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1. Introduction

In an organization, individuals typically differ in at least three important
respects: (1) they control different action variables, (2) they base their decisions
on different information, (3) they have different goals. Thus it would seem that
the theory of games provides the most suitable mathematical framework for the
study of organizations. However, many interesting aspects of organizations are
related to differences of types (1) and (2) only. Furthermore, in some cases the
members of the organization may have nearly identical goals; or, as in the case
of organizing machines, it may be appropriate to consider only the goal of the
organizer. Finally, in its present state of development, the theory of games of
more than two persons does not appear to provide many clues as to how to
proceed in a general analysis of organizations.

All of this suggests the study of theoretical organizations in which differences
of type (3) are abEent, that is, in which there is a single payoff function reflecting
the common goals of the members, or of the organizer. J. Marscbak has called
such an organization a team (see [3]). In the theory of teams, as in statistical
decision problems in general, two basic questions are: (a) for a given structure
of information, what is the optimal decision function? (b) what are the relative
values of alternative structures of information? For example, consider an
airline company with a number of ticket agents who are authorized to sell
reservations on future flights with only partial (if any) information about what
reservations have keen booked by other agents. One can study the best rules for
these agents to use under such circumstances, taking account of the joint prob-
ability distribution of demands for reservations at the several offices, the losses
due to selling too many or too few reservations in total, and so forth. One can
also study the additional value that would result from providing the agents
with complete information about the other reservations already booked; such
an additional value figure would place an upper limit on the expense that it would
be worthwhile to incur in order to provide the agents with that information.
M. Beckmann in [1] has analyzed airlines reservations problems along these
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lines; and C. B. McGuire [4] has-studied certain other models of sales organiza-
tion, also from a team theoretic point of view.

In this paper I describe, evaluate, and compare certain elementary informa-
tion structures in teams. Some of these information structures (for example,
complete information, complete decentralization) are of interest because they
are in a sense extreme; they are useful as bases of comparison with other infor-
mation structures. The others represent simplified models that are suggested by
common organizational devices. The reader will have no difficulty in recognizing
the primitive character of these models.
The entire discussion in this paper is restricted to the case in which the payoff

to the team is a quadratic function of the action variables, for each possible
state of the world, that is, for each specification of the values of the uncontrolled
variables in the environment. The methods used here were developed in [5].
Some discussion of the case of a team decision problem with a concave poly-
hedral payoff function can be found in [6] and [7]. However, in that case explicit
formulas for the values of particular information structures appear to be very
difficult to obtain, making it more difficult than in the quadratic case to derive
conclusions about the relative values of the several information structures
described below.

2. Team decision problems with quadratic payoff functions

As already mentioned, in the team decision problems to be considered in this
paper, the action variables will be taken to be real variables, and the payoff to
the team to be a quadratic function of the action variables, for every state of the
world. Thus let the action variable of team member i be denoted by ai (real),
i = 1, *.. , N, let the state of the world be denoted by x, where a is an element
of some probability measure space (X, 9c, p), and let the payoff to the team be

(2.1) w(x, a) = po + 2a',(x) - a'Qa,

where a denotes the (column) vector with coordinates ai, for i = 1, * , N; and
u is a measurable vector-valued function on X, and Q is a fixed positive definite
N X N matrix. Without loss of generality one can take Mo = 0. The measure p
expresses the uncertainty about which state of the world actually obtains.
The information upon which the several team members base their decisions is

expressed as follows. For each i = 1, * * *, N, let (Yi, cyg) be some measurable
space; and Yi represents the set of alternative "signals" that can be received by
person i. Also, for each i, let ji be a measurable function from X to Yi, called the
information function for person i. The n-tuple q = (X11, * * * , 1N) will be called
the information structure for the team. The function qij determines the signals
that person i receives under the alternative states of the world. Thus

(2.2) yi = '1i(x).
Finally, the actions of the team members are to be determined according to
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decision functions ai, where ai is a real-valued measurable function on Yi,
that is,

(2.3) ai = a,(yi).
The vector a of decision functions ai will be called the team decision function.
Given an information structure , one wishes to choose a team decision function
so as to maximize the expected payoff

(2.4) Q(1 a) = Ew{x, a,[,lI(x)] * , aN[?7N(X)]}.
Beyond the choice of best decision functions for given information structures,

it is of interest to compare alternative information structures in terms of the
maximum expected payoff that can be derived from their use. It is convenient
to take as an origin for measurement the maximum expected payoff for the
"null" information structure, which provides no information beyond the knowl-
edge of p itself. Thus the value of an information structure q is defined by

(2.5) V(77) = max Q(n, a) - max Ew(x, a).
a a

In this paper a number of information structures, suggested by various organiza-
tional devices, will be analyzed, from the point of view of determining their
values and the corresponding optimal decision functions.

3. Characterization of optimal decision functions and value of
information in the quadratic case

In this section the main tools of analysis for the following sections are pre-
sented. These results are given without proof, the proofs already having been
given in an earlier paper [5].
The first result characterizes the best team decision function for a given infor-

mation structure in terms of a set of simultaneous "stationarity" conditions,
which can be derived from a more general theorem, according to which under
certain conditions a team decision function is optimal if and only if it cannot be
improved by changing only one component decision function at a time.
THEOREM 1. Suppose E,u4 < X, for i = 1, * * *, N; then fo? any information

structure q the unique (a.e.) best team decision function is the solution of

(3.1) qii,i + E qijE(a;ln1i) = E(tij71i), i = 1, * , N.j#i
Throughout this paper it will be assumed that EM2 < x, for i = 1, *- , N.
As a corollary to theorem 1, one has the following result on the value of an

information structure.
COROLLARY 1. If d ts an optimal team decision function with respect to an in-

formation structure 77, then

(3.2) V(rq) = E'- (E&)'(Eu).
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A second corollary concerns the expected value of an optimal decision func-
tion.
COROLLARY 2. If ci is optimal for some r7, then

(3.3) Ed = Q-1E,A.

In view of corollaries 1 and 2 to theorem 1, there is no essential loss of gen-
erality in assuming EA = 0. As a consequence one has

(3.4) V(r7) = Ed',

(3.5) Ed = 0.

The second theorem deals with the important special case in which the infor-
mation variables and the random coefficients ,Ai are normally distributed.
THEOREM 2. Suppose that rBl, - - -, 'ON are vector valued, and that'01, * - -, TqN and

A .. , AN are jcintly normally distributed; then for the optimal team decision func-
tion, ai is a linear function of yi.

4. Generation of information structures by processes of observation,
communication, and computation

The several information structures to be considered in the following sections
can all be viewed as being generated by certain processes of observation, com-
munication, and computation. Suppose that there are N persons and that person
i observes a random variable Pi(x) and takes action ai. If there is no communica-
tion among the persons, then person i's information function is fli(X) = ri(x)-
On the other hand if there is complete communication among the persons, then
v+(X) = t(x) e [¢1(x), , pN(x)]. Alternatively, the latter information struc-
ture could be generated by all persons communicating their observations to a
central agency, which computes the best actions, and communicates them to the
corresponding persons. Still different information structures are generated if
errors are introduced into the communications to or from the central agency or
between team members.

Rarely does one encounter in a real organization the extremes of nIo com-
munication or complete communication just described. Rather, one finds that
numerous devices are used to bring about a partial exchange of information. The
usefulness of such devices is of course measured by the excess of the additional
value (expected payoff) they contribute, over the costs of installing and operat-
ing them. Some simple devices of this kind will be examined in the following
sections. For example, if each person i disseminates some contraction of his
own observation, say ri[¢f(x)], to all other persons in the team, then the resulting
information structure is

(4.1) vi = (Ni,f),o " deetaizto"N,
where T = (-ri, *** TN). A differenit type of "partial decentralization" is achieved
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by partitioning the persons into groups, with complete communication within
groups, and no communication between groups.
A third type of "partial decentralization" is suggested by the phrase "manage-

ment by exception." For example, suppose that the possible values of person i's
observation are partitioned into two subsets, Ri and Th, labeled "exceptional"
and "ordinarv," respectively. Suppose further that whenever person i's observa-
tion is "ordinary" he bases his action upon that observation alone, whereas
whenever his observation is "exceptional" he reports it to a central agency, or
manager, who then decides the values of all action variables corresponding to
exceptional observations, on the basis of all those exceptional observations. The
information thus generated is, for each i,

(4.2x), if Pi(x) EE Xi,
(4.2) = {MJ(X)hx)E(Rj), if Ds(x) E Ri,

and might be called "reports of exceptions."
In certain of the information structures investigated in this paper it is assumed

that the observational functions P1, -. , tN are statistically independent. This
does not mean that the information functions 71i for the several team members
are statistically independent; on the contrary, such dependence is introduced
when communication takes place. It would also be of interest, of course, to
study the effect of dependence among the observations themselves. However, as
the reader will soon see, the picture is complicated enough with independent
observations, and it has seemed best at this time to leave the study of dependent
observations for certain structures to a separate investigation.
A special case of interest is the one in which

(4.3) Pi(x) = ,i(x),
where A,(x) is the coefficient of ai in the quadratic payoff function (2.1). This
case will be called the case of cospecialization of action and observation since in
this case each person observes, in a sense, the first order effect of his own action
variable upon the team payoff. This concept was introduced by Marschak.

In order to see more clearly the effects of interactions between action vari-
ables in the payoff function (as measured by the coefficients qi, for i wd j), it will
from time to time be of interest to consider the special case in which
(4.4) qij = q2qlJt2q iq£ i.

By suitable changes in units of the action variables, this can be transformed
into the case

This will be called the case of identical interaction. It is noteworthy that, in
order for the matrix ((qij)) of (4.5) to be positive definite, it is necessary and
sufficient that
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(4.6) N 1 q < 1,

which in this case is equivalent to

(4.7) - -aa<aj N - 1

5. Complete communication, complete information, and routine

Complete communication among the team members results in providing all
team members with the same information on which to base their decisions.
Should this resulting common information be sufficient to determine the best
possible decision function (that is, that decision function that would be optimal
if the team had complete information about the state of the world), then one
is in the special case of complete information. At the other extreme is the case
in which the team members base their decisions upon the knowledge of the
probability distribution of the states of the world only, which corresponds to no
observation at all. This will be called the case of "routine."

These three special cases are typically too extreme to be of practical interest
in an organization of any complexity. Nevertheless, they are useful as "base
lines" from which one can measure the effects of other information structures.
Thus, in equation (2.5) the value of an information structure v has beeil defined
as the maximum expected payoff using q, minus the maximum expected payoff
using the "routine" information structure. From the other side, it is of interest
to calculate the loss due to using q as compared with complete communication,
or complete information.

In the special case of cospecialization of action and observation (see section 4),
complete communication is equivalent to complete information, as will be shown
below.

Denoting the observation of person i by ti(x), as in the previous section, the
information structure called complete communication is defined by

(5.1) 7i(x) =(x),
where

(5.2) t(x) [ri(X), * X)].
As is well known for the case of the quadratic payoff function (2.1), the best
decision function is a linear transformation of the conditional expectation of M
given t. This is easily seen by applying theorem 1, whose condition (3.1) reduces
in this case to

(5.3) E qijaj = E(Mil¢), = 1, * , N,

or more concisely
(5.4) Qax = E(AD).
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The optimal team decision function under complete communication is therefore

(5-5) & = QlE(,,l).
In the special case in which P(x) = x, the team has complete information,

that is,
(5.6) qi(x) = x, i=1, , N.

For this case (5.5) implies that the best team decision function is

(5.7) 1 = Q'A.
Henceforth the symbol j3 will denote the best decision function under complete
information as given by (5.7). Note that 13(z) depends upon x through p only;
hence complete knowledge of u is sufficient to allow each team member to use ,B.
From this it follows that in the case of cospecialization of observation and in-
formation, complete communication is equivalent to complete information.

Routine is defined by
(5.8) 1i(x) = constant (independent of x), i = 1,.*, N.

Under routine any team decision function is a constant vector, say a, and the
best value of this vector is

(5.9) d Q-'E(,u),
as is easily seen by applying theorem 1. Recall, however, the normalizing as-
sumption E(y) = 0, which with (5.9) implies
(5.10) Q = 0.

It follows immediately from (5.10) that the maximum expected value under
routine is zero. Thus by the normalization of E(,u) = 0, the value of any informa-
tion structure [equation (2.3)] and maximum expected payoff under that struc-
ture become identical.
The value of complete information is easily inferred from (3.4) to be

(5.11) V1 = Ep'Q--1p.
Also applying (3.4), the value of complete communication is

(5.12) Vr = E[E(plI)'Q-'E(IAJD)].
The loss due to using complete communication, relative to complete informa-
tion, is obtained by subtracting (5.12) from (5.11), which yields

(5.13) Lr = E{[, - E(IlA)]'Q-'[ - E(pAlt)]}.
Considering now the special case of identical interaction (4.5), the inverse of Q,

which will be denoted by ((qiy)), is given by
1 + (N -2)q, i=j

(5.14) qs { -

D ' i j,
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where

(5.15) D =( - q)[I + [N - )q].
From (5.11), (5.14), and (5.15) one can compute the value of complete informa-
tion in this special case, obtaining

(5.16) V1 = [1 + (N )g] N
2 N

sii,
D Z= D jq6j

where
(5.17) =iij= 'PiAj.

This can be rewvritten as

(5.1) V = [(S - N)N (qkN - SN)](5.18) T l = l _ q [(sNv-8ff)-[1 + [(N-1)q]
where

(5.19) .SN si, s.v sij.

Note that SN is the average variance of Al,*-- , UN; and SN is the average co-
variance of different iui and mj.
Hence if

(5.20) s lim SN, =S lim SN,
N-o N-

exist, then
-s(5.21) lim (V71/N) = - q

N- ~~~~1 q

Furthermore, in the special case in which SN and SN are constant (with respect
to N), the approach to the limit in (5.21) is either monotonically increasing or

monotonically decreasing according as qs is greater than or less than s.
In other words, in the special case considered, returns to scale for complete

information approach a constant as the size of the team gets large, and during
this approach returns to scale are increasing or decreasing according as es is

greater than or less than s.
For the case in which the Mi are uncorrelated (5.18) reduces to

(5.22) (N1N [1 + (N - 2)q]
(1 - q)[1 + (N - 1)q]

= sNf(N, q),

where

(5.23) f(N, q) N[1+ (N-2)q]
Ths- q][1 + (N - 1)q]

These last formulas will appear useful in later sections.
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6. No communication, and a case of complete informational
decentralization
In the absence of communication, the information of team member i is

(6.1) rli = ¢i,
where tt is his own observation. Without further specification of the ti it does
not appear that anything interesting beyond theorem 1 can be said about the
solution. Two specializations will be considered here: first, the case of statis-
tically independent observations; and second, the case of cospecialization of ob-
servation and action.

In the case of independent observations, it will be shown that the value of the
information structure is the sum of the values that the components qj would
have in "one-person" problems with payoff functions
(6.2) 2Ai(x)ai - qiiai.
Specifically, I will show that the value of such an information structure is

N 1
(6.3) V2 = - E[E(yi!ji)2].

j=1 qii

Before turning to the demonstration of (6.3), consider the effect of adding
the assumption of cospecialization (ti = ui). In this case (6.3) becomes

(6.4) V2 = Lii2
i qii

where, as before, sii = E,42. This will be called the case of complete informational
decentralization, that is,

F'ii = (no communication), i = 1, * , N;
(6.5) li= (cospecialization), i = 1, * * ,N;

..*, yIAN independent.
The values of the coefficients qii are not, of course, invariant under a change of
units in which the variables ai are measured; by appropriate changes of units,
together with corresponding changes of the coefficients ;Li and corresponding
changes in their variances and covariances sij, one can achieve

(6.6) qii = ,i=1 -,N,
and also

(6.7) V2 = E sii.

Hence, for constant SN rsee (5.19)] the value of the information structure (6.5)
is simply proportional to N, that is, complete informational decentralization ex-
hibits constant returns to scale.
To demonstrate (6.3), first note that if n7, * * , ,N are statistically independent,

then for any team decision function a,
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(6.8) E(a,Iuin) = Eaj, i # j.
In other words, person i's information does not help him to predict person j's
action. By (3.5), then, any optimal team decision function a satisfies
(6.9) E(xjlli) = 0, i # j.
Applying this to condition (3.1) of theorem 1 gives
(6.10) qiiai = E(Ail7i), = 1, * , N,

(6.11) ai = (i) E(Ai!ni), i = 1, * , N,

for the optimal team decision rule. Equation (6.3) now follows easily using (3.4)
and of course (6.1).
Even without the assumption of independence of observations, further infor-

mation about the solution in the case of cospecialization can be obtained under
the further assumption of normality of Al, * *, AN. By theorem 2, components
of the optimal team decision rule are each linear, that is, for some constants
bly ..* * bN,
(6.12) ai = bi;zi, i =1, *,N.
Hence, again using the normality,

(6.13) E(alj7) = ()i.
Applying (6.12) and (6.13) to (3.1) of theorem 1,

(6.14) qiibii + , qijbj ( A)i = Ai, = 1, * * , N.
j#i

Since (6.14) must hold for (almost) all values of Ai,

(6.15) qiibi + E qijb (si) =,1, N,
i#i Osiit

which can be rewritten
(6.16) qijsijb = sii, i= 1, * *, N.

LettingH 8 ((qij.jsj)), s the vector with coordinates sil, * , SNN, and b the
vector with coordinates b1,i , bN, the solution of (6.16) can be expressed as

(6.17) b = H-'s.
Note that since ((qij)) is positive definite and ((sij)) is nonnegative semidefinite,
H is positive definite. (H is the so-called Hadamard product of ((qij)) and ((sij));
see Halmos [2], section 69.)
To get the value of the information structure in this case, applying (3.4) gives

(6.18) V2 = E aAi

= E N2 = b's.
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By (6.17) this last gives a value of
(6.19) V2 = s'H-Is.
The following special case is of interest. Suppose

(6.20) qii=1, if i=j,
(q, if i#j;

(6.21) s
{l

=
, if j

~r, if 6j;
where -(1/N - 1) < q < 1 and -(1/N - 1) < r _ 1. Then the value as
given by (6.19) reduces to

(6.22) V2 N1 + (N - T)qr'
If qr 0 0, then V2 approaches (1/qr) as a limit as N gets large. On the other
hand, if qr = 0, then V2 = N. In other words, in this special case of "identical
interaction" and "identical correlation" with cospecialization of action and ob-
servation, the value of no communication approaches a (finite) limit as the number
of variables N increases uithout limit, if neither the interaction nor the correlation
ts zero.

7. Partitioned communication

The results for no communication, with independent observations, extend
easily to the case in which the team members are partitioned into a set of
groups Ik, such that complete communication takes place within each group, but
no communication takes place between groups. Thus let

(7.1) {¢i}jeIk;
then the information structure under discussion is defined by
(7.2) 1(x) = if i E Ik.
The results of this section might be thought of as describing certain types of
partial informational decentralization.

Denoting by ak and ilk the vectors consisting of those components of a and A,
respectively, corresponding to the kth group, and by Qk the corresponding sub-
matrix of Q, then by reasoning similar to that of section 6 the reader can verify
easily that the best team decision function is
(7.3) ak = Qk-lE(ykIrk),
and that the value of this information structure is
(7.4) V3 = EE

(with t,, * * ,rN assumed independent). Actually, for this result it is sufficient
that the rk be independent.
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In the case of cospecialization of action and observation (4.3), the information
structure (7.2) reduces to

(7.5) koIA, if i E
and yields a value, bv (7.4), of

(7.6) V3 = E q si,
k iEIIk

where

(7.7) Q- ((q))
(recall u,1 *, AN are uncorrelated).

In the special case of identical interaction (4.5), the value (7.6) reduces to

(7.8) V3 = E Skf(Mk, q),
k

where Mk is the number of persons in group k,

(7.9) Sk = M si '

and f(Mk, q) is given by (5.23) [apply (5.14)]. In particular, if all groups are of
equal size M, then the value is

(7.10) V3 = f(M, q)

where s _ (1/N) LZ sii [compare with the value of complete information in
equation (5.21)].

Figure 1 shows V3 as a function of M, for s = 1, N = 100, and three dif-
ferent values of q.
On the other hand, if a group (say the first) has M members, and each of the

rest has only one member, then the value is

(7.11) V3 = 91f(M, q) + E si.
i(llL

8. Dissemination of independent information

As noted in the last section, partitioning of persons (or action variables) is
one way of moving away from complete informational decentralization towards
identical information. Another way is provided by the system that will be called
here dissemination of information. Specifically, consider a situation in which each
team member communicates some function of his observations, that is, some
statistic to a "central agency," which then compiles (but does not "process")
all these reports and distributes this compilation to all the members.

I will show that the value of such an information structure can be expressed
exactly as a sum of two parts, one part attributable to the disseminated infor-
mation, and one part attributable to the undisseminated information.
To define the information structure precisely, for each i suppose the observa-

tion function ~, takes values in some set Zi, and let ri be a function on Zi. The
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variable ti = Ti(zi) is to be interpreted as the ith member's report to the central
agent. Let r(x) = [TI(X), *--, rN(x)]; then define the information structure by
(8.1) ?i(X) = [ti(x), T(X)], i = 1, - ,N.
The variable t = (t1, * t*,IN) is to be interpreted as the compilation sent out
by the central agent to all the team members. I consider here only the case in
which the observations zi are statistically independent. I also omit the possibil-
ity that the central agent further reduces the compilation T(X) to some summary
statistic before sending it out to the team members. (The "central agent" here
does not himself directly control any action variable.)

Define #j and pu by
(8.2) Ai(yi) = E(uilyi),

2i)(t) = E(,uilt).
I will show that the optimal decision functions are

(8.3) ai(yi) = E(O3ilt) + - [Ai(yi) - FA)],
qii

where, as in section 5, ,B is the best team decision function under complete in-
formation, and is given by (5.7) as /3 = Q-lz.
The corresponding expected payoff will be shown to be

(8.4) V4 = Ep't1Q-j + E q (E2 -EF2),
which can be shown to be equivalent to

(8.5) V74 = Ep'Q-1p. + E q E[Var (uilt)].
i qii

Note that the first term of (8.5) is the maximum expected payoff that could be
obtained if all team members had only the information function T; whereas the
second term is a weighted sum of terms, each of which measures the degree to
which that person can predict his lAi better on the basis of yi than on the basis
of t alone.

Again, before demonstrating these facts, we will consider a special case. Sup-
pose (in addition to the assumptions already made) that the j.i are independent,
and that each ,Ai is independent of {D,}.,i. (This would be the case if, for exam-
ple, each person's observation zi consisted of an estimate of gi(x), both ;Li and
the error being independent of the ,Uj and errors of the other persons.) It is
shown below that in this case

(8.6) gi = E(IAJi),
and that the value of the information structure is

(8.7) V4 = F. qtiEps + E
i

(E, _where, asbfor,(qi7)qii
where, as before, ((qii)) = Q-1.
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Again [as in (8.4)] the first sum in (8.7) is the maximum expected payoff that
could be obtained if all team members had only the shared information T; whereas
the second term measures the additional value of each individual's knowing the
part of his own observation that he did not share.
Another interpretation of (8.7) is suggested by rearranging the terms to give

(8.8) V4 = E + E(q" q_i)E2
The first sum in (8.8) is what the maximum expected payoff would be if the ith
member knew only ri (see section 6 on no communication); the second sum is
the additional value attributable to the dissemination of T1, . .. , TN.
Turn now to the derivation of the optimal team decision functions and

expected payoffs. I shall use the following lemma, the proof of which is given
in [5].
LEMMA. Let A, C, and G be independent random variables (not necessarily

real); let B be a contraction of A, and D a contraction of C; and let F be a real
random variable defined by F = f(A, D, G), where f is some given measurable
function; then

(8.9) E(FjB, C, G) = E(FIB, D, G).
In the present situation, the above lemma applies to give

(8.10) E(ajlyi) = E(a,jr) if i# j.
This can be seen by taking (in the notation of the lemma)

A = rj, D Ti,

(8.11) B = rj, G = {Tk}k <j,,
C = ri, f =a.

From (8.10) it follows that condition (3.1) of theorem 1 reduces in this case to

(8.12) qiati + E qijE(a.jT) = Ai, i = 1, -, N.
j pdj

Applying the lemma again to ,i, the conditional expectation of (8.12), given T, is

(8.13) L qijE(aj1T) = Ai, i = , N.

Subtract (8.13) from (8.12),

(8.14) qii[ai - E(aijT)] = A-p;
ai = E(ailT) + - (Ai Ai).qii

On the other hand, solving (8.13) for E(ajr) gives
(8.15) E(ajT) = Q1E(gIT) = E(3,BT).

Substitution of this into (8.14) gives the best team decision function
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(8.16) ai(yi) = E(gilt) + 1 [7i(y) -i(t)],

from which the values as given by (8.4) and (8.5) easily follow.
Equation (8.6) follows directly from the lemma, under the assumptions of the

special case, by taking

(8.17) A = (,ui, D), B = Di, C = {J}j.i, D constant, f =

9. Error in instruction

Consider a team with complete communication to a central agent, in which
the best team decision ,i(x) is computed by the central agent, and each team
member is sent a message instructing him about the appropriate action ,li(x).
Suppose, however, that the actual message received by member i is not the cor-
rect value ,Bi(x), but a value equal to the correct value plus some random error.
To be precise, suppose that the information to member i is given by

(9.1) Yi 87i(X) = t3i(X) + Ei(X),
where j3i(x) is the best decision function for i under complete information (sec-
tion 5), and ei(x) is an error term.
Each team member can, of course, simply follow the "instruction" yi with the

error, as he receives it. Indeed, this might at first appear to be the correct
procedure if ei is independent of j3i, and has mean zero. However, we shall show
that the team can do better if each team member is provided with a decision
rule that adjusts the received instruction in a suitable way. It will be shown that
the proper adjustment for any one person depends in general upon all the inter-
actions qij, and that even if only some of the team members' instructions are
erroneous, all team members should typically make some adjustments.
Throughout this section I will assume that (a) ,B(x) and e(x) are normally

distributed, (b) ,B and e are independent of each other, (c) the components fi are
(mutually) independent. There is no loss of generality in further assuming that
(d) Ef3 = Ee = 0.

I first give the results for this information structure, including those for certain
special cases, deferring the proofs to the end of the section.

First, denote the relevant variances and covariances by
(9.2) rij = E#igj,
(9.3) = J.

Further, define the numbers fii, vi, and f ii by

(9.4) fi = {qii(rii + t2), if i =j,94f =qijri;, if i# j,
(9.5) vi = q ,

(9.6) ((ii)) = Wij))`
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(9.7) bi = 1 - fiiVj.
a

I will show that the best team. decision function is

(9.8) ai(yi) = biyi
and that the resulting value of this information structure is
(9.9) V5= _fijbibi.

ij

Thus each adjustment factor bk depends upon all the parameters qij, rij, and ti.
Note that if all the error variances are very small, then the best decision byi

is very close to yi (set all t'i = 0). On the other hand, if the error variances are
very large, compared to the variances rsi of the f3i, then bi will be close to zero.

It is also interesting that even if, for some particular i, the error variance t'i
is zero, the adjustment factor bi will in general be differentfrom 1. In other words,
error in the instruction to some team members should cause other team members
to adjust their actions accordingly even if the former are receiving error-free in-
structions.
A special case. Before demonstrating these results, consider the special case

in which all interactions are identical, all correlations between different f3i and f%
are identical, and all error variances are identical, that is,

qij={~ql, i j,
(9.10) r l, i =j,

ri
, i j,

2= t2.

Having taken rii = 1, the parameter t is to be interpreted as the ratio of the
error variance to the (common) variance of the #i.

In this case the adjustment factor bi [see (9.7)] reduees to

t2((9.11) bi = 1-1 + t2 +(N- qc

and the value of the information structure is

(9.12) 5= N[ + (N - 1)qc]2.1 + t2 + (N - 1)qc
Thus the tcrm

t2Yi(9.13) 1 + t2 +(N-1)qc

is the "correction" subtracted by person i from the instruction yi that he
receives. Here it is quite easy to see that if there are no errors (t2 = 0), then the
correction is zero; whereas as t2 gets large, the correction tends to cancel out the
information completely, that is, t2/[l + t2 + (N - 1)qc] tends to 1.
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Similar remarks apply to the value V15 [equation (9.12)]. When t2 = 0 one gets
the value of complete information
(9.14) N[1 + (N -l)qc];
but when t2 gets large, the value Vr approaches zero.
PROOF OF RESULTS. By theorem 2 the components of the optimal team deci-

sion function are linear, say

(9.15) ai(yi) = biyi.
Hence condition (3.1) is
(9.16) qiibiyi + E qijbjE(yjlyi) = E(Ailyi), i = 1, * , N.

i#i

From assumptions (a), (b), and (c) it follows that

rijyi~ ~ ~ i~j-rii + t',(9.17) EXjy)=ri 2 di

E(Oj3yj) = rji +tall i and j.
ri + t'i

The function 13 is related to ,u by
(9.18) pi(x) = Lqij#j(x),

j

since , is the optimal team decision function under complete information [condi-
tion (5.7)]. Substituting (9.17) and (9.18) in the stationarity condition (9.16)
gives

(9.19) qiibi + E ijbi (ri qij (/ri__
which reduces to

(9.20) qii(rii + t)(bi-1) + E qiiri(bj- 1) = -q
j,oi

Solution of this system for the values (bi- 1) gives (9.7), which completes the
derivation of the best team decision function. The value, equation (9.9), is ob-
tained, with some straightforward algebra, by substituting the decision func-
tion of (9.7) and (9.8) in the payoff function and taking the expected value.
To derive the results for the special case (9.10) I use the fact that the inverse

of an N X N matrix ((mij)) of the form

Cu, + -j,
is

(9.22) mii =1_w
DD j,
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where
(9.23) D = (u - w)[u + (N - 1)w]
[compare with (5.14) and (5.15)].
The matrix ((fij)) of (9.4) is of this form (9.21), under the assumptions (9.10);

hence the inverse is

I + t2+ (N-2)qc
D =j.

fii = q

D qc5 i j,
(9.24) D = (1 + t2-qc)[1 + t2 + (N-1)qc].
Simple algebra now yields (9.11) and (9.12) from the general expressions (9.7)
and (9.9).

10. Complete communication of erroneous observations

In the preceding section I considered the effects of errors in instructions from
a "central decision agency" to the individual team members. In this section I
shall consider the effects of errors in the information provided by the team members
to such a central agency.

For this information structure I consider only the case of cospecialization of
action and observation (i= pi). Suppose that each team member sends a
message consisting of the value ,ui(x) plus an error ei(x) to a central agency. On
the basis of the messages received from all N team members, the central agency
then computes the best decision for each team member, and communicates this
to him (error free). Note that in this case all N decisions are based upon the
same information. To be precise the information structure to be discussed is

(10.1) 7li(x) = [,ul(X) + EI(X), * * *, AN(X) + EN(x)], for all i.

Note that this information structure is formally equivalent to that of com-
plete communication of "observations" ui + ej; in particular the results for this
structure follow directly from those of section 5, which are repeated here for
convenience. The best team decision function is

(10.2) a(y) = Q-1E(4,y),
with a corresponding value

(10.3) V6 = E{E(AIy)'QX1E(Ajy)} - E qii Cov [E(uily), E(jly)],

where ((qil)) is the inverse of the matrix ((qij)).
Various special cases are of interest. If the jui and ei are all statistically inde-

pendent, then

(10.4) E(Aily) = E(Auills + ei).
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If further, the ,u, and Ei are normally distributed (with means that can be taken
to be zero), then

(10.5) E(Ailpi + Ei) = s + t (Ai + ei)

where sii = E(ltu) and t' = E(e'). In this case the best team decision function,
and corresponding value, are, respectively,

(10.6) ai = E qi (stJ2 (j + Ej),

(10.7) V6=
1 + t/sii)

If one further specializes by assuming that
2= S2

(10.8) EEt

Xq, i = j,

the value becomes

(10.9) V= Ns2[1 + (N - 2)q]
(1 + 2 (1 -q)[1 + (N- 1)q]

The reader can verify that for t2 = 0 (no error), V6 equals the value of complete
information, whereas as (t2/S2) gets large, V6 approaches zero as a limit.

FROOF OF RESULTS. The results (10.2) and (10.3) follow directly from (5.6)
and (5.12). The special case (10.9) is similar to that discussed in the previous
section.

11. Management by exception: Reporting exceptions

The term "management by exception" covers a number of organizational
devices whereby the decision about a given action variable is normally made on
the basis of relatively few information variables, but may be made on the basis
of more information if the original information variables take on "exceptional"
values. In this and the next section I analyze two such "management by excep-
tion" devices. The first might be called "reporting exceptions," or more ac-

curately, if somewhat colloquially, "passing the buck." The second device,
discussed in the next section, can be described as "emergency conference." The
comparison of the various information structures considered in this paper, which
is made in section 13, tends to confirm the widely held belief that management
by exception can provide a relatively efficient way of utilizing information.

I shall analyze these particular management by exception information struc-
tures in the context of cospecialization of action and observation (,= Mi).
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Before givinlg a precise definition of reports of exceptions, the following descrip-
tion may be helpful. Suppose that for each team member i, the range of possible
values of M,i(x) is divided into two parts, "ordinary" values and "exceptional"
values. Let Ri denote the set of "exceptional" values. If in a particular instance,
member i observes yi(x) to be not exceptional, that is, not in Ri, then he chooses
a value of his action variable ai on the basis of yi(x) only, according to some
decision function, say yi. On the other hand, if he observes ,ui(x) to be excep-
tional, that is, in R2, then he reports that value to a "central agency." The
central agency then makes the decision about the values of the decision variables
of all team members i who have reported exceptional observations, on the basis
of all those exceptional observations.
More precisely, the information structure to be analyzed in this section is

defined as follows. For each i, let Ri be a given subset of the real line [the "ex-
ceptional" values of pi(x)]; and for each state of nature let J(x) be the set of
all j such that iAj(z) E Rj. Then the information structure 7 is defined by

(111) ,si(x), if Ai(x) q Ri,
(11.1) {isj(x)}jeJ(x), if /ui(x) E Ri.

Note that (11.1) defines a class of information structures, a particular structure
being determined by a particular choice of the exception sets R1, - - *, RN.
Such an information structure can of course be described in a somewhat more

general context than the one used here. The basic idea is that the variables
directly observed by member i have "exceptional" and "ordinary" values; if
they are ordinary, he makes the decisions about his action variables just on the
basis of that information; if they are exceptional, the decisions are made by an
agent on the basis of all the exceptional information (and possibly other infor-
mation as well).

In what follows it is assumed that the variables 4i(x) are statistically inde-
pendent, with means zero and variances s2. It is also assumed that each pi(x)
has a distribution that is symmetrical about its mean, zero. Likewise, we only
consider exceptional sets Ri that are symmetrical around zero, that is, if m is
in Ri then so is -m.

It will be seen that in this case the following parameters are of central im-
portance in evaluating the information structure corresponding to a particular
choice of Ri, * * ,RN,

(11.2) pi-P[ji(x) E Ri],
s' = Var [ui(x)JAi(x) E Ri].

Thus pi is the frequency with which the variable jAi(x) turns out to be exceptional;
and s'u is the conditional variance of yi(x), given that it is exceptional. The
larger pi, the more frequently the action variable ai is determined by the central
agent, and the larger will be the (gross) expected payoff. Of course, the greater
the frequency of exceptions, the more costly one can expect such an information
structure to be.
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Value of information for groups of equal size. N = 100.

It will also appear that, other things being equal, the larger the conditional
variances sli, the larger the gross expected payoff. This is not implausible, in
view of the quadratic payoff function. The precise result is this: given the prob-
abilities pi, * * *, PN, the optimal choice of Ri is that which maximizes s2R, and
this is achieved by taking Ri to be the complement of an interval symmetric
around zero. Note that in this case the values in Ri are indeed "exceptional" in
the usual sense of being farther from the average than the "ordinary" values.

Before deriving the formulas for the best decision rules and the value of this
type of information structure, I present the results of some numerical computa-
tions. For the purposes of these computations, it was assumed that
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Reports of exceptions:
V as a function of q for N = lOand p = .1, .2.

(11.3) {1,= j
Eq, ,

(11.4) gi(x) is normally distributed, with mean 0 and variance 1, for each i.

(This is the special case of "identical interaction" that has been discussed in
several previous sections.)
Taking all the exception sets Ri to be identical, and choosing them in the best

way (subject to the constraint of symmetry), the values of the information
structures were calculated for various values of the parameters: q, degree of
interaction; N, number of action variables; p, probability of a value of pi(x)
being exceptional. The parameters q and N are to be thought of as "technolog-
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Reports of exceptions:
V as a function of q for N = 100 and p = .1, .2.

ical," whereas p is a parameter of the information structure, to be chosen by
the organizer.

It should be noted that the parameters Rs [see (11.2)] are all equal, because
the sets Ri are identical; furthermore, their common value is determined by p,
once the distribution of ,is(x) is given, and the best choice of Ri is made. It
might also be noted that the effect of assuming the variances of the Ai(x) to be,
say, S2 instead of 1, would be to multiply all the computed values by 82.

First consider the effect of changing the interaction parameter q. Figures 2
and 3 show the value V of the information structure, as a function of q, for dif-
ferent pairs of values of p and N. As the figures illustrate, the value is greater,
the larger q, rising slowly when q is near zero, and then more rapidly as q ap-
proaches 1. Note, too, that the increment in value due to going from p = .1 to
p = .2 is larger, the larger q.
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Reports of exceptions:
V as a function of p for N = 100 andq = .5.

Figure 4 shows the effect of changing p, the relative frequency of exceptions,
for fixed values of q and N. As one would expect, the value V increases with p;
however, each successive increment of p produces a smaller increment of value,
so that p has "decreasing marginal value." This latter effect is quite marked,
in this example at least, so that a frequency of exceptions of 1/3 has achieved
almost 80 per cent of the possible increase in value.
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Reports of exceptions and complete information:
V/N as a function of N for q = .5 and p = .1.

Turning to figure 5, which shows the effect of changing N, one sees that as N
increases, with p and q fixed, the value V increases more than proportionately.
This is illustrated in the figure by plotting (V/N) as a function of N (the lower
curve). Recall that under these particular assumptions the value of complete
information also increases more than proportionately with N [see equations
(5.22) and (5.23)]; this is shown by the upper curve in figure 5. As inspection
of the two curves shows, (V/N) approaches a constant much more rapidly for
complete information than for reports of exceptions.
As N increases, the expected number of exceptions Np increases proportion-

ately. If the costs of dealing with these exceptions were proportional to the
average number of exceptions, then we would have here an example of increasing
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Reports of exceptions:
V/N as a function of N for q = .5 and Np = 1, 10.

returns to scale in the size of the organization arising from the use of this type
of information structure.

Finally, figure 6 shows the effect of increasing N while simultaneously decreas-
ing p so that the expected number of exceptions Np remains constant. These
curves show that although in this case total value increases with N, it does so
less than proportionately to N. As N increases without limit, the ratio V/N
decreases to the limiting value 1, which is the value of V/N for complete de-
centralization in this case.

Derivation of best decision functions. Assume that
(i) the distribution of each Ai is symmetrical around its mean, which can be

taken to be zero.
(ii) Each exception set Ri is symmetric around zero.
(iii) ,Uj, - * *, I,N are statistically independent.
Recall that J(x) denotes, for each x, the set of indices of those variables lAj(x)

that have exceptional values, that is,

(11.5) J(x) =_ {jlAj(x) (E Rj}.
Denote by AJ(x) the vector of those coordinates of A for which j is in J(x); and
denote by Qj(Z) the matrix of those elements qij of Q for which i and j are in
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J(x). In this notation, the information structure to be analyzed can be described
by

AiX, if i q W(11.6) 11i( =lx.t (x), if i E J(x).

Consider now the particular team decision function d defined by

{i if i J()
(11.7) ii(yi) =

[QJ(1)AJIi(x), if i E J(x).
In other words, the decision function d just defined directs team member i

(i) to take that action that would be appropriate under "complete decentral-
ization," if he observes an unexceptional value of pi,

(ii) to take that action that would be appropriate under "partitions with
independent information," with i in the group J(x), if he observes an exceptional
value of Ai.

I shall now show that & satisfies (3.1) and is therefore optimal.
First note that

[0, if i J(x),
(11.8) E(aj|1i) = °, if iC J(x), j q J(x),

C[QJ 1UJ]j, if i E J(x), j E J(x).
This follows from the independence and symmetry of the j.i distribution and the
symmetry of the sets Ri. Therefore, if i q J(x)

( 1.9) E qijE[djl,i] = qii (qi) =

and if i C J(x),
(11.10) . qijE[djlvi] = E qij[Qj'A1]j = Hi.

Equations (11.9) and (11.10) together verify that & satisfies (3.1) and is there-
fore optimal.

Computation of the value of the information structure. According to -(3.4) the
expected payoff yielded by the best team decision function Li is

(11.11) ~~~V7= E E ,ujdj.

I shall now show that V7 is given by equation (11.23) below. Given any particular
set K

(11.12) E{VIJ(x) = K} = Et E A,j + F2 MieLiiJ(x) = K}

= E{( K) QkzKi,.s(X) E Rj for j C K}

+ E 1 E{I,usyi(x) E Ri}
i(Kqii
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Define

(11.13) 8sot Els(x) RRi
(2 E{I21,i(x) £ Rs}

(11.14) qK-ith diagonal element of Q-1'.
Then (recalling that the Aj are independent)

(11.15) E{(Al)'QK C|j C Rj for j E K} = qK S2K Ri~~~~~C
and (11.12) can be rewritten,

(11.16) E{VIJ(x) = K} = qjjsK2,j 1
jEK JEK qjj/

Denote by pj the probability that luj(x) is exceptional, that is,

(11.17) pi=P{Ij(x) C Rj}.
Then the probability, for a given set K, that J(x) = K is

(11.18) P(K) = H pj H (1 -pj),
jEK j{K

and taking the expected value of (11.16) gives

( 1 1. 9) V7 = a P(K) [ Ks283 + : (I) soj.
aU K [jCK j£K j

Ihis last can be put into a more useful form if one interchanges the order of
summation over the sets K and the index j of the team members, thus,

(11.20) V7 = IE[ EP(K)q.sx; + _ P(K) (1)2]
j=1 K3i KDj qjj

=1 L[2j Z P(K)qki + (-) 8 _ P(K)j=l K3j qjj K J)

First note that
(11.21) K; P(K) = (1 - pj).

Second, one can write
(11.22) E P(J)qji = E[qj(.)],

J3I

where by convention onie takes q>jj = 0 if j q J. Substituting these last two equa-
tions in (11.20) gives

(11.2:3) V, = N [s2RE(qj(.)) + s2j(1 - p(-_)]-
This is the formula I shall use in the further analysis of the value of this infor-
mation structure.

One can now show that, given pj, the best set Rj is the complement of an



INFORMATION IN ORGANIZATIONS 519

interval (symmetric around zero, by assumption). First by the symmetry as-
sumptions, the variance of g,i is related to the conditional variances SA and so by

(11.24) s; = pjs2 + (1 pj)8
Therefore, choosing the sets Rj to maximize V7 for given probabilities pj is
equivalent to choosing the conditional variances SRf and So to maximize V7,
subject to (11.24) and RSj, sj >= 0. This can be done by making SR as large as
possible if

(11.25) E{qY(.)jJ(x) -3j} > 1

qjj

Now note that, since the matrix Q is positive definite (and hence so is every Qj)

(11.26) q1Yq>,_ 1, all j E J,

with strict inequality unless J = {j} or qjk = 0 for all k # j. Condition (11.25)
is therefore always satisfied.

Consider now a special case. Suppose that all the variances s2, sR, and S2 are
the same, and equal to S2, SR, and s', respectively, and suppose that all the sets
Ri are identical, with pi = p. Let M(x) denote the number of elements in J(x);
then M(x) has the binomial distribution B(p, N). Define f*(M) and g(M) by

f*(M) =E E q4>(.)M(x) = M},
(11.27) g(M) _Et ( 1 )IM(x) = M}-
Equation (11.23) for V7 now reduces to

(11.28) V7 = S2 [(S) Ef*(M[x]) + (8) Eg(M[x])].

In particular, in the case of "identical interaction"

(11.29) qij = { if i j

~q, if .5j,
t follows from (5.14) and (5.2) that

f*(M) = (1M[1 + (M- 2)q] _f(Mq),
(1 -q)[1 + (M - 1)q]-

(11.30) g(M) = N - M,

so that V/7 is given by

(11.31) V7 = Ns2 [(S2) Ef[M(x), q] + (1 p) (SO2

This is the formula used in the computation of the numerical results described
earlier in this section, with 82 = 1 and the jAi normally distributed. There seems
to be no convenient closed expression for Ef [M(x), q].
Under the assumption of normality, with 82 = 1, one has the following rela-
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tionship between p, SI, and the interval [-r, r] that defines the complement of R:

(11.32) p = 2 f p(t) dt,

2=2r~p(r)+,(11.33) s p= +

where sp(t) = 1/v24 exp {-t2/2}. Formula (11.33) is derived easily using inte-
gration by parts. From (11.24) of course, one has
(11.34) p se + (1 _ p)>I = 1.

Value of information for large N. In the special case covered by (11.31),
(1/N)f(M, q) can be written

fLIYLs) _(M)[i+(I- 2)q]
(11.35) N ( ) [l + (M- 1) q]
Hence, by the law of large numbers

(11.36) lim Ef[M(x), q] p
N-. N 1-q

Together with (11.31), this last implies

(11.37) lim - = s2 [iP S y+(±_ P)(8' )

12. Management by exception: "Emergency conference"

In the last section it was assumed that the decisions about only those variables
corresponding to "exceptional" information were taken jointly, whereas the
decisions about the other variables were taken independently. Another manage-
ment-by-exception type of information structure, which might be labeled "emer-
gency conference," stipulates that whenever any information variable takes on
an exceptional value, all decisions are taken jointly. More precisely, I will
analyze the following information structure:

(12.)i(x) if for everyj, ,Aj(x) 2 Rj,
(12.1) 7li(x) = ]qs(x), if for some j, ,j(x) EE R,
where Ri, * ,RN are given subsets of the real line.
Let R be the set of states of nature x for which at least one of the values uj(x)

is exceptional, that is,
(12.2) R _ {xI for some j, uj(x) E Rj}.
It is clear that when the state of nature x is in R, then the team is in a situation
of complete information, whereas when x is not in R, then the team is in a situa-
tion of complete decentralization, facing a conditional distribution g, given that x
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is not in R. If A,u * , IAN are independent, as I shall assume in this section, then
they will also be conditionally independent, given that x 2 R.
As before, it turns out that the important parameters of the exception sets

Ri are

(12.3) pi = P{i(x) E Ri},
(12.4) Si = Var (pi),
(12.5) sot = Var [AijAi(x) q Ri].

Indeed I will show that (assuming, as we can without loss of generality, that
EM = 0) the value of the information structure (12.1) is

(12.6) V8 = Eii2 [-) S2 ] P{x R},
where ((qii)) = Q1, and

(12.7) P{x fl} =H(1-pi).

It will also be shown that, given pi, * , PAN, the best choices of the sets Ri are
the complements of intervals.

200
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100

0 .2 .4 .6 .0 LOp
FIGURE, 7

Emergency conference:
V as afunction of pfor q =.5 andN =100.
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In particular if

Pi = p
2 2

=8(12.8) 82 = 8, Soi =

qij=
q, t H,

then expression (12.6) reduces to

(12.9) 1T8 = s2f(N;q) -s( -p)N[f(N,q) - N],
where f(Nq) is given by (5.23).

Figure 7 shows the value of emergency conference as a function of p, for
q = .5 and N = 100, as given by (12.9). Note that the value rises extremely
rapidly for small values of p, so that by the time p has reached .05, the increase
in value over p = 0 is 97 per cent of the total possible increase (p = 1). This is
to be expected when N is fairly large, since it takes only onie exception to con-
vene the entire "conference," and bring about a state of complete information.
The probability of one or more exceptions occurring is 1 - (1 - p)N.

Figure 8 shows V/N as a function of N (with N varying from 1 to 100), for
q = .5, and p = .01 and .1. As N increases, for fixed (positive) p, the probability

2.0

V

15
V

// >

20 40 60 so 100
N

FIGURE 8

Emergency conference:
V/N as a function of N for q = .5 and p = .01, .1
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Emergency conference:
V/N as a function of N for q = .5 and (1 - p)N = .99).

of a "conference," that is, of at least one exception occurring, converges rapidly
to one. With p = .1, by the time N has reached 40 one is practically in a situa-
tion of complete information.
The last remarks suggest looking at how V/N behaves as a function of N,

when the probability of a "conference" is kept constant. Figures 9 and 10 show
two such curves (for q = .5), the first with 1 - (1 - p)N held constant at .01,
and the second with 1 -(1 - p)N held constant at .10. These figures reveal
that for any given value of the probability of a "conference," there is a value of N
that maximizes V/N. In other words, with the probability of a conference fixed,
there are decreasing returns to scale after some point. This is in contrast with the
corresponding case for "reporting exceptions," as exemplified in figure 5 of the
previous section. Note that the decreasing returns to scale in the present case
occurs even though the average size of the conference N[l - (1 - p)N] is in-
creasing. If the average size of the conference were to be held constant, the
tendency towards decreasing returns to scale would be more marked. This last
situation is the one that is comparable to figure 6 of the previous section.

Best team decision functions. Consider now the information structure of
(12.1), with arbitrary sets Ri, * * *, RN, and assume that
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Emergency conference:
V/N as a function of N for q = .5 and (1 -p)N = .90.

(12.10) psA, * **, uzN independent,
(12.11) E(i)= 0, Var (jst) = s2.
Define ml and a° by
(12.12) m°= E{,uij,u(x) 2 Ri}.
(12.13) a° = Qim.
By applying theorem 1 it can be shown that the best team decision function a
is given by

(12.14) aa° +=i(X)-m° if xii

[Q-' (X)]sif x E R.
The proof is routine, and is omitted.

Value of the information structure. Again we consider the two cases x R
and x E R separately, by writing the value of information as

(12.15) V8 = E{4[x, a(y)]}
= E{wlx q R}Pl(x q 1?) + E{,wx e R}P(x E R).
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Because Q satisfies condition (3.1) of theorem 1 in each case (x & x E R)
separately, one can apply equation (3.4) to each case. After some calculation,
this application yields equation (12.6).
Note that since Q is positive definite, qii > l/qii, so that the term in brackets

on the right side of (12.6) is nonnegative. The quantity L qiisi is the value of
complete information under the current assumptions.

In the special case described by (12.8) it follows easily from (5.4) that the
value V8 reduces to the expression given in (12.9).

Best choice of the exception sets. Given the probability of a conference,
P{x E R} = 1 - P{x q R}, the choice of the sets Ri, * , RN that maxi-
mizes the value (12.6) is the choice that minimizes

(12.16) i( qii) s'o

subject to

(12.17) 1 (1 -pi) = P{x J R}

(the pi and the sot being of course related). In particular given the values of
pi,.* *, PN, the expression (12.16) is minimized by taking each set Ri to be the
complement of some interval, symmetric around zero (the mean of iii). This char-
acteristic is therefore true of the best choice, given only the value of P{x q R}.

In the case of symmetric sets Ri, one has a° = m° = 0, so that the best team
decision function is given by

(12.18) ai(yi) = qi if x

E[Q1lA(x)], if x E R.

13. Comparisons anong the several information structures
In this section I shall present comparisons among the several information

structures that have been considered in the previous sections. These comparisons
will be made for the special case of cospecialization of action and observation,
with identical interactions, and independent observations with identical vari-
ances.

The first set of comparisons is among the four information structures (1)
partition into equal groups; (2) partition into groups with only one group having
more than one member; (3) emergency conference; and (4) reports of exceptions.
As will be seen, these four structures are comparable in the sense that structures
(3) and (4) can be viewed as resulting from variable partitioning into groups,
the particular partition used depending upon the information signals that are
actually received by the team members. It will be seen that if one compares
structures of the above four types with the same average group size, then the
above list is in the order of increasing value.
This result can be explained heuristically as follows. Under the assumptions
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described above, the "technology" of the team exhibits increasing returns to
scale, that is, under complete information, value per person, V/N, increases
as N increases (see the end of section 5). With independent observations,
partition of the team is equivalent to substituting for the original team a collec-
tion of smaller teams, with the same total number of members. Because of the
increasing returns to scale, if the number of groups is given, the best allocation
of the members to the groups is achieved by assigning as many members as
possible to one group, leaving the rest of the groups with one member each.
This accounts for the greater value of (2) as against (1) in the above comparison.
The superiority of (3) and (4) over (1) and (2) is plausible when one sees that

structures (3) and (4) have something of the character of a two-stage sequential
analysis. Additional information is brought to bear on decisions only under
circumstances in which additional information is more than ordinarily helpful.
In this respect "reports of exceptions" is more selective than "emergency con-
ference," since it brings the additional information to bear upon only those
action variables that are associated with the unusual observations, rather than
upon all the action variables. Indeed, it will be shown that for large values of N,
"emergency conference" is approximately no better than fixed groups with only
one group having more than one member.
The second comparison is between error in instruction (section 9) and com-

plete communication of erroneous observation (section 10). It will be seen that
if one compares structures of the two types that have the same ratio of variance
of error to variance of message, then the error in observation type is preferable
to the error in instruction. This is related to the fact that under complete in-
formation, with nonzero interaction, the optimal decision rules for the several
members are correlated (section 5). In the case of error in observation, the com-
plete, error-free communication makes possible any desired degree of correla-
tion between the decisions of different team members; whereas the error in
instruction introduces a lack of correlation between the information on which
different decisions must be based.

General remarks on comparisons of information structures. Before going into
the detailed comparisons of this section, some general remarks may be helpful.
Ideally, one would want to compare information structures on the basis of net
value of information, namely gross value of information minus the cost of both
the information and the associated best decision function. Therefore, any com-
parison between the gross values of two information structures is meaningful
only in the context of some assumption about the relative costs of the two
structures. Although no explicit discussion of costs is presented here, certain
assumptions are implicit in the comparisions made below. Thus, in the com-
parisons among information structures based upon fixed or variable partitions
into groups, the implicit assumption is that costs depend upon average group
size. On the other hand the comparison between error in instruction and error
in observation is meaningful if the costs depend upon the ratio of the variance
of the error to the variance of the message.
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Fixed and variable partitions. Consider now the case of cospecialization of
action and observation, equation (4.3), together with the special assumptions
of identical interactions [equations (4.4) and (4.5)], and independent, normally
distributed observations /Ai with identical variances. There is no further loss of
generality in assuming that the pAi all have means zero and variances one.
The two fixed-partition information structures to be considered are (1) parti-

tions into equal groups, and (2) partitions such that at most one group has more
than one member. Under the above assumptions the values for these two types
of structure are given, respectively, by

(13.1) 13 = ( M) f(M, q),

(13.2) V3 = f(M, q) + (N -M),

see (7.10) and (7.11); where in the first case M denotes the number of persons
in each group, and in the second case M denotes the number of persons in the
one group that can possibly have more than one member; and where f(n, q), as
in (5.23) is defined by

(13.3) (n, q) n[I +(n- 2)q]
(13.3) f(n, q) [1 - q][1 + (n - 1)q]
The two variable partition information structures to be considered are "emer-

gency conference" (section 12) and "reports of exceptions" (section 11), with
values given, respectively, by

(13.4) V8 = f(N, q) - s(1-p)N[f(N, q) - N],
(13.5) V7 = sdEf(M, q) + N(1 -p)SO
see (12.9) and (11.31); where p is the probability that a value of an observation
p.i(x) is exceptional, s2 is the conditional variance of p.j given that it is not excep-
tional, s2 is the conditional variance pAi given that it is exceptional, and in (13.5)
M has the binomial distribution B(p, N). Recall that, as in (11.34),

(13.6) PR + (1 - P)SO = 1,

and that sR and s2 are determined by p [see (11.32) and (11.33)].
To compare the values of the above four types of information structure, I will

compare structures that, roughly speaking, have the same average group size.
It will be more convenient, however, to consider explicitly, for any fixed N, the
average number of groups associated with the information structure. Thus, for
the case of partitions into equal groups of size M, the number of groups is

(13.7) G = N
M'

whereas for the case of one large group, of size M, the number of groups is

(13.8) G = N-M + 1.
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Comparisons among fixed and variable partitions:
V as a function of fixed or average number of groups, G.

Curve 1: Fixed groups, equal size.
Curve 2: Fixed groups, one of size M.

Curve 3: Emergency conference.
Curve 4: Reports of exceptions.

For the two variable partition cases, the number of groups is a random variable.
For "emergency conference" the expected number of groups is

(13.9) EG = N(1-p)N + 1- (I -p)N;
for "reports of exceptions" the expected number of groups is

(13.10) EG = N(1-p) + 1-(1 - p)N.
Figure 11 shows value V as a function of G (or EG) for the above four types

of information structure, with N = 100 and q = .5. In the fixed partition cases,
G is varied by varying M; in the variable partition cases EG is varied by
varying p. As the figure shows, "reports of exceptions" gives the highest value
(for G different from 1 or N), "emergency conference" gives a barely higher
value (not noticeable on the plot) than fixed groups with one of size M, and
these two in turn give a higher value than fixed equal groups.
The relations among the above four types of information structure emerge

quite clearly and simply for large values of N. Suppose that as N increases with-
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out limit, the (average) number of groups increases proportionately, so that
G = yN (or EG = yN). It is easily verified, using (13.1) to (13.10), that the
limits, as N increases without limit, of value per person, V/N, for the four types
of information structure are

(13.11) lim. 3 1 -yq _y0(1 y)q
N 1-q y+1-y,)q

(13.12) lim V3 = lim -3 = y

N N 1-q

(13.13) limNL = y-q + y(l -2)q
N -q 1-q

It is clear that the above three limiting values are in order of increasing magni-
tude, except when q = 0, y = 0, or -y = 1, in which cases all three limiting values
are equal.

Communication errors. Consider now the two information structures, "error
in instruction" (section 9) and "error in observation" (section 10). The discus-
sion will proceed under the same special assumptions of (1) cospecialization,
(2) identical interactions, and (3) independent and normally distributed observa-
tions ui with identical variances. However, in this case the variance of jui will
be denoted by s2.
The two information structures of sections 9 and 10 are comparable in that

they are both concerned with complete conumunication in which errors are in-
troduced. In the one case, however, the errors are introduced at the points at
which the processed observations, that is, the "instructions," are being com-
municated from the "central agent" to the team members, whereas in the second
case the errors are introduced before the processing of information, that is, in
the communications of the observations to the "central agent." For the purpose
of the comparison to be made here, let t2 denote the common variance of the
several errors, which will be assumed to be independent, normally distributed
variables, with zero means, and uncorrelated with the original messages (that
is, instructions or observations) to which they have been added. It seems natural
to compare information structures of the two types that have the same ratio of
variance of error to variance of the original message.

For the special case being considered the value of the "error in instruction"
information structure is

(13.14) Nw[ +(N--I
1 + (W) + (N - )q (c

where

(13.15) EfliIj= i
f

C, if wij,

and Q-= Q-1 is the team decision function that would be best for complete
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information. Equation (13.14) is another version of equation (9.12) but without
the normalizing assumption that w = 1. Using (5.14) and (5.15) one can, after
some computation, arrive at

(13.16) =- (N -2 '+2

(13.17) = _~[( 1( + [1 + (N-2)q]2
(13.17) w = sI ( [1 q]2[1 + (N - 1)q]2

From (13.15) to (13.17) it follows that

(13.18) lim (- ) s2_
N_*c N) 1+r - q

where

(13.19) r =--

Note that r is the ratio of the variance of the error to the variance of signal to
which the error is added.
The value of the "error in observation" information structure is, from (10.9),

(13.20) V6= Ns2[1 + (N - 2)q]
[1+ (2)] 1-q][1 + (N-1)q]

(13.21) lim (V6)=2
where

(13.22) r' 2

By comparing (13.18) and (13.21) one sees that if r = r', then

(13.23) flim I ) < lim (N )(13.23) ~~~NM-),a N/V N--o
with strict inequality if r and q are strictly positive.
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