case of complete prior information. A charac-
terization of the sufficiency of a sub-or-field 63 of a oa-field e of the parameter
space is developed from this point of view. The sufficiency of 63 is defined as the
property that a prior distribution on 63 induces the same optimal procedure as a
prior distribution on t. In the case of testing hypotheses, there is shown a con-
nection of this concept with that of the parametric sufficiency due to E. W.
Barankin [1].

2. Introduction

For some time there have existed characterizations of the sufficiency of a
statistic (or a cr-field in a sample space) from the standpoint of decision functions
(see [2], [3], [4], and [5]). According to these characterizations, a statistic t(x)
is sufficient if and only if in a certain statistical problem the risk by a decision
procedure through the observation of the sample x is not increased at all by the
restriction to the observation of the statistic t(x). We shall attempt here to give
a parallel discussion in the case of parametric sufficiency, a concept introduced by
Barankin [1]. A function u(o) on a parameter space 0 is called a sufficient
parameter if for any measurable set A the probability Po(A) of occurrence of
the observed sample x in A when 0 is the true parameter is a function of u(0).
Looking at "the function on the parameter space" more closely, we understand
that this idea represents an amount of prior information. Let us consider this
problem by example. Suppose a statistician is informed of nothing but the prior

Based on research supported by the National Science Foundation.
251



252 FIFTH BERKELEY SYMPOSIUM: KUDO

probabilities of two parts, co and xc, of 0 before any statistical experiment takes
place. The prior information given to the statistician could be considered as a
function u(O) = 0 on co; u(O) = 1 on c& and a probability distribution on {0, 1}.
Thus a pair of a parametric ar-field 63 and a probability distribution on 63 is
considered to be a kind of representation of prior information.

Suppose that a statistician is supplied with a partial prior information {l, J},
where 5f is a a-field generated by a finite disjoint partition 0 = UI= Fi of 0
and t is a probability distribution t(F,), * - *, t(Fk). It seems to be reasonable
that he will choose, as an optimal procedure in this situation, the procedure
6 = 6* (if it exists) which minimizes

(2.1) Ei (sup r(O, 6))t(Fi),
i,1 0GFi

where r(O, 6) is a risk function of a procedure 6 when 0 is a true value. Such an
optimality is a generalization of both the minimax property and the Bayes
property.

In section 3 we give a definition of the mean-max risk which is a generalization
of the formula (2.1), and we also give a useful inequality. In section 4 we define
the optimality of procedures with respect to a partial prior information. In
section 5 we give a definition of the sufficiency of a sub-a-field. This section also
contains an important theorem on the measurability of the risk function of the
optimal procedure. In section 6 we restrict ourselves to the case of testing
hypotheses, and give the main theorem that under some conditions a sub-cr-field
63 is sufficient if and only if the distribution of the sample x is 63-measurable for
any fixed event A, that is, the sufficiency in our sense is equivalent to that in
Barankin's sense. In the last section, we give some miscellaneous remarks.

3. Mean-max risk of a procedure

Consider a statistical game (0, D, r), where 0 is the space of the parameter 0,
and 1 is the space of procedures 6. The number r(0, 6) is a risk imposed on the
statistician when he adopts a procedure 6, and 0 is the true value. We shall
associate with 0 a fixed cr-field a of subsets of 0.
ASsuMPTION. The risk r(0, 6) is a nonnegative function, and for eachfixed 6 it is

a-measurable and bounded in 0.
Consider a sub-cr-field 63 of a and a prior distribution t defined on a. The pair

(6, t) is called a partial prior information. By this terminology we mean that the
statistician will be informed of only the value of t on 63 before the experimental
results are observed, so that he can use this information for the choice of proce-
dures. For example, suppose that the statistician knows the complete symmetry
of a die and by using this die he is going to allocate 6 different plants to 6 plots.
In this case he knows that the chance of all allocations of the plants to the plots
are the same. So he has a partial prior information (1/6!, *.. , 1/6!) for the 6!
permutation of the allocation (or 6! parts of the parameter space).
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DEFINITION. For a sub-cr-field (6 of a and a prior probability measure t on (a,
the mean-max risk is defined as

(3.1) r(63, (, 6) = inf E (sup r(O, 6)) -(Fi)
:CM ii=1 O EFi

where 5: is a sub-a-field generated by a finite CB-measurable disjoint partition
{F,, F2, ... , Fk},U lFj = e, Fj e63,FinFj = 0, (iF$ j), of e.
According to Saks' definition [6] of the integral, we have

(3.2) r((63, (, 6) = f r(0, 6) (dO),

when r(6, 6) is 63-measurable on 0. Hence, it always holds that

(3.3) r(ct, (, 6) = f r(6, 6) (dO).

It follows directly from the definition of the mean-max risk that if e is a sub-a-
field of (3, then

(3.4) r(e, (, 6) > r((B, (, 6)
for every t and 6.
We shall denote by Ef[(-) 16] the conditional expectation given 63 of a

bounded a-measurable function f (0) of 0 with respect to a prior distribution t.
LEMMA 1. The following inequality holds:

(3.5) 2 fJr(0, 6) - EJr(-, 6)I63]I(dO) < r((3, (, 6) - J r(0, 6)B(d0).

PROOF. Since f r(0, 6)t(dO) = BEJr(-, b)J3]&(d0) for Bc 63, we have

(3.6) 2 JB Ir(0, 6)- E[r(-, 6)163]10(d0)
fJB+ (r(0, 6) - EJr(-, 6)I63])t(dO),

where B+ = {0: r(0, 6) 2 Ejr(-, 6)1631} n B. The fact that supEB r(0, 6) >
E~[r(., )j163], t-almost everywhere on B, implies the following inequality for every
B e 63:

(3.7) fB (r(0, 6)-E4r(., 6)j63])t(d0)
< J (sup r(O, 6)-Et[r(*, 6)j63])t(d0)B+ O E-B
< J (sup r(0, 6) -E[r(-, S)I63])t(d0).

Hence, combining (3.6) with (3.7), we have

(3.8) 2 JB Ir(0, 6) - E[r(-, 6)J(B3]I(d0)
< (sup r(0, 3)) (B) - J r(0, 6) (d0).OcB B

Let 5 be a sub-a-field of 63 generated by a finite 63-measurable disjoint partition
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{B1, B2, * , Bk} of 0. Since (3.8) holds for every Bi, we have, by substituting
Bi for B and adding both sides of (3.8),

(3.9) 2 fe Ir(O, 6) - E[r(., 3)Ja]J&(d0)
< r( , , B) - fe r(O, 6) (dO).

This holds for every sub-a-field 9 generated by a finite (3-measurable disjoint
partition. Taking the infimum of the right side of (3.9), we have the required
inequality.
LEMMA 2. The function r(O, 6) is 83-measurable except for a set of s-measure

zero if r(33, {, e) = f r(o, B)t(do).
PROOF. The proof is clear from lemma 1.

4. The optimality with respect to partial prior information

DEFINITION. Write R(63, t) = infIe ) r (c, {, 6). A procedure * Ee D is called
optimal with respect to a prior information (%, t), or simply ((B, t)-optimal, if 6*
satisfies r(63, {, V*) = R((B, t).

This concept of optimality is similar to the modified minimax property defined
by Wesler [7] from the slicing principle point of view. Let 0 be a sub-u-field of
a which consists only of the whole space 0 and the empty set. Clearly, optimal
procedures with respect to (0, t) and (a, t) correspond to minimax and s-Bayes
procedures, respectively.

It is quite reasonable that if two probability measures t and Xi on a coincide
with each other on 63, then r(a, {, 6) = r(a, q, 6). This property of the mean-max
risk implies that the optimality with respect to ((3, t) depends only on the mar-
ginal distribution of t on (B. In other words, the optimality with respect to ((3, t)
does not depend on the conditional probability measure of (, given 63. For
instance, the minimax procedure does not depend on any prior distribution.

5. Definition of parametric sufficiency

DEFINITION. A sub-u-field (B of a is said to be parametric s-sufficient with
respect to (0, a, a, r) (for the sake of brevity we shall simply call (1 a s-sufficient
a-field if no confusion occurs) if R(B, t) = R(a, t). And if 63 is a t-sufflcient
a-field for every prior probability measure t on (0, a), 6B is said to be sufficient with
respect to (0, a, a, r).

It is a direct implication from the definition that if e is a sub-u-field of a sub-
a-field 6 of a and e is a h-sufficient sub-u-field of a, then a is also a i-sufficient
sub-a-field of a.
Concepts analogous to s-sufficiency have appeared implicitly in some previous

papers. One such concept is that of the least favorable distribution: in a strictly
determined statistical game, the s-sufficiency of the sub-u-field 0 of a is equiva-
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lent to the fact that t is least favorable. Another example of this appeared in
Blyth's paper [8] and Hodges-Lehmann's paper [9]. They considered statistical
problems with two risk functions. According to them, if a procedure 6o minimizes
an average risk a, f ri(6, 5) dt1 + a2 f r2(0, 5) dt2 for some a, > 0 and a2 > 0
and if

(5.1) J r2(0, So) dt2 = sup r2(0, So),

then So is a Bayes solution relative to 0, (with respect to the risk ri(O, 6)) within
the class of 6's for which supeEo r2(0, 6) < supoEe r2(0, So). To compare this result
with our definition of s-sufficiency, we introduce a new parameter space 0* =

o X {1, 2} and a risk function r*(6*, 5) = r*((O, i), 6) = ri(O, 5) on 0*, i = 1
and 2. Then, regarding t = (a,, a2, t1, Q2) as a prior distribution on 0*, the con-
dition (5.1) will correspond to the c-sufficiency of the sub-a-field {the empty set,
0 X {2}, (all measurable sets of 0) X {1}, 0*}. A similar consideration will be
effective for the minimax procedure within a restricted class and for more
general cases.
The following lemma is stated for the purpose of later use.
LEMMA. Let t be a prior probability measure on a, and (B a t-sufficient sub-a-

field of a uith respect to (0, a, 5), r). Let w be a 63-measurable subset of 0, 1 >
(w) > 0, and s(O) an a-measurable function on w such that 0 < s(O) < 1 and

(5.2) EJs(O)13l] = constant c(50O, 1), t-a.e. onw.

We shall write

r1(S) = 1 _ f() X r(0, 6)t(dO),

(5.3) r2(b) = r(w)J0(, 6)s(0) (dO),

r3(S) = (1-c)r(w) r(, 5) (1 - s(0)) (dO).

Let 0* = {1, 2, 3}, a* = the a-field of all subsets of 0*, D* = L, r*(i, S) =ri(),
V* = {empty set, 0*, {1}, {2, 3}} and t*(1) = 1 -t(w), t*(2) = ct(.), t*(3) =

(1 - ct(w). Then * is t*-sufficient with respect to (0*, a*, 1)*, r*).
PROOF. For every disjoint finite (B-measurable partition {F1, * , Fk} of w,

we have
k

(5.4) E (sup r(O, 6))t(Fi)
i=1 OEFi

k f
> i=(Fi) max r(O, )s(6)t(dO) s(O)&(dO),

f r(O, S)(1 - s(O))(dO)/f (1 - s(O))t(dO)}
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> max {.2 t(Fj) f r(O, 6)s(0)t(dO)/ct(Fj),
k r
5£ t(Fi) f r(O, 6)(1 - s(0))S(dO)/(l- c)(Fi)}

- max {f r(O, 6)s(o)t(dO), 1 _ f r(O, 6)(1 - s(O))t(dO)}

- t(w) X max {r2(6), r3(S)}.
Since r*(a*, 6*,6) = t*(1)rj(6) + t(w) max {r2(6), r3(6)} and

k' k'"
(5.5) r(a,(, 6) = inf E (sup r(O, 3))Z(F,) + inf _ (sup r(D, 5))t(F"')

5' j=- 8E9Fj 9" i=1 OEFM'

for finite partitions r' of w and 5" of 0 - c, we have r(a, 5,6) 2 r*(M*, S*, 6).
Since r*((G*, , 6) = t*(1)r1(b) + t*(2)r2(b) + C*(3)r3(3) = f r(O, S)t(dO) =
r(ct, $, 6), we have r(a, ., 6) 2 r*(aB*, ~*, 6) 2 r*(a*, t*, 6) = r(a, $, 6). From
this inequality it is clear that the s-sufficiency of (a in a implies the t*-sufficiency
of a* with respect to (e*, a*, W*, r*).
The following diagram is instructive for relations among the concepts of

sufficiency and optimality:
(A)

r((, (, 5*) 2 R((3i,
(5.6) (C) Al Al (B).

r((B, (, 3*) 2 R(6, t
(D)

In this diagram the equality symbols show us that:
(i) on (A), 6* is a i-Bayes solution,

(ii) on (B), a is s-sufficient,
(iii) on (C), r(O, 6*) is a-measurable, t-a.e.,
(iv) on (D), 6* is (a, t)-optimal.

From these facts we have theorem 1.
THEOREM 1. Let (0, a, D, r) be a statistical problem. Suppose 6* is a procedure

in D and a a sub-a-field of a.
(i) If a is s-sufficient and 6* is (a, t)-optimal, then r(O, 6*) is a-measurable,

t-a.e., and 6* is a s-Bayes solution.
(ii) If r(G, 6*) is a-measurable and 6* is a s-Bayes solution, then a is s-sufficient

and 6* is ((a, t)-optimal.
(iii) If a3 is a s-complete sub-cr-field (that is, all sets of t-measure zero in a belong

to M), then a is s-sufficient and 6* is (B, t)-optimal if and only lif r(O, 6*) is
a-measurable and 6* is a s-Bayes solution.
As a special case of theorem 1, we shall consider a strictly determined statistical

game and put a = 0. Then we obtain the following statement: (i) If t is least
favorable and 6* is minimax, then r(O, 6*) is constant, t-a.e., and 6* is a t-Bayes
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procedure. (ii) If r(O, 5) is constant and 5* is a s-Bayes procedure, then t is least
favorable and 6* is minimax (cf. [10], theorems 3.9 and 3.10).
The next theorem is more interesting.
THEOREM 2. Suppose (B is a sub-o--field of (t and there exists a s-Bayes procedure

5* in 5D. If (B is sufficient with respect to (0, t, D, r), then r(O, 5*) is (53-measurable,
t-a.e.,

PROOF. Let
wi = {O:r(O, 5*) > Ee[r(., 5*)I(]}

(5.7) W2 = {G:r(O, 5*) = Ej[r(-, 6*)j(B]},
WS = {O:r(O, 5*) < Ejr(-, B*)16(]},

and

(5.8) w = {0: (W2 U WSaIB) = 0}(E (B).

Since

(5.9) t(w n (c2 U WS)) = f t(C2 U W3j(B)&(dOj = 0,
we have

(5.10) Ln01 {r(O, 5*)- E[r(-, 3*)j(B]}0(d6)

= f {r(O, 6*)- E[r(-, b*)j63]}0(dO) - Ln( r - EjIrj(B]}j(d0)

= f {r(O, *)- Ejr(-, 5*)(1]}t(d0) = 0.

Therefore t(w n W) = 0, and so t =)= ( n wi) + e(W n (W2 U W3)) =
~(w n wi) = 0, which means that t(W2 U W31(B) > 0, t-a.e.
Take the indicator function x(O) of the set W2 U W3 and consider a probability

measure i1(a) on a:

(5.11) n(a) = f t(W2 U W3js)-1X(O)&(d0), a E .

For any 6B-measurable set r we have

(5.12) 7() = |(W2 U W31s) x(()W(d0)

f t(c2 U Ws31)-'EjxJ6B]t(dO)
= I t(W2 U '31,()-Y1(W2 U W31aB)(dO)

Therefore, two measures t and n coincide with each other on (, and so we have

(5.13) T((, 6,5) = r((B, io, 5) for every 5 E sD.
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On the other hand,

(5.14) r(i, r7, 6) f r(0, 6) d,

= f r(O, 6)x(O)t(W2 U W3I163)-'(dO)

f r(O, 6)t(W2 U W31(53)-1(dO).
By the definition of W2 and C.3, we have

(5.15) fU r(O, 6*)t(W2 U w363l)-'(dO)

< fu E[r(, 6*)I63]t('2 U w3f6B)-t'(d0)
ff Ejr(6, 6*)I63B](W2 U W3j(B3)'1x(0)t(d6)
ff Ejr(O, 6*)163] dq

ff Ej[r(0, 6*)1(B] di = r((, (, 5*),
where the equality sign in the second row holds if and only if t(w3) = 0. Thus we
have
(5.16) r(a, 6*,8) < r(Q, (, 6*),

where the equality sign holds if and only if t(,) = 0. Here the reader should
notice that t(w3) = 0 is equivalent to t(cwi) = 0.

Since (3 is sufficient by assumption, we have

(5.17) R((6, t) = R(a, t),
R((6, 77) = R(a, n),

and from (5.13) we also have R((B, t) = R ((, 7). Hence R (a, ) = R((i, -). Since
8* is a-Bayes in 5D, r(a, {, 6*) = R(a, t), and hence r(d, 3,8*) = R(a, -q) <
r(a, 6*,8). Therefore, it follows from (5.16) and the above inequality that
r(a, 6,8*) = r(a, r, 6*). This shows that t(,w) = t(cw3) = 0, that is,

(5.18) r(O, 8*) = Ejr(O, 8*)1631, t-a.e.

COROLLARY. If 03 is sufficient with respect to (0, a, X, r), and is s-complete in (a,
then the t-Bayes property of a procedure in D is equivalent to (63, t)-optimality.
PROOF. The implication of (63, t)-optimality from s-Bayes property is easily

seen from theorem 2, whereas the inverse implication follows from theorem 1.

6. The case of testing hypotheses

Let (X, A) be a measurable space, with the sample space X having an associ-
ated a-field A. And let the parameter space 0, having an associated a-field a, be
a collection of 0's, to each of which corresponds a probability measure Po on
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(X, A) in such a manner that, for any subset A E A of X, Po(A) is an a-measura-
ble function on 0. Let w be an a-measurable, nonempty and true subset of 0'
and then consider a problem of testing a hypothesis "0 E w" against the alter-
native "0 q_ w." By 4) we shall denote the set of all test functions s, namely the
set of all A-measurable functions so on X satisfying 0 < s(x) < 1. The problem
described above will be denoted by (X, A, 0, a, Pe, w). Here the risk function
r(0, (p) of so is automatically understood as

(6.1) r(O, V) = {Ee[so] for 0 c,
tl - Eo[V] for 0 ~t o

where Eo stands for the average operator with respect to the probability distri-
bution Pe on (X, A). As is easily seen, for any prior probability measure t on
(0, a) there exists at least one S- Bayes test s*.

Let 63 be a sub-u-field of (t. Obviously Pe(A) is 63-measurable for every A E A
if and only if Eo [V] is &3-measurable for every s E 4). We shall discuss below the
relation between the 63-measurability of Pe(A) and the sufficiency of 63 with
respect to (X, A, e, a, Pe, co), provided that w is 63-measurable.

First we shall observe a corollary of theorem 2.
COROLLARY. If (M is a sufficient sub-a-field of a with respect to (X, A, 0, a, PF, c)

and w is 63-measurable, then, for any s-Bayes test V*, Eo [V*] is (B-measurable, t-a.e.,
and V* is (63, t)-optimal whenever 6 is s-complete in a.
As preparation for obtaining the main theorem, we shall give some lemmas

without proof, concerning the problem of testing simple hypotheses. In these
lemmas we shall use notations Qo, Ql, Q2, and so on, for measures defined on
(X, A), and Ei for the average operation with respect to Qi (i = O, 1, *.). And
moreover, by (Qi:Qj) we mean the problem of testing a simple hypothesis Qi
against a simple alternative Qj.
LEMMA 1. For the problem (Ql: Q2) there is a system {S}o <a<1 of most powerful

test functions for the hypothesis Qi against Q2 such that El [Va] = a and Oa(x) <
Va'(X) on X if a < a'. Moreover, for any such system {al} we can choose a non-
negative function k(a) < co on [0, 1] such that the inequalities

(6.2) k(a)Ei[(1 - Va)f] 2 E2[(1- V)f]
k(a)El[VOag] < E2[Vag],

hold for all nonnegative A-measurable functions f and g.
LEMMA 2. Let {(a} and {4a} be systems of the most powerful test functions for

the problems {Ql: Q2} and {Q1: Q3}, respectively, which are the systems defined in
lemma 1. If, for any ,B E [0, 1], there are nonnegative numbers k(,B) < oo and
a E (0, 1] such that k(,B) satisfies the same condition for {Jq#} as does k(a) for {<}
in lemma 1 and

(6.3) k(0)E1[(1 -Vo)4] = E2[(1-

k(0)El[qpa(1 - 4,t=)] = E2[V(1 -

then {Vza} is, in turn, a system of the most powerful test functions for the problem
{Qi: Q3}.
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LEMMA 3. With the same notation as in lemma 2, we suppose that Q2 + Q3 is
absolutely continuous with respect to Ql. Then it is a necessary and sufficient con-
dition for Q2 = Q3 that there be a set {(pa}o<a1< of A-measurable functions on X such
that {qza}<a<..< is a system of the most powerful test functions for {Q1: Q2} as uell as
for {Q1: Q3}, and E2 [,p] = E3 [(Pa] holds for all a E [0, 1].
THEOREM 3. Denote by T a problem (X, A, 0, a, Pe, w), where {Po:O E 0} is

mutually absolutely continuous. Let (M be a sub-a-field of at and w a &3-measurable
nonempty and true subset of 0.

(i) If Po(A) is a (3-measurable function of Ofor any A-measurable subset A of X,
then 63 is sufficient with respect to T.

(ii) If 63 is sufficient with respect to T, then Po(A) is &-measurable, t-a.e., as a
function of 0 for any fixed A-measurable subset A C X, and for any prior distri-
bution t on (0, a) for which 1 > t(w) > 0.

PROOF. Assertion (i) is clear from the definitions of the mean-max risk and
sufficiency of 6 and the 63-measurability of w.

For (ii), suppose that 63 is sufficient in a and Po(Ao) is not 63-measurable,
t-a.e., for some A-measurable subset Ao of the sample space X, that is,

(6.4) t{0:Pe(Ao) i EjP.(Ao)|13]} > 0.
Without any loss of generality we may assume that

(6.5) ({0 E w:Po(Ao) 0 Ee[P.(Ao)163]} > 0.

We shall show here that it is possible to take an (a-measurable function s(0) on
co such that 0 < s(0) < 1 and
(6.6) E[s(0)I(P] = 2X t-a.e. on co,

and
(6.7) L s(0)Pe(Ao)&(d0) < 2 f Po(Ao)t(d0).

For any 63-measurable nonnegative function k(0) on co, let us write

(6.8) Sk = {6 c :Po(Ao) < k(0)Et [P. (A.)Il]}
and

(6.9) Tk = {0 e w:Po(Ao) > k(0)Ej[P.(Ao)I3]}.
Denote by 3C the collection of all k(0) such that t(Skj63) < 2 holds t-a.e. We can
easily see that 3C is not empty, because k 0 belongs to NC. Since for any ki
and k2 in 3C

(6.10) t(ShVk,I63) = max {W(Sk,ij| ), (Skdffl)},
we have ki V k2 = max {kj, k2} E 3C. Therefore we have a max ka for any chain
ki < k2 <.* * * < ka -< ... of elements of 3C, where the notation k, < k, means
that k,(0) < k,(f) s-almost everywhere on co and t(Sk,. - Sk*63) > 0, t-a.e. By
Zorn's lemma we can find a maximal element ko in 3C which belongs also to 5C,
that is,

(6.11) t{^Sk._16 < A_2-a.
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and there exists no k e XC such that ko < k. Write

(6.12) c(8) 2((- -S,o46)

if the denominator does not equal 0, and let c(O) = 0 if the denominator is zero,
and define

1, onSn ,
(6.13) s(0) = ), on 0 - Sk - TAo,

L, on Tko,
which is our desired function.

Write, for every A in A,

(6.14) Q1(A) = 1 _'( f Pe(A)t(dO),

(6.15) Q2((A)= 2) s(O)Pe(A)(dO),

(6.16) Q3(A) = 2() (1 -s(0))Pe(A) (dO),

and

(6.17) Qo(A) = 2(Q2(A) + Q3(A)) = (w) 11 Pe(A)t(dO).

These Qo, Qi, Q2, and Q3 are all probability measures on (X, A).
Consider a problem T* of testing a simple hypothesis Qi against a composite

alternative {Q2 or Q3}. By the lemma in section 5, the sub-a-field 63* = {the
empty set, {1}, {2, 3}, 0* = {1, 2, 3}} is t*-sufficient with respect to T*,Fwhere
Q=(*(1), t*(2), t*(3)), t*(1) = 1 -t(w), t*(2) = t*(3) = 2(X). However,

the assumption (6.5) and the definition of Ql, Q2, Q3 are independent of the
value t(w) as long as we have 0 < t(w) < 1. From this fact it follows that
the sufficiency of (B with respect to T implies the t*-sufficiency of 63* with respect
to T* for every t* with t*(1) > 0, t*(2) > 0 and t*(3) > 0. In the case where
t(w) = 0 or 1, it is obvious that 6* is t*.-sufficient with respect to T*. Therefore,
6* is sufficient with respect to T*.
From the above argument, our theorem is reduced to the following lemma.
LEMMA 4. Suppose that Ql, Q2, and Q3 are mutually absolutely continuous. If

the a-field (B* defined above is sufficient with respect to the problem T*, then Q2
coincides with Q3.

PROOF. Suppose that 63* is sufficient and that Q2 does not coincide with Q3.
Let {fpj 0 < a < 1, be a system of the most powerful tests of level a for the
problem T1 of testing a simple hypothesis Qi against a simple alternative Q2 and
satisfying the condition that a < a' implies pjo (x) < (p,o(x). We shall take another
system {4}Q, 0 < a < 1 of the most powerful tests of level oz for the problem
T2 of testing a simple hypothesis Qi against a simple alternative Qo and satisfying
a similar condition: a < a' implies ,6a(x) < 4,6:(x).
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We shall show first that there are a f c (0, 1) and a k c (0, X ) such that, for
any a e (0, 1), the two following inequalities hold with at least one of them
being a strict inequality:

(6.18) kEJ[(l - p.)4,O] < Eo[(l -
kE,[,pa(l - 40)] >. E0[cpa(l -

The existence of a k for which the above formulas hold is guaranteed by lemma 1
(no trouble for k = 0 or X occurs, because of the absolute continuity assump-
tion). Suppose that for every Ec (0, 1) there is an a G (0, 1) such that both of
the above formulas hold with the equality signs. Then by lemma 2, we can choose
{X} as po.(x) = C(x) for all a. On the other hand, the most powerful tests
4'a(l > a > 0) for T2 = (Ql: Qo) are n*-Bayes tests for T*, where 77* = (X11, 2, X3),

,* > 0 (i = 1, 2, 3). Since V is sufficient with respect to T*, it follows from
theorem 2 that the risks at Q2 and QG are equal, and hence, E2 [4&a] = E3 [4,] =
Eo[4,6] for 0 < a < 1. Therefore, from lemma 3 we have Q2 = Qo = Q3, which
contradicts our assumption.
Thus there is a : E (0, 1) such that for every a E (0, 1)

(6.19) Eo[,pa(l - 4I')] - Eo[(l - fpa)#$]
< k {E1[sop(l - ,)] - Ej[(1 - p.)4,O]j

Therefore, we have
(6.20) Eo[4+] > Eo[,p] - k{E1j[] - E1[4]}

=Eo[°]
and obviously,
(6.21) E[ =[ 51[El = $-
Now we shall consider the closed convex subset

(6.22)
C = {(E1[p], 1 - E2[']P,1 - E3[]): 0 < <(x) < 1,so(x):A-measurable}

of the 3-dimensional Euclidean space, and two points p = (El[,po], 1 -E2[]
1 - E3[ypo]) and q = (E1[++], 1 - E2[4'0], 1 - E3[4]) in C. By (6.21), p and q
have the equal first coordinates. Denote by 7r the plane which is orthogonal to the
first coordinate axis and passes through p and q. Inequality (6.20) makes it
possible to determine a pair of positive numbers 7q2 and 713 such that 772 + q3 < 1
and

(6.23) 772E2[4&0] + q3E3[4] > 772E2[so0] + 773E3[<O].
Let so* be a test function such that the point
(6.24) p* = (E1[p*], 1 - E2['P*], 1 - E3[P*])
in C is located on the plane 7r and p* is a supporting point on 7r in the direction
(772, '73), that is,
(6.25) E11[,*] = E=i d
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and

(6.26) 772E2['P*] + n3E3[P*] = max (772E2[p] + q3E3[(]: 0 < 9(X) < 1),
where so is A-measurable and E1 [so] = f3. Since there is a nonnegative number 771
such that p* is also a supporting point of C in the direction (771, lq2, 773) in the
3-dimensional Euclidean space, we have
(6.27) 77Ei[,p*] + 72(1 - E2['P*1) + 773(1 - E3[P*I)

= min {,77Ei[] + 772(1 - E2[P])±+73(1 - E3[(]):
0 < p(x) < 1, (p: A-measurable}.

Therefore we have, by (6.21), (6.23), and (6.27),
(6.28) 77Ei[Ip*] + 772(1 - E2[V*]) + 173(1 - E3[P*])

< nlEl[48] + n2(1 - E2[kf]) + 73(1 - E3[4'])
< 77iEi[,po] + 772(1 - E2['PP]) + 173(1 - E3[yP]).

Since (p and s* are Bayes tests with respect to T* and 63* is sufficient, it follows
from theorem 2 that
(6.29) E2[P*1 = E3[p*] and E2[P] = E3[90]-
From (6.28) and (6.29), it follows that

(6.30) (772 + 173)E2[P*] - 77Ei[(p*] > (772 + 173)E2[V#] - 7lEj[9].
Combining this inequality with (6.25) gives

(6.31) E2[P*] > E2[90]-
This inequality shows, with (6.25), that 5p is not the most powerful test function
of level ( for the problem T1 of testing simple hypothesis Q, against the alter-
native Q2. This is a contradiction.

7. Remarks

(1) A functional Ftf] = infzccs _i=i (SUPeeFif (0)), {F1,--IF , Fk}, of an
e-measurable function f (0) on 0 is also defined as

(7.1) Ft[f] = inf f u(0) (dO),
u(e)fU2f

so that r(63, (, 6) might be regarded as an upper integral of the risk function
r(0, 5) with respect to a sub-cr-field 63 of (t.

(2) Under certain conditions, the 63-measurability of an a-measurable function
is equivalent to the 63-measurability, t-a.e., for any prior distribution t on 0.
Therefore, in such cases, the assertion of theorem 3 is simply that 63 is sufficient
if and only if Po(A) is 63-measurable for any A-measurable subset A of the sample
space. For example, if 63 is induced by a statistic in the Bahadur sense (see [11]),
and the induced a-field in the range of the statistic contains every singleton, then
every k-almost 63-measurable set for any t is 6-measurable.
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(3) From theorem 3 we can get the following statement: under the assumption
that the space {Po} of distributions is mutually absolutely continuous, the
sufficiency of 63 with respect to every decision problem with a bounded 63 X S
measurable loss function L(O, s) > 0 implies the &3-measurability of Po(A), t-a.e.,
for any prior measure t and for any set A E A, where S is a a-field of subsets of
the action space.

Inversely, if Po(A) is 83-measurable, then 63 is sufficient with respect to every
decision problem with a bounded 63 X S measurable loss function L(O, s) > 0.

This kind of assertion is parallel to the characterization of the sufficiency of a
statistic due to Blackwell [2] and also to Le Cam [12].

(4) It is well known that for a set S of a 2-dimensional Euclidean space there
are two probability measures Q, and Q2 on a measurable space (X, A) such that
S = {(f p(x)Q1(dx), f so(x)Q2(dx)): s E 1}, if and only if (i) S is closed and con-
vex, (ii) (0, 0) and (1, 1) e S, (iii) S C [0, 1; 0, 1], and (iv) S is symmetric with
respect to the point (2, 2). For the n-dimensional space we do not know a nice
necessary and sufficient condition for a convex set S to be the range of some
n-dimensional vector measure (n > 3). However, our lemma 4 gives a partial
solution to this problem. Suppose that n = 3 and S, the range set of 3-dimen-
sional vector measure, has only one common point with each coordinate axis,
and let 7r be a plane parallel to the second and third coordinate axes. If every
section of S by each of such a plane wr is contained in the relative first quadrant,
then these sections lie entirely on the plane "the second coordinate = the third
coordinate," so that S collapses from three dimensions to two dimensions.

(5) As an example of a sufficient parameter, we can consider the estimable
parameters in the linear statistical model

(7.2) X(n X 1) = A(n X k)#(k X 1) + e(n X 1),

where X and e are random vectors, A a known matrix, and ft an unknown
vector. Here we assume that the distribution of E is normal with mean zero-
vector and covariance matrix o2I, I = unit matrix, a2 unknown constant. In this
problem, (j3, a2) is a parameter, and cr2 together with a system of linearly inde-
pendent estimable parameters are sufficient. (This example is due to Goro Ishii).

(6) Let 63 be a sub-a-field of (a, and A(s3) the family of all A-measurable
subsets A of X for which Po(A) is 63-measurable. For this family A(@3), analogous
assertions to the family of ancillary events in Basu's paper [13] hold. If a sub-
a-field B of A is contained in A(&), then 63 is sufficient with respect to every
problem of statistical decisions with sample space (X, B). In the case where 6 is
induced by a function u(O) of the parameter 0 and B is induced by a statistic
t(x), we could say that u(o) is sufficient for the statistic t(x). For example, in the
model (7.2) cr2 is a sufficient parameter for the statistic t = X'(I - PA)X, where
PA is a projection operator of Rn onto the hyperplane spanned by the column
vectors of the matrix A. Although t is partially sufficient for o2 in Fraser's sense
[14] in this case, such an inverse statement is not always true. Our concept of
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the parametric sufficiency of u(O) for t(x) corresponds to Basu's concept [15] of
"sp-free" of t(x) if 0 = (sp, u(O)).

I wish to thank Professor E. W. Barankin for valuable conversations on my
problem.
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