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1. Summary

In statistical theory one comes across various families of statistics (subfields).
For each such family, it is of some interest to ask oneself as to whether the
family has maximal and/or minimal elements. The author proves here the
existence of such elements in a number of cases and leaves the question un-
solved in a number of other cases. A number of problems of an allied nature are
also discussed.

2. Introduction

Let (SC, a, d) be a given probability structure (or statistical model). A statistic
is a measurable transformation of (9C, a) to some other measurable space. Each
such statistic induces, in a natural manner, a subfield (abbreviation for sub-cr-
field) of (t and is, indeed, identifiable with the induced subfield.
Between subfields of a there exists the following natural partial ordering.
DEFINITION 1. The subfield el1 is said to be larger than the subfield a2 if every

member of a2 is also a member of a1.
A slightly weaker version of the above partial order is the following.
DEFINITION 2. The subfield a1 is said to be essentially larger than the subfield a2

if every member of a2 is P-equivalent to some member of a1.
As usual, two measurable sets A and B are said to be 6P-equivalent if their

symmetric difference A A B is P-null for each P E (P.
Given a family 5f of subfields (statistics), one naturally inquires as to whether

aY has a largest and/or least element in the sense of definition 1. In the absence of
such elements in 5, one may inquire about the possible existence of maximal
and/or minimal elements. An element a0 of 5: is a maximal (minimal) element of
F, if there exists no other element a, in 5f such that a1 is larger (smaller) than to.
In the absence of maximal (minimal) elements in i, one may look for elements
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42 FIFTH BERKELEY SYMPOSIUM: BASU

that are essentially largest (least) or are essentially maximal (minimal) in the
sense of the weaker partial order of definition 2.
The particular case in which 5F is the family of all sufficient subfields has re-

ceived considerable attention. The largest element of f is clearly the total sub-
field a itself. If (P is a dominated family of measures, then it is well known that
5V has an essentially least element in terms of the weaker partial order of definition
2. In general, 5F does not have even essentially minimal elements. If, however, an
essentially minimal element exists, then it must be essentially unique, and thus,
the essentially least element of 5Y (see corollary 3 to theorem 4 in [3]).

In [1] the author considers the family f of ancillary subfields. A subfield a0
is said to be ancillary if the restriction to a0 of the class (P of probability measures
shrinks the class down to a single probability measure. The least ancillary sub-
field is clearly the trivial subfield, consisting of only the empty set 0 and the
whole space $C. The existence of maximal elements in the family of ancillary sub-
fields is demonstrated in [1]. In general, there exists a multiplicity of maximal
ancillary subfields.

In sections 3 to 6 we list four problems that are similar to the problem of
ancillary subfields. In section 7 we develop a general method to demonstrate the
existence of maximal elements in these four cases. In section 8 we discuss some
related questions, and in section 9 we list a number of other problems.

3. The family 51 of 63-independent subfields

Let (3 be a fixed subfield. A subfield is said to be (B-independent (independent
of (B) if P(BC) = P(B)P(C) for all B E 6B, C E e and P G (P.

Let 91 be the family of all 63-independent subfields. Clearly, the least element
of 5:1 is the trivial subfield. Even in very simple situations, a, has no largest, or
essentially largest, element. In section 7 we shall show that 5:1 always has
maximal elements. Consider the two examples.
EXAMPLE 1 (a). Let DC consist of the four points a, b, c, and d, and let (P consist

of only one probability measure-the one that allots equal probabilities to the
four points. Let (B consist of the four sets 0, SC, [a, b], and [c, d]. Then the two
subfields el and C2, consisting respectively of

C1: 0, OX, [a, c] and [b, d],
(2: 0, $, [a, d] and [b, c],

are both maximal (B-independent subfields. Incidentally, in this case, e1 and C2
happen to be independent of each other.
EXAMPLE 1(b). Let xl, x2, ... , x, be n independent normal variables with

equal unknown means oand equal unknown standard deviations 0. Let (B be the
subfield induced by the statistic
(3.2) x = (xl + x2 + + Xn)/n,
and let C be induced by the set of differences
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(3.3) D = (xl1-X., x2 -X., * * *, Xn_-1-Xn).
Here C is 63-independent, but it is not the largest (53-independent subfield.

Indeed, in this situation there are infinitely many maximal elements in 5Y1 (see
example 1 in [1]). However, it is possible to show that e is an essentially maximal
element in 5:F. In the above example, one may reverse the role of x and D and ask
oneself as to whether x is a maximal D-independent statistic. It is of some interest
to speculate about the truth or falsity of the following general proposition.
PROPOSITION 1. If e is a maximal (or essentially maximal) (3-independent sub-

field, then (B is a maximal (or essentially maximal) C-independent subfield.

4. The family 92 of v-free subfields

Let us suppose that the members of the class (P are indexed by two independent
parameters 0 and so; that is,
(4.1) ( = {Pe,q,a0Ee, w E m},
the parameter space being the Cartesian product 0 X (D.
A subfield e is called so-free if the restriction of (P to e leads to a class of proba-

bility measures that may be indexed by 0 alone; that is for all C c e the proba-
bility Pe,,(C) is a function of 0 only. Let 5V2 be the family of all p-free subfields.
Evidently, the concept of v-free subfields is a direct generalization of the concept
of ancillary subfields.
The trivial subfield is again the least element of 52. That 3V2 always has maxi-

mal elements will be demonstrated later. In general, 52 has a plurality of maximal
elements.
EXAMPLE 2(a). Let $ consist of the five points a, b, c, d, and e, and let P =

{jW,j} consist of the probability measures

x a b c d e
(4.2)

Pe,9,() |1-0 0oO(P 0(2- o) 0(2- o)

where 0 < 0 < 1 and 0 < so < 2-
There are exactly 12 subsets of SC whose probability measure is sP-free, and they

are SC, [a], [b, d], [b, e], [c, d], [c, e], and their complements. As these 12 sets do
not constitute a subfield, it is clear that there cannot exist a largest element in 52.
The two subfields Cl and C2 consisting respectively of

4e: DC, [a], [b, d], [c, e] and their complements,
(2: $, [a], [b, e], [c, d] and their complements,

are the two maximal elements of 92.
EXAMPLE 2(b). Let xi, x2, ... , xn ben independent and identically distributed

variables with a cumulative distribution function (cdf) of the type F(x - /),
-X < w < o, 0 < 0 < o, where the function F is known and so, 0 are the so-
called location and scale parameters.
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The subfield e generated by the n - 1 dimensional statistic,

(4.4) D = (Xl-Xn- X2 -X **, 2Xn, - Xn)

is so-free in the sense defined before. In general, it is not true that e is the largest
element of the family Y2 of so-free subfields. In the particular case where F is the
cdf of a normal variable, the subfield e may be shown to be an essentially maxi-
mal element of ff2. Let us observe that in this particular case, 52 is the same as
iF3 of example 1(b). The following proposition may well be true.
PROPOSITION 2. Whatever may be F, the subfield e (as defined above) is an

essentially maximal element of thefamily 5:2 of op-free (,p being the location parameter)
subfields.

Suppose in example 2(b) we reverse the role of so and 0 and concern ourselves
with the family f2* of 0-free subfields, that is, with subfields every member of
which has a probability measure that does not involve the scale parameter 0. The
author believes that the following proposition is generally true.
PROPosrrION 3. Every 0-free subfield is also (p-free, that is, 52 C 5f2.
In the particular case where F is the cdf of a normal variable, the truth of

proposition 3 has been established in [4].

5. The family f3 of 9-similar subfields

Let 9 = {g} be an arbitrary but fixed class of measurable transformations of
(9C, e) into itself. For each P e 6P, the transformation g E 9 induces a proba-
bility measure Pg-' on (9C, a). A subfield e will be called 9-similar if, for each
g e 9 and P E P, the restriction of the two measures P and Pg-' to e are
identical. In other words, e is 9-similar if for all C E e,

(5.1) Pg-I(C) P(C) for all P e ? and g E 9.

Let f3 be the family of all 9-similar subfields. One may look upon 5f3 as the family
of subfields that are induced by statistics T(x) such that T(x) and T(gx) are
identically distributed for each P E P and g E 9. The least element of ff3 is, of
course, the trivial subfield. As we shall see later, ff3 always has maximal elements
and, in general, a plurality of them.
EXAMPLE 3(a). Let 9t be the real line and 6' = {Pe-oo < 0 < oo}, where Pe

is the uniform distribution over the interval (0, 0 + 1). Let 9 consist of the single
transformation g defined as gx = the fractional part of x. It is easy to check that
for all 0 in (-o, co), Peg-l = Po.

In this example, the subfield e is 9-similar if and only if each member of e has
a probability that is 0-free. Thus, the family f3 of 9-similar subfields is the same
as the family of ancillary subfields. Here, 53 has a largest element, and that is the
subfield of all Borel sets A such that the two sets A and A + 1 are essentially
equal with respect to the Lebesgue measure.
EXAMPLE 3(b). Let (9c, a, 6) be as in example 2(b) where F is known and sP 0

are the location and scale parameters. Define the shift transformation ga as
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(5.2) ga(Xl, X22 * * Xn) = (X1+ a, X2 + a, **.* Xn + a),
where a is a fixed real number. Let 9 = {gal-°° < a < oo} be the class of all
shift transformations.

Denoting the joint distribution of (xl, X2, ... , xn) by PF,,, we note at once
that

(5.3) P,,,6 ga1 = P,+a,o.
In this example, the family 53 of 9-similar subfields is the same as the family

52 of p-free subfields.
Let us call the set A 9-invariant if A e a and g-rA = A for all g c 9. Likewise,

let us call A almost 9-invariant if the two sets g-1A and A are (P-equivalent for all
g E 9. Let 6Bi and (Ba be respectively the class of 9-invariant and almost 9-invari-
ant sets. It is easy to check that (Bi and (Ba are members of the family a3 of
9-similar subfields. The following proposition should be provable under some
conditions.
PROPOSITION 4. The subfield (Ba of almost 9-invariant sets is a maximal

9-similar subfield.
Under some general conditions it should also be true that the subfield 63i of

9-invariant sets is an essentially maximal element of 53. This is so in the case of
example 3(b) where F is the cdf of a normal variable.

6. The family (14 of 63-linked subfields

Let B be a fixed subfield of a. A subfield e will be called 6-linked if (B is suffi-
cient for (e, (P); that is, for every C E C, there exists a (-measurable mapping
Q(C, *) of 9C into the unit interval such that, for all B e (B and P e (,

(6.1) P(BC) = JB Q(C, *) dP(.).

Let 5a4 be the family of all (B-linked subfields. The trivial subfield is again the
least element of a4. We shall presently see that 5F4 always has maximal elements.
EXAMPLE 4(a). (i) Let ( be the trivial subfield. It is easy to see, in this

instance, that f4 is the same as the family of all ancillary subfields.
(ii) Let us suppose that (P is indexed by the parameters so and 0. Let (B be a

fixed y-free subfield, that is, a member of 5:2 as defined in section 4. In this
instance, every 63-linked subfield is also so-free.

(iii) Let 63 be a sufficient subfield. In this case a4 is the family of all subfields.
EXAMPLE 4(b). Let (9C, a, P)be as in example 1(b), and let (B be the subfield

induced by the sample variance 2(x, - y)2/n. If e is the subfield induced by
(6.2) D = (X1- X, X2 - Xn, Xn1 -Xn)
then it is easy to check that e is (go-linked. Since (Bo is so-free, it follows that
every (Bo-linked subfield is also o-free. It is possible to show that C is an essen-
tially maximal (Bo-linked subfield. The truth of the following proposition is worth
investigating.



46 FIFTH BERKELEY SYMPOSIUM: BASU

PROPOSITION 5. If (Bo and e are as in example 4(b), thent e is an essenitially
largest elenment of the family 94 of the (Bo-linked sutbfields.

7. Existence of maximal elements

In this section we develop some general methods to prove the existence of
maximal elements in the families Fl, 52, 93, and 54. Let us first note a common
feature of the four families of subfields. 1Each 5: (i = 1, 2, 3, 4) is the totality of
all subfields that can be embedded in a certain class 8i of measurable sets. This
will be clear once we defiine the four classes 81, 82, 83, and 84 of measurable sets.

DEFINITIONS. (i) Let 81 be the class of all 6?-independent (see section 3) sets;
81 = {A|P(AB) = P(A)P(B), for all P E P, B e 6t}.

(ii) Let 82 be the class of all <p-free (see section 4) sets; 82 = {AjPp,o(A) does not
involve so}.

(iii) Let 83 be the class of all C,-similar (see section a) sets; 83 = {AJP(g-'A) =
P(A) for all P Gc, g E9}.

(iv) Let 84 be the class of all 6B-linked (see section 6) sets; A G 84 if and only if
there exists a 6(-?reasurable mapping Q(A, *) of SC into the utnit interval such that
P(AB) = fB Q(A, -) dP(*) for all 1' E 6 and Be (B.

It is now clear that, for i = 1, 2, 3, 4,

(7.1) {i= Ce'e is a subfield and C C 8i},
that is, 5i is the family of all subfields that can be embedded in the class 8i of
measurable sets.
Our first general result is the followiing.
THEOREM 1. Each 8i, (i = 1, 2, 3, 4) has the following properties:
(a) 0 e 8j, XC 88j;
(b) A c i,Be8j,A CB B-A e8j;
(c) &j is closed for coutntable disjoint unions.
The proof of theorem 1 is routine and hence omitted. AIn immediate con-

sequence of theorem 1 is the followinig.
COROLLARY. Each 8i, (i = 1, 2, 3, 4) is a monotone class of sets.
The followiing are our fundamental existence theorems.
THEOREM 2. If 8 is a given monotone class of sets, and 9 is the family of all

Borel fields that could be embedded in 8, then corresponding to each element C, of i,
there exists a maximal element 5 of 5 such that C C C.

PROOF. Let {Ct,t e T' be an arbitrary subfamily of i, which is linearly ordered
with respect to the partial order of inclusion relationship, aiid let Co = UtET (Ct.

Since {'t} is liinearly ordered, it follows that Co is a field of sets. The monotone
extension of Co is then the same as the Borel extension Cl of C0. Sirnce 8 is moino-
tone and Co C 8, it follows that C1 C 8 and hence C1 E i. Thus, every linearly
ordered subfamily of 5: has an upper bound in iY. Theorem 2 is then a consequence
of Zorn's Lemma.
An immediate consequeince of theorems 1 and 2 is theorem 3.
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THEOREM 3. For each e e i there exists a maximal element e in gi such that
C CC , (i = 1, 2, 3, 4).

8. Some general results

Let 8 be a class of measurable sets having the same characteristics as those of
the classes 8i in theorem 1. That is,

(a) 0 e 8, oE E8;
(b) A E8,B E,A CB=>B -A e8;
(c) E is closed for countable disjoint unions.
Let 5f be the family of all the subfields that may be embedded in 8, and let 5~0

be the subfamily of all the maximal elements in W. That 50 is not vacuous has
been established in theorem 2.
Two members A and B of 8 are said to 'conform' if AB e 8. The set A E 8 is

said to be 'conforming' if AB E 8 for all B e 8. If every member of 8 is conforming,
then 8 must itself be a Borel field; hence, there is no problem since 30 consists of a
single member, namely 8 itself. A subfield is 'conforming' if every one of its mem-
bers is so.
THEOREM 4. Let D be the class of all the conforming sets in 8, that is,

(8.1) A EF D A e and AB e8 forall Be E.

Let f stand for a typical element of go; that is, S1Z is a maximal element of 9:
(i) z is a maximal element of 5Y if and only if A E 8 - implies that A does

not conform to at least one member of Z;
(ii) Dc is a subfield and is equal to the intersection of all the maximal elements in

W. It is the largest conforming subfield;
(iii) e is a conforming subfield if and only iffor B c § it is true that e V 63 E 3,

where e V 63 stands for the least subfield containing both e and (B.
PROOF. Let 1t eE:o, and let A be a fixed member of - MZ. If possible, let

A conform to all the members of fMZ. Consider the class M* of sets of the type
AM1 U A'M2, where M1 and M2 are arbitrary members of M. It is easy to check
that M*EF 3f and that A c M* and M1Z C M*. This violates the supposition that
fl is a maximal element of W. Thus, the 'only if' part of (i) is proved. To prove
the 'if' part we have only to observe that if M1t is not maximal, then there exists
a larger subfield M* C 8 and this implies the existence of an A e 8 - M that
conforms to every member of M.
Since every member of D conforms by definition to every member of 8, it is an

immediate consequence of (i) that D C M for each M e Y0, that is, O C n M.
Now let M and E be typical members of nZ and 8 respectively. From

theorem 2 there exists a maximal element o0 in 5: which contains the subfield
consisting of 0, E, E', and 9C. Thus, M and E are together in the subfield lo, and
hence they must conform. Since E is arbitrary, it follows that M c 5D. We have
thus proved the equality of S and nM, and have incidentally proved the
equality of 8 and U on. Since each Mz is a subfield, it is now clear that D = nmZ
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is also a subfield. That it is the largest conforming subfield follows from its
definition.
Now let e be an arbitrary conforming subfield; that is, let e be a subfield of D.

For each (B EF5 there exists (theorem 2) a maximal element fflZ of f such that
(B C M. But e C D C M. Therefore, e V (BC M C 8, that is e V 6E3e i.
This proves the 'only if' part of (iii). The 'if' part is trivial.
For example, let E be the class of all (B-linked sets (see sections 6 and 7) in the

probability structure (C, a, 6), where 63 is a fixed subfield of t. If the set A
is 8-linked, that is, if there exists a 68-measurable function Q(A, *) satisfying
definition (iv) of section 7, then it is easily seen that AB is M-linked for every
B E a. We have only to define Q(AB, *) as Q(A, *) I(B, .), where I(B, *) is the
indicator of B.

In this case, 6a is a conforming subfield. Theorem 4(iii) then asserts that for
every 63-linked subfield C, the subfield 6a V C is also (B-linked. It will be of some
interest to find out conditions under which a is the largest conforming subfield,
that is, aB = D.

9. Some further problems

In this section we list four problems that are mostly unsolved.
(A) Separating subfields. Let C? be a class of 'distinct' probability measures on

a measurable space (DC, a). That is, for each pair P1, P2 of members of (P there
exists a measurable set A E a such that P1(A) $d P2(A). A subfield 63 will be
called 'separating' if the restriction of W? to (B gives rise to a class of distinct
measures. For example, every sufficient subfield is separating. No ancillary or
so-free (see section 4) subfield is separating.
Let a5 be the family of all separating subfields. By definition, a is the largest

element of 56. What can we say about the existence of minimal elements in 5r?
A variant of this problem has recently received some attention in the USSR
([6], [8]). A partition II of SC into a class of disjoint measurable sets {At} will be
called 'separating' if, for each pair P1, P2 of member of d>, there exists a member A t
of the partition II such that P1(At) F4 P2(At). A separating partition is called
minimal if there exists no other separating partition with a smaller number of
parts. Let P(C?) stand for the number, possibly infinite, of parts in a minimal
separating partition. What can we say about v(C?)?
EXAMPLE 5(a). Consider the class C? of all normal distributions on the real line

with unit variances. Here v(@)) = 2. Any partition of the real line into two half
lines is clearly separating and, of course, minimal. The corresponding subfield is
a minimal element of 5,;.
EXAMPLE 5(b). Let (C be the family of uniform distributions on [0, 0],

O < 0 < 1. In this case v(C?) = 3 (see [6]).
EXAMPLE 5(c). If C? consists of a finite number of measures P1, P2, P.,

then v(@) < n. If C? consists of a countable number of continuous measures, then
v(@?) = 2 (see [6], [8]).



MAXIMAL AND MINIMAL ELEMENTS 49

(B) Partially sufficient subfields. The notion of partial sufficiency, as intro-
duced by Fraser [5], is as follows.

Let 6={P=,p,}, S° E (, 0 e 0, be a family of probability measures indexed by
the two independent parameters so and 0. A subfield 63 C a will be called
0-sufficient for a (or simply 0-sufficient) if

(i) 63 is q-free in the sense of section 4, and
(ii) for each A E a there exists a choice of the conditional probability

(function) of A given 63 that does not depend on 0; that is, for each so E 4b, there
exists a 8-measurable function Q,,(A, *) that maps SC to the unit interval in such
a manner that

(9.1) Pp,O(AB) fJB Q,(A, * ) dPp a( *)

for all B E 63 and 0 e 0.
Let 56 be the family of all 0-sufficient subfields. Under what conditions can we

prove that 56 is not vacuous? What about the minimal and maximal elements
in 5:6?

(C) Complete subfields. Given a probability structure (9C, a, (P), we call a
subfield 63 'complete' if for a 63-measurable, 6'-integrable function f, the integral
fcf dP = 0, for all P E 6', when, and only when, f is (P-equivalent to zero. Let
5:7 be the family of all complete subfields. What can we say about the existence of
maximal and minimal elements in 5f7?

Let us terminate this list of problems with a final one.
(D) Complementary subfield. Let (9C, a) be a given measurable space and

let 6 be a fixed subfield of a. A subfield e will be called a complement to 6
if 63 V C = a, that is, if a is the least Borel field that contains both C3 and e.

Let 5:8 be the family of all subfields that are complements to 63. For example,
if 63 is the trivial subfield, then 58 consists of a single element, namely a itself.
If 63 = a, then 5:8 consists of all subfields of a.
Of course, a is the largest element of 58. It is easy to construct examples

where 58 has a multiplicity of minimal elements. Whether 5:8 always has a
minimal element is not known.

10. An addendum

Of the several speculatory statements made (and listed as propositions) in
this paper, E. L. Lehmann has recently proved proposition 3 under some condi-
tions on F. Counterexamples to propositions 1 and 2 have been obtained by
J. K. Ghosh.
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