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1. General introduction

As a preface to my lecture, I find it necessary to discuss in general terms the
status of the statistical art and what we should mean by the term ‘‘inference.”
It seems to me that over the whole history of human thought there have been
two basic underlying ideas of inference:

(a) what may best be expressed, perhaps, by the colloquialism “making sense
of data”;

(b) the choice of an action in a prespecified class of possible actions on the
basis of data, costs, risks, and opinions.

Of course, to attempt to characterize the whole of statistics in some such way
as the preceding is rather like attempting to characterize mathematics by a
few brief common sense statements, and this is obviously foredoomed to failure.
But the attempt has been made by others, who with a zeal approaching that
of religious fanaties attempt to convince the world that there is one true religion,
the one they are preaching. We should feel a considerable debt to van Dantzig
{101, [11] for calling attention to the phenomenon of “Statistical Priesthood”
with which our profession is now plagued. He gave us just two examples and
pointed out the moral. It is curious that even in its activities unrelated to ethices,
humanity searches for a religion. At the present time, the religion being ‘‘pushed”’
the hardest is Bayesianism. A few years ago it was decision theory. The actions
of the proponents are like those of the religious evangelist. It is characteristic
of new religions that they are intolerant of the old ones. It seems obvious that
the only religion we should uphold is that there is no true religion. I find myself
quite intolerant of the several cults.

My own preference is to say that the bulk of the activities of statisticians is
encompassed by one or other of the two basic ideas expressed above, and I like
to denote them by (a) Statistical Inference and (b) the Theory of Decision-
making. It is remarkable that over the years we have had many papers and even
books which take the view that statistical inference is a part of decision-making.
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Such people presumably take the view that the writing down of conclusions
can be regarded as an act in a specified class of actions, to which costs and risks
can be applied. The problem here is partially one of semantics: what does one
mean by an action, for instance? My main criticism of the point of view which
takes (a) to be a part of (b) is that it has in my opinion proved to be rather sterile
with regard to the general problem of making sense of data, the problem of
condensation of data, and so on. Before 1940 we had in the total history of
mankind perhaps 100 man years of intellectual effort in the direction of statis-
tics; in the Forties perhaps another 100; in the Fifties perhaps 200, and in the
Sixties so far perhaps 400. But the advances in the art of making sense of data
have not been at all commensurate. There have, however, been great advances
in the theory of decision-making. Our knowledge of possible rules for terminal
decisions has expanded very rapidly. It seems, however, to have escaped atten-
tion that there is a vast difference between what one is entitled to think on the
basis of the data and what action one should take on the basis of the data.

What is the main problem of data interpretation? I believe it to be the de-
velopment of a condensation of the data which in some imprecise way does
not throw away any of the information in the data. It may be said that I am
using vague expressions which cannot be given precise meaning and I would
agree. But I would then say that the history of Science is full of examples of the
dangers of narrowly prescribed specifications and frameworks of thought.

It is a consequence of the above view that one of the basic problems of data
interpretation is the problem of model specification. I am highly amused by a
statement of Sir Ronald Fisher ([4], p. 314): ‘‘As regards problems of specifica-
tion, these are entirely a matter for the practical statistician.” But this curious
remark is balanced by a later one on the same page: “The possibility of develop-
ing complete and self-contained tests of goodness of fit deserves very careful
consideration.” It is probably fairly generally agreed that the beginning of what
we call statistical inference in the sense (a) was the development of the x?
goodness-of-fit test. This was really a most remarkable piece of work and stands
out in my opinion as one of the great ideas of human thought. It is true that
Pearson made some errors with regard to the concept of degrees of freedom,
and it was necessary for Fisher to clear them up. But this should not detract
from the magnitude of Pearson’s step.

To emphasize the problem of model specification let me give a common
example. An experimenter has compared 6 treatments in a randomized block
design with regard to their effect on the growth of mice. The statistician says,
“Ah, yes! Randomized Blocks, so the model is y;; = p + b; + t; + e;; with
the errors normally and independently distributed around zero with com-
mon variance ¢2.”’ I have difficulty imagining a more blatant travesty of com-
mon sense, let alone scientific method. It is really appalling. But this is taught
extensively. Books say, ‘“‘the appropriate model is. . . .”” Fortunately, in recent
years there has been some deeply considered attack on the problem, particularly
by Anscombe and Tukey.
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My interest in the problem of goodness of fit was stimulated by consideration
of the problem of transformations, primarily in connection with the analysis of
comparative experiments. I was then led to the simplest situation, the case of
a single sample. The problem of whether observations should be analyzed on an
arithmetic scale or a logarithmic scale is surely one of the most elementary
problems, but surprisingly little has been done on it. The application of some
goodness-of-fit procedures seemed appropriate, and the x? goodness-of-fit test
seemed a reasonable candidate.

I hope that a little of what I have to say is new. But if not, a representation
of old material may still be of value. A paper by Slakter [9] has numerical
results closely related to some of the results I shall present.

2. A brief historical review

The literature on goodness-of-fit tests is vast. Shapiro and Wilk [8] for in-
stance, give a list of about 70 papers on the subject. I found the review by
David [3] very helpful. Even the literature on the x? goodness-of-fit test is
very extensive. The procedure is, of course, to divide the distribution into mutu-
ally exclusive cells and to form the criterion

(0: = B
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where O; is the observed frequency, and E; the expected frequency in the ¢-th
cell. In the case of a discrete data, the discrete classification of the distribution
provides a partition into classes for application of the x? procedure. It is cus-
tomary, however, to invoke some rule such as that the expectations of cells
should be greater than 5, or in some cases greater than 2. For example, Cramér
[1] says:

“When the x2 test is applied in practice, and all the expected frequencies np;
are > 10, the limiting x*-distribution tabulated in table III gives as a rule the
value x2 corresponding to a given P = p/100 with an approximation sufficient
for ordinary purposes. If some of the np; are <10, it is usually advisable to pool
the smaller groups, so that every group contains at least 10 expected observa-
tions, before the test is applied. When the observations are so few that this
cannot be done, the x2 tables should not be used, but some information may still
be drawn from the values of E(x?) and D(x?) calculated according to (30.1.1).”

In fact, this matter is quite obscure and there is considerable arbitrariness
in the application of the procedure to discrete data, as anyone who has looked
at data discovers. One can vary the “answer” that is obtained by the choice
of grouping the possible classes. Individual judgment is always called into play.
In the continuous distribution case, which should always be characterized by
some phrase such as the ‘‘so-called’’ continuous case because we can never
observe a continuous random variable except with a grouping error, the situa-
tion is much worse with regard to applying the x? goodness-of-fit test. ‘“How
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is one to make up the cells?”’, “Where are they centered?”’, “How many cells
should one use?”’ are questions on which the personal arbitrariness of the tester
seems to enter. Again, anyone who has used the procedure has met these ques-
tions, and answered them in his own somewhat arbitrary way. Even if one has
the rule that every cell should have an expectation greater than or equal to 5,
there is the matter of placement of the classes. Also, the imposition of such
rules has apparently led to the view that the x? goodness-of-fit test is not con-
sistent. One attack on this question was by Mann and Wald [6] who were led
to the rule that asymptotic maximum power in a certain sense of the x? test
was achieved when the number of cells is proportional to 2(N — 1)V/5, where
N is the number of observations.

The purpose of the present paper is to describe and evaluate partially a
completely objective simple rule, namely divide the distribution, fitted on the
basis of N observations, into N equal parts each with probability 1/N. This
gives N cells each with expectation equal to unity. Count the number z; in
each cell. Then the x2? criterion

2.2) K=% (x—;if

becomes

(2.3) K=Y @-1p=Xa-2La+N
= ; z? — N
= oo~ 1).

* The evaluation of the criterion is then made by reference to the x2 distribution
with degrees of freedom equal to (N — 1 — p), where p is the number of param-
eters fitted. In evaluating the criterion, however, it is to be noted that K can
take only even integral values, so that one obtains the probability of exceeding
(K — 1) for the mathematical x? distribution. It is to be noted that in the case
of continuous data this rule is objective, and there is no room for personal
choice on number and location of cells. It is assumed that the resulting classes
are still wide relative to the grouping interval of observations, though clearly
this will not be true with very large samples. In very large samples the grouping
error of observations would have to be considered.

The present paper gives some preliminary results on the above procedure.
It contains a discussion of the distribution of the Pearsonian criterion with k&
equally likely classes in the case when no parameters are estimated, this dis-
cussion being relevant and appropriate to the case of any continuous distribu-
tion. Then some Monte Carlo results are given on the distribution of K for the
case of the normal distribution, in which the mean and variance are estimated.
Finally a few power comparisons are made, and some discussion on the relevance
of power is presented.
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3. The distribution of K with a completely specified distribution

We consider the partition of a continuous distribution into equiprobable
classes each with probability 1/k, and denote the x?2 criterion by Ki. In the case
of N observations with k equal to N, the criterion is the K given above. If -we
denote the observed numbers in a total sample of N, which are in the classes,
1 =12 .- k, by z;, the probability of x;, z,, - - -, z is

N! /1Y
(3.1) F<E) :
The x? quantity is equal to
(x: — (N/k)?
3.2 K, =S 2 YA/
so that
2
ey g2_oNsg, M
- Z X1 2 k Z x; + k
2
= Z x? - ]—Vk—)
or
N 2
(3.4) % (K + N) = Xz = S (say).

Hence, to get the moments of K; we first obtain the moments of 8. The first
two moments of K; are well known, but we include them for completeness.
First moment of Ki. One has

(35) ' S=fo=2x,(x,—l)+2x,
and
(36) Exi(xi ot 1) = i—i—z

where N, = NN — 1){N —2) --- (N — s+ 1).Hence E(S) = N((N — 1)/k) +
N and

3.7 EK)y=N-1)+k—N
=k —1).
Variance of Kx. The term 82 is equal to
(3.8) S = ? =i + gf xixl?,
but z¢ = x4 + 6x; + Tz, + «; where, as before,
(3.9) =x(z— 1)xz—2) - (x— s+ 1)

Such relationships are verified easily by writing, for example,
(3.10) 8 = Te + apTs + Qsly + o3T3 + s 7% 2 + o121 + [e7)]
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and successively placing = equal to 0, 1, 2, 3, 4, and 5. This device is helpful
throughout. The reason for using this mode of expression is that E(z,) = (N./k?),
and Bz, = (Nsper/k*t?), and so on. Hence,

(3.11) B = b{N+ o2+ 73 + 3

+ k(k — 1) ,c—:+z,c—;+%}
so that V(S) = N(N — 1)2((k — 1)/k2) and

(3.12) V(Ki) = 2(k — 1)(N — 1)/N.
Third moment of Kx. One can write
(3.13) St = ; z + 3’;" zoaf + :;f xixiai,
but .
(3.14) % = x5 + 1525 + 6524 + 905 + 31z + 4,
(3.15) 2t = x4 + 623 + 722 + 24,
and 2?2 = z» + 23, so that
(3.16)

N
E(S“)—k{k6+l5 k5+65 k4+9o AL R L

+av-n (v s B Tyl sl B

4 k(e — D)k — 2) 7§+37,;‘+37;;*+%},

and the third moment of S is us(S) = E(S®) — 3V(S)E(S) — E3(S) so that,
after some tedious algebra,

3.17) pa(S) = g, & l) 4+ 4N, (_k__lgcgk_—zl
8N(N —1DIN-2)k—1) +4N(N — 1)(k - Dk — 2)

g
Hence,

(3.18)  pa(Ki) =8(k —1

) N-1D(N-2) + 4k — 1)k —2)(N — 1)
N? N?

Fourth moment of K. Obtaining the fourth moment was very tedious. Using
relationships such as

(3.19) 28 = x5 + 2827 + 26625 + 10505 + 1701z, + 96623 + 1272, + 74

and expressing polynomials in N as linear functions of N,, I obtained
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(320)  w(S) = 12k — 1)k +3) 1 + [144k _ 384 + gz_o] s

k3
48 247N,
+[8k_32+?_k_2:|ﬁ
Hence, .
321)  w(Ky) = 120k — 1)(k + 3) %j + [144k — 384 4 %9] gL

48 247,, N.
+[8k—32+7—k—2]kzﬁi-

If N is large and k fixed, the moments are very close to the moments of the
theoretical x? distribution with (k¢ — 1) degrees of freedom, which is part of the
basis for the use of the theoretical x? table. The inconsistency of the k-group x2
test arises because the test detects only deviations from the multinomial ob-
tained by grouping the continuous distribution which is being examined. This
inconsistency can, however, be removed by letting k increase with N, and the
purpose of the tedious calculation of the moments of K, was to examine this
matter. The obvious candidate mentioned above is to let k equal N. For this
case the second moment about the mean is 2((N — 1)2/N) which is equal to
2[N — 2+ (1/N)], the third moment is 12((N — 1)%(N — 2)/N?), which is
12[N — 4 + (5/N) — (2/N?)], and the fourth moment is equal to 12N2 +
120N + 0(1).

The ratios of these moments to the moments of x* with (N — 1) degrees of
freedom are

Moment Ratio
First 1
Second 1- —11\7
Third g (1 - l)
2 N
Fourth (1 + §)
N

Obviously with % equal to N, the first, second, and fourth moments go to those
of the x? distribution quite rapidly. The ratio of third moments, however,
tends to §. With both N and % large, the third moment is essentially

(3.22) 8k — 1) + 4 “;3\5’“‘2—)

so the ratio to the theoretical moment is 1 4+ 1((k — 2)/N), or if k is equal to
rN and both large, the ratio is 1 + (r/2). It might appear, therefore, that unless
r is small, the distribution would not tend to the theoretical one. However,
another aspect ‘‘saves the day,” namely that as the degrees of freedom become
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large, the x? distribution tends to the normal distribution. The skewness of the
distribution of K tends to

vk
which with increasing k, and fixed » tends to zero. It therefore appears that
if the number of equiprobable classes &k used in the goodness-of-fit test is equal
to rN, a reasonable approximation for r sizeable relative to unity is to sup-
pose that K; is normally distributed with a mean of (¥ — 1) and a variance
2(k — D[1 — (1/N)].

The results given above seem to tell us that for testing the goodness of fit to
continuous distributions, the variety of rules in the literature, stating that cell
expectations should be greater than 10, or greater than 5, or greater than 2,
seem to be quite irrelevant. In fact, the distribution of K; is not disturbed ap-
preciably, apparently, if the number of classes is of the order of the number
of observations. If & is equal to N, the distribution of K; is asymptotically
normal. It is clear that if % is of greater order, peculiar results obtain. If, for
instance, k equals N2, then the third moment is approximately 4N3 4 8N?, and
the skewness would be

(4N? + 8N?)
(3.24) SNV

which does not go to zero with increasing N. Similarly, the fourth moment
would be approximately 12N + 144N? + 8N* with kurtosis of approximately 2
for indefinitely large N.

The whole question of choice of the number of classes for the goodness-of-fit
test seems therefore to be still quite an open one. My initial view was that
having the number of classes equal to N, the number of observations would be
a good choice. Of course this would be modified as soon as the inevitable group-
ing error of observations from a continuous distribution is met. It seems clear,
however, that the larger the number of cells, the greater is the sensitivity of the
test to deviations in the tails. It is extremely unlikely that any particular choice
can be shown to be best for all circumstances.

The following sections give a few empirieal results on the case k equal to N,
for a null composite hypothesis of normality with data arising from a normal
distribution and from two distributions for which a generating program could
be written very quickly. Obviously much more computation needs to be done
as well as some theoretical work on the whole matter.

V2

4. Monte Carlo results on the distribution of K

The mathematical results above hold for the case of a completely specified
distribution, which we may note has no conditions on its dimensionality. In
the case of a multivariate distribution, one merely splits up the distribution
into N equiprobable regions, and an intuitively reasonable way of doing this
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is to base the regions on the equiprobability contours. The grouping crror of
observations will, however, cause problems.

I have not yet obtained any mathematical results on the effect on the dis-
tribution of K when parameters of the distribution are estimated. I imagine that
exactly the same type of result as was obtained by Fisher will hold, but the
mathematics are not so easy because in the present case the cell expectations
remain constant. In the cases considered by Pearson and Fisher, the cells werc
fixed, and asymptotically the cell frequencies increase and have a multivariate
normal distribution, whose exponent is distributed as x2.

In envisaging the test described, I felt that it was primarily to be regarded
as a test of distribution shape and not of location or secale, though obviously
it has power asymptotically with regard to any alternatives. I therefore had
computations performed for the case when parameters are estimated. Also
my initial interest was in tests of normality, so I had computations made on
samples from a normal distribution. Obviously, however, the test can be ap-
plied to any continuous distribution, and there is no reason to surmise that the
distribution of K depends on the nature of the true continuous distribution
from which the samples originate. Of course, it will be necessary that the method
of “estimation’ of parameters must be in some sense efficient or else the value
of x? will be too large (IFisher [5]).

Monte Carlo computations of the distribution of K were done by drawing
sample (y) of size 10, 20, and 50 from normal distributions N (g, o?) estimating
the mean and variance of the normal distribution by

4 =avey,

4.1) " 1 \
g =N—_‘TZ(Z/—3V67J),

and then comparing the actual sample with the fitted distribution.

Case I. Samples of size 10. As stated above, the possible values of K are
cven integers, so the obvious continuity correction was made. In view of the
projected use of the test as a tail area test, the most appropriate comparison is
to compare tail frequencies of the empirical distribution with those of the x?
distribution with 7 degrees of freedom. Of course, a test of goodness of fit would
use the cell frequencies and not the tail frequencies. The reduction from 9 to
7 degrees of freedom was made because two parameters are estimated. Theoret-
ical frequencies were taken from table 7 of Pearson and Hartley [7]. I have not
bothered to make a goodness-of-fit test of the Monte Carlo results because
the agreement and lack of agreement is quite obvious. In the casc of samples
of size 10, the frequency of the class “16 or over’” observed was .0258, whercas
the theoretical value is .0360; the expected number is therefore 180 and the
observed number was 129, which is clearly discrepant. However, from the view-
point of use, the reporting of a significance level as .0360, when it is close to
.0258, cannot be regarded as a serious defect.

It is worth noting that the mean value of K was found to be 7.43, and the
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variance of K was 12.3. The above theory and the usual rule of subtracting
unity for each parameter estimated suggests that the mean would be 7.0 and
the variance would be 12, so the agreement is really rather good. Actually the
mean is significantly greater than 7, but the tail areas do not seem to have been
disturbed seriously by the change in mean and variance from the theoretical
values for the x2 distribution with 7 degrees of freedom.

TABLE I

MonTte CarLo DistrieutioN oF K ror 5000 SAMPLES
oF Sizg 10 FrRoM A NorMAL PoPULATION

Proportion > K

Value of K Observed Expected

0 1.000

2 .995

4 941

6 732

8 .499
10 .284 .253
12 .133 .139 -
14 .080 .072
16 .0258 .0360
18 .0122 .0174
20 .0078 .0082
22 .0040 .0038
244+ .0004 .0017

Case I1. Samples of size 20. One thousand samples of size 20 from a normal
distribution were generated, and the distribution of K was estimated. The com-
parison is given in table II. Actually, the agreement of tail areas for the empirical
distribution and the x? distribution with 17 degrees of freedom seems quite
remarkable. The mean of the distribution of K was estimated to be 17.4, as
opposed to the theoretical value 17, and the variance as 30.90, which is to be
compared with an expected value from the theory presented above of 32 and
the value 34 for the theoretical x? distribution for 17 degrees of freedom. Ap-
parently, the discrepancy in mean and variance do not affect the tail areas
appreciably.

Case I11. Samples of size 50. Five hundred samples of size 50 were used,
and the comparison with the x? distribution for 47 degrees of freedom is given
in table III. Because Pearson and Hartley [7] give tail areas for 46 and for
48 degrees of freedom and for even valued abscissa, simple linear interpolation
was used. Actually, better interpolation could be done, but it was not deemed
necessary with the sample size considered. The agreement is really quite re-
markable. The discrepancy in mean was 47.37 compared to a theoretical value
of 47, and in variance 87.6 compared to 94 (or approximately 92, suggested
by the theory given above). It is again quite curious that discrepancy in mean
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TABLE II

MonTE CArRLO DisTRIBUTION OF K FOorR 1000 SaMPLES
oF Sizé 20 FROM A NORMAL PoOPULATION

Proportion > K

Value of K Observed Expected
6 1.000
8 .996
10 972
12 .905
14 .788
16 627
18 .460
20 331 329
22 217 226
24 153 .149
26 .092 .095
28 061 058
30 .039 .034
32 .025 .020
34 014 .011
36 .008 .006
38 .005 .003
40 .001 .001
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and variance do not affect the upper tail areas appreciably. There may be a
small discrepancy with the extreme upper tail, and a larger sample could be
examined to check on this point. The moral is, however, quite obvious, namely

TABLE III

MonTteE CARLO DisTRIBUTION OF K FOR 500 SAMPLES
oF S1ze 50 FRoM A NorMAL PoruLATION

Proportion > K Proportion > K
Value of K Observed Expected | Value of K Observed Expected
26 1.000 54 .232 .26
28 .998 56 .188 .20
30 994 58 .130 .15
32 .982 60 .102 11
34 .962 62 .084 .08
36 .936 64 .066 .06
38 .884 66 .048 .04
40 .818 68 .034 .03
42 742 70 .026 .02
44 .674 72 .018 .014
46 574 .55 74 .018 .009
48 452 45 76 012 .006
50 .380 .39 78 .010 .004
52 310 32 80 .010 .003
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that the use of the theoretical x2 distribution is quite unlikely to be even slightly
misleading.

6. Power of the K test

As stated above, it is obvious that the K test has some power with regard
to any alternative. The test is obviously consistent. A detailed examination of
power has not yet been made. Obviously there is the possibility of theoretical
development. Shapiro and Wilk [8] report their W-test for normality and some
comparison of power they made with the x2-test (it is not clear how this was
defined), Vb, b, Kolmogorov-Smirnov, Cramér-Von Mises, and a weighted
Cramér-Von Mises test. Their table 10 suggests that the W,-test is greatly
superior to the others. A comparison of the K tests with all these is planned
but has not been done because of lack of funds. Two cases are particularly easy
to program; when the parent distribution is the triangular distribution and when
it is x2? with 1 degree of freedom. In most cases in Shapiro and Wilk [8], the b,
test was fairly good relative to most of the others, except the W,.-test. In order
to get evidence cheaply on power of the K test, I have therefore applied the
K test to 1000 samples from each of the two distributions named above.

(a) Triangular distribution. Five hundred samples were drawn from a tri-
angular distribution and tested for normality. We take size of test from table 11
and obtain the results in table IV.

TABLE 1V

SeENsITIVITY OF K TEST FOR NORMALITY WITH SAMPLES
FROM A TRIANGULAR DISTRIBUTION

Value of K Size of test Estimated power
24 153 .956
26 .092 .900
28 .061 .814
30 .039 712
34 .014 .458
38 .005 .290
40 .001 .208

(b) Chi-square distribution with one d.f. Results were obtained similarly for
testing of normality, when the data originate from the x? distribution with
1 degree of freedom, and are given in table V. The preliminary results show, by
using the results given by Shapiro and Wilk [8] that the K test merits further
examination and consideration.

6. Concluding remarks

I now return to the matters discussed at the beginning of my lecture.
In a repetitive situation, like acceptance sampling, in which decisions are
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TABLE V

SENSITIVITY OF K TEST OF NORMALITY WITH SAMPLES
FROM x? (ONE D.F.) DISTRIBUTION

Value of K Size of test Estimated power
24 .153 .946
26 .092 .922
28 .061 .866
30 .039 818
34 .014 726
38 .005 .616
40 .001 572

terminal, such as accepting or rejecting the lot, it is obvious that one has to
map the sample space onto the decision space and that one has to consider the
properties in repetitions of the mapping rule. Clearly, if a most powerful de-
cision rule exists, it should be used. Also the costs of observation and risks of
erroneous decisions have to be included in the formulation. Also it seems quite
obvious that the decision-maker’s personal opinions about the class of repetitive
situations he will meet are relevant and should be included in the whole formula-
tion. Even in a so-called repetitive situation goodness of fit of model is relevant.
It is not sufficient merely to assume that a particular statistical model fits the
situation.

It seems clear to me, however, that the accumulation of knowledge is not a
repetitive process but rather an evolutionary one. No new situation is exactly
like a previous situation except with regard to some parameter values. An essen-
tial part of the application of any model to data is the application of goodness-
of-fit evaluations. It might be hoped that there would be one way of evaluating
goodness of fit which is superior to all others, but obviously such a hope is fore-
doomed to failure. The literature on goodness of fit suggests that particular
goodness-of-fit procedures are in some sense best with regard to the lack of fit
they are designed to detect. It appears, however, that optimality in one direc-
tion is always accomplished at the expense of optimality in other directions.
We are studying numerically the joint behavior of several goodness-of-fit tests,
but I do not have any results yet. Such results seem to be essential for an overall
intelligent approach to the problem.

The goodness-of-fit tests so far proposed seem to fall into essentially four
main categories: '

(a) those based on occupancy of cells determined by the hypothesized or
fitted distribution, of which the Pearson chi-square test is the classic case;

(b) those based on the comparison of the cumulative sample frequency and
the cumulative population frequence, like the Kolmogorov-Smirnov test,
or the tests based on the differences of population cumulative frequencies
between successive sample points;
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(c) the comparison of the ordered statistic with the expected value of the
ordered statistic, as is done in one way by Shapiro and Wilk [8];
(d) comparison of functions of moment statistics with theoretical values.

The comparison of tests is not easy. Asymptotic theory has been developed
for some cases, and hopefully it gives a reliable indication of the sensitivity of
the tests in various “directions.” I have, however, an uneasy feeling that much
asymptotic theory is based on the premise that observations of unlimited ac-
curacy are possible. Of course, this is not the case, and with largish samples
and a ‘“‘reasonable” grouping error, ties will occur. This seems to affect all the
tests but not with the same force. Many test criteria “blow up” when there are
ties. From one point of view this is not unreasonable. If observations have un-
limited accuracy, the hypothesis that they arise from a continuous distribution
is untenable as soon as ties occur. The occurrence of ‘‘ties” appears to be an
unavoidable embarrassment to the person who develops theory for so-called
continuous observations. I find the discussion in the literature on this quite
unsatisfying. The “answer’” one obtains by some tests depends critically on
how ““ties” are broken. To suggest using some extraneous device to break ties,
amounts to basing one’s opinions with regard to a situation on an independent
source of noise and this seems totally repugnant. This is quite unrelated to the
use of a coin-toss to make up one’s mind when one is unable to do so in any
other way.

Of the classes of tests outlined above, many of the tests of classes (b) and (c)
encounter the problems arising from grouping of observations in a violent form.
The tests of class (d) are relatively not bothered by this, because we have strong
intuitions that a moment-like function of a grouped sample is very close in
behavior to that of an ungrouped sample. The tests based on occupancy of cells
will encounter difficulties from grouping error, but it would appear that these
difficulties are mild, and that reasonable smoothing devices will not disturb the
distribution of the test criterion very much.

I am inclined to the view that with small samples, when ties will be very
infrequent with a reasonable grouping error, tests based on order statistics will
prove to be reasonably sensitive in many diverse directions. With intermediate
and large samples, I am inclined to think that occupancy type tests give the
data analyzer generally satisfactory answers. The question is not “Do the data
come from such and such a distribution?”’, because one can be sure they never
do, but “Is such and such a distribution a reasonable model for the description
of the data?”’. It may well prove to be the case that a good overall procedure
will combine an occupancy test and some sort of extreme value test. [See
David [2] in connection with such a possibility. ]

I wish to make one final point on inference. When faced with a sample the
statistician makes a goodness-of-fit test for normality, and then constructs
some limits on the parameters. The probability stated to be associated with
these limits is always stated to be that conditional on normality, say. If, in-
stead, one nominates a test of goodness of fit, and then delimits the parameter
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values for which there is a fit within a specified significance level, one obtains
distributions which are consonant with the whole data. Such limits will be
different, and may be wider and might therefore be thought to be not as good
as the conditional ones. But they seem to me at least to give an answer to the
informational question. This seems to be an example of how the notion of “most
powerful,” and even the notion of sufficiency have led our profession astray.
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