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1. Introduction and summary

In this paper we continue to develop the theory of construction of optimum
experimental designs along the lines of [15], [19], [16], and [17]. Section 2 of
the paper considers further general developments in both the exact and approx-
imate theories, while in section 3 we apply the theory to construct optimum
designs in the settings where systematic designs (subsection 3.1) and rotatable
designs (subsection 3.2) are often employed, and in the setting of linear regression
on an arbitrary Euclidean subset (subsection 3.3). Open problems are mentioned
throughout the paper.

2. Generalities

2.1. Notation and preliminaries. Throughout this paper we shall achieve
brevity by considering mainly a linear model. Corresponding asymptotic results
in nonlinear problems hold and are obtainable without serious difficulty. One
example of such a problem will be found in subsection 3.1 (p unknown), and
further examples of explicit computations in certain nonlinear problems will be
found in Chernoff [6] and Box and Lucas [4], while complete classes of designs
for such problems were treated by the author (see [16], pp. 290-291). We shall
also be primarily concerned with nonsequential designs, although one sequential
problem is treated below theorem 3.1.2. The main idea in the construction of
many such asymptotic sequential designs goes back to Wald [24], while recent
work can be found in the papers of Chernoff [7] and his students.
We assume, then that fl, f2, * *, fk are k given real functions on a space X.

Write f for the column vector of functions fi. Let 0 denote a real unknown column
k-vector. Corresponding to each x in 9C, there is a random variable Y. for which

(2.1.1) E.YY = O'f(x).

(Throughout this paper transposes are denoted by primes and subscripts on E
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or P refer to the distribution under which an expectation or probability is
computed.)
In various applications there will be specified the possible distributions of Yz,

the dependence among various Y., and so forth.
An exact or discrete design will now be defined. An integer N, the total number

of observations to be taken, is specified. An exact or discrete design d is a choice
of N points xi, X2, * , XN in 9S. Sometimes it will be permitted that several xi
are equal, in which case the Yj, corresponding to two equal xi will usually
not be the same random variable. It may also be the case that certain restric-
tions are imposed on the allowable choices of xli, * * *, xN. For example, in the
setting of two-way heterogeneity where v X v Latin square designs are cus-
tomarily employed (N = V2), we can take 9Z to be the space of v3 triples (i, j, k),
1 < i, j, kc < v, a design being restricted to a choice of xi, * * , XN for which
no two xi agree in both of their first two coordinates.

In many applications the Y,. are assumed to be uncorrelated and to have
common (perhaps unknown) variance U2. In this case, for any design d=
(x1, * , XN), the matrix

N
(2.1.2) Ad = E f(Xi)f(Xi)'

i=l

is called the information matrix of the design d. If all components of 0 are es-
timable under d, then a2Ad l is the covariance matrix of best linear estimators
(b.l.e.). See [15] and [19] for a discussion of why it suffices to consider linear
estimators.
The computation of optimum designs in the above setting will be discussed

briefly in subsection 2.2. This is the exact or discrete theory.
Suppose that there is no restriction on the choice of the xi in the above setting.

Let (d(x) be the proportion of xi for 1 < i < N which are equal to x when de-
sign d is used. Then {d can be thought of as a probability measure on $t. If t is
any probability measure on 9C (there will never be any measure-theoretic diffi-
culties), we write

(2.1.3) mij(t) ffi(x)fj(x)&(dx)
and M(t) = Ijmij(t)JI. Thus, for an exact design d, we have Ad = NM(Qd).
We shall call M(t) the information matrix of t. A typical optimality criterion in
the design of experiments is to choose d to minimize some simple real functional
Q of Ad, as we shall discuss in the next two subsections. An exact design d is a
probability measure {d taking on only values which are integral multiples of 1/N.
Suppose we find a probability measure t* which minimizes Q[M(t)] over all prob-
ability measures t on 9C. Clearly, it can happen that t* takes on values other than
multiples of 1/N, and thus does not correspond to an exact design. Neverthe-
less, we shall consider this problem of minimizing Q[M(Q)] over all t, calling this
the approximate or continuous theory and calling any probability measure t on X
an approximate design.

There are three reasons for considering the approximate theory: (1) the exact
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theory will often exhibit a fine structure dependence on N, necessitatinlg a lengthy
table of optimum designs for a given problem, whereas one optimum approximate
design is relevant for all N; (2) the optimum approximate design immediately
yields an exact design for each N which is optimum to within order N-1, and
often will turn out to be an exact design for many N; (3) the exact theory often
presents a difficult combinatorial problem admitting no simple method of solu-
tion, whereas the approximate theory admits simple computational algorithms
such as those mentioned in subsection 2.3.

In the present paper we shall consider the computation of designs which are
optimum with respect to certain specific criteria. The reader is referred to Kiefer
[16] and to Elfving [12] for proofs and listings of results on such related topics
in optimum design theory as admissibility and complete classes of designs, the
role of randomized designs, the computations associated with other optimality
criteria, and so forth.

2.2. The exact theory. Results in the exact theory have been obtained mainly
in the settings where incomplete block designs, factorial designs, et cetera, are
often employed, rather than in regression experiments where DC is a continuum.
Many scattered results for various settings and optimality criteria were obtained
by various authors (see [16] and [12] for listings), all of these results being
obtainable from an elementary approach of the author [15], [16]. Let Q be a
v X v orthogonal matrix whose first row Q1 is constant, and let Q2 denote its
last v - 1 rows. If Cd is Bose's v X v information matrix of design d for the
varieties in a block design setting where there are v varieties (of course, v < k,
where k was defined in subsection 2.1), then Q2CdQ2 iS proportional to the inverse
of the covariance matrix Vd of best linear estimators of contrasts i& = Q20 of
the variety effects F' = (01, , Or). One proves easily that, if d* maximizes
the trace of Cd and Cd* has all diagonal elements equal and all off-diagonal elements
equal, then tr Vd is maximized by d*, and Vd* is a multiple of the identity. From
this we conclude that any design d* with the above italicized properties is
optimum according to any of a wide variety of optimality criteria which were
considered separately by various authors. These criteria include:

(a) D-optimality: minimizing the generalized variance, or det Vd;
(b) A-optimality: minimizing the average variance, or tr Vd;
(c) E-optimality, called minimaxity with respect to all standard parametric

forms in [12]: minimizing the largest eigenvalue of Vd;
(d) called minimaxity with respect to single parameters in [12]: minimizing

the maximum diagonal element of Vd;
(e) maximizing the average efficiency, that is, minimizing the average of the

variances of best linear estimators of Oi - Oi, this average being easily proved
to be proportional to tr Vd;

(f) L-optimality: maximizing, in the Gaussian case, the minimum power on
spheres 4'# = c2 as c -- 0, for testing the hypothesis 4' = 0. If a2 is unknown,
d* must also maximize the number of degrees of freedom for error among designs
for which 4l is estimable, to insure L-optimality.
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As discussed in [15] and [16], properties such as (a) through (e) also have
interpretations in terms of power properties for hypothesis testing problems in
the Gaussian case; remarkably enough, these optimality properties for testing
problems are no longer possessed by the standard symmetrical designs if they
are compared with certain intuitively less appealing randomized designs.
The interpretation of these criteria with regard to confidence region problems

in the Gaussian case, such as those considered by Scheffe [22], is also well
known.

In a given design setting, for example, that where balanced incomplete block
designs are customarily used, one need only verify that the design d* has the
property italicized above in order to conclude the optimality of d* in all of
these senses. The corresponding results in settings where U and not merely iI
is to be estimated, are usually even simpler to obtain. This often involves only
elementary arithmetic. A comparatively difficult example is that of the gener-
alized Youden square, for which optimality has not yet been proved if neither
the number of rows nor the number of columns is divisible by v; in fact, the above
method fails in this case (see [15]).

Of course, there are many design settings, especially where XE is a continuum,
wherein the various criteria (a) through (f) above need not lead to the choice
of the same design. In such cases, if, as is often the case, one does not have a well-
specified loss function, one may want to choose one of these criteria. The criterion
(a) seems to the author to have several appealing properties in such circum-
stances. For example, if the problem is that of polynomial regression of degree
k - 1 on a given interval, this criterion alone among those listed yields a design
which does not depend on the scale of measurement or on which k linear func-
tions of coefficients are chosen as parameters. Another optimality criterion one
might consider is

(g) G-optimality: minimize the maximum (over SC) variance N-1A2d() of the
estimated regression function.
A second appealing property of (a) is that, in the approximate theory, it is

equivalent to (g) [20]. These two criteria had both been considered often in the
past, but as different criteria; see, for example, [4], p. 89. Further properties of
the various optimality criteria are discussed in [15] and [16].

G-optimality is not generally equivalent to D-optimality in the exact theory.
For example, in the problem of linear regression on the interval [-1, 1], with
N = 3, let {l be the exact design for which {,(-1) = t1(O) = {l(1) = 1/3, and
let t2 be the exact design for which (,(- 1) = 1/3, 62(1) = 2/3. It is easy to verify
that det M(Q) = 2/3, a(t,) = 5/2, det M(2) = 8/9, Z( 2) = 3, and that {i is
G-optimum among all exact designs, while 62 is D-optimum among all exact
designs. The same result holds if DC is replaced by the set consisting only of the
three points -1, 0, 1. Nevertheless, it is often true, especially in settings where
each fi can only take on two values, that G-optimality and D-optimality are still
equivalent, although this does not follow from theorem 2.3.1 below; it would
be enlightening to investigate this relationship further (bounds like those of
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subsection 2.3 might prove useful). A related problem is that of making precise
the idea that, in settings where an appropriate symmetrical design (for example,
a BIBD) does not exist, that design which is "closest" to it in some sense will
often have optimum properties. The exact design which is closest to an approx-
imate design which is optimum, seems to possess similar properties.

In some examples of the discrete theory, one can also obtain the desired result
by applying the methods of the next subsection and noting that an approximately
optimum design turns out to be exactly optimum. For example, we shall describe
two methods for proving the D-optimality of the Latin square design d* in the
setting described in subsection 2.1, and it is easy to verify that D-optimality
implies the other types of optimality because of the structure of Vd* in this case.

Let 0' = (a', f', 'y', A), where a, f3, and y are the v-vectors of variety, row, and
column effects, respectively, and A is the "grand mean." We may assume E ai =
E j = E 'Yk = 0. Thus, EY,jk = ai + 13 + 'Yk + A. Let Q be a v X v ortho-
gonal matrix of the type described earlier. Let cz = Q2a, 5 = Q213, -y = Q27y, and
let 0' = (z&', ,', !', ,), so that 4 has maximal dimension among estimable vectors.
Since Ad*, in terms of 6, consists of four diagonal blocks each of which is a multiple
of an identity and six pairs of off-diagonal blocks each of which is a constant
matrix, we obtain easily that Ad*, in terms of 0, consists of four diagonal matrices
each of which is a multiple of the identity, and is zero elsewhere. It follows at
once that, if t* is the measure corresponding to d*, then the function Da(x, t*) of
the next subsection is constant on the v3 points of 9C, so that d* is D-optimum
for estimating contrasts of the ai. The D-optimality of d* for estimating all
parameters 0 is a consequence of the even more obvious fact that the vari-
ance N-'¢2d(x, t*) of the estimated regression is the same at each of the v3
points x. We have purposely refrained from explicit computation of Ad* here;
it was unnecessary, only the form of Ad* being important, in view of theorem
2.3.2!
A second method of proof, which uses the invariance results referred to in the

next section, is even shorter. These results imply that the invariant design t
which assigns measure l/v3 to each point of SC, is (in the approximate theory)
D-optimum for a and also for 0. Since M(t*) = M(t), we conclude that the
Latin square design d* is (exactly) D-optimum.

Unfortunately, these approaches do not work in all settings; for example,
this is the case for a Youden square which is not a Latin square, and we would
have to fall back on the earlier method of proof in that problem.
We end this subsection by mentioning a common misconception which has oc-

curred repeatedly in the literature. Authors have often restricted their attention
to designs for which the b.l.e. are orthogonal, or are orthogonal in or between
intuitively appealing sets (for example, blocks and varieties), apparently assum-
ing that optimum designs are to be found among such designs. While it is well
known that some optimum designs possess such orthogonality properties, it is
only orthogonality in combination with some other property such as the trace
maximization we have mentioned which yields optimality. However, in experi-
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ments such as those concerned with polynomial regression, we rarely have such
orthogonality, although the misconception persists even in that familiar setting
(see, for example, the discussion of [16], p. 306, lines 9-13 and p. 316, lines
17-23). For another example, we note that it is common in designing experi-
ments where a time trend is to be removed, to restrict attention to designs for
which the b.l.e. of time trend is orthogonal to the b.l.e. of effects in which one
is interested. In subsection 3.1, we shall give an example to illustrate the bad
consequences of such an orthogonality restriction in this setting.

2.3. The approximate theory; invariance; bounds; extensions. The earliest gen-
eral development of algorithms for computing optimum designs is due to
Elfving [11] in the case of the average variance, further developments being
due to Chernoff [6]. Kiefer and Wolfowitz [16] developed algorithms for various
optimality criteria, of which we shall be concerned in the present paper with the
generalized variance. Further results for that criterion were obtained by the
author[17].

If t is an approximate design for which 0 is estimable, that is, for which M(t)
is nonsingular, then the variance of the b.l.e. of the estimated regression at the
point x is o2N-ld(x, t), where
(2.3.1) d(x, t) = f(x)'M-1()f(x).
Assume for simplicity that f is continuous in a topology for which 9C is compact,
and write -() = max-, d(x, t). The equivalence of D- and G-optimality alluded
to in subsection 2.2 is contained in the following theorem [20]:
THEOREM 2.3.1. t is D-optimum if and only if it is G-optimum, and if and only

if a(e) = k. For all D-optimum t, M(t) is the same.
This theorem has been the basis for computing optimum designs in problems

of polynomial regression on a simplex or hypercube [17]. A generalization of
theorem 2.3.1, of use when we are interested in a subset 0@() = (01, -.., 0,)' of
the parameters, has been proved in [17]. Partition 0 into 0@() and 0(2)[a (k -s)-
vector], f into f(l) andf(2), and M(t) into

(2.3.2) M- = ||M2(t) M3(t) 11
where M1 is s X s. The information matrix for estimating 0@() can be written as
M* = M- M2M3 1M' if M is nonsingular. Thus, t is D-optimum for @(l)
if it maximimizes det M*(). Write Deo((x, t) = d(x, t) 3

and D(t) = max,, Dew(,(x, t). One of the results of [17] is
THEOREM 2.3.2. Suppose M(t*) is nonsingular. Then t* is D-optimum for (1)

if and only if t* minimizes D(t), and if and only if D(Q*) = s.
The reader is referred to [17] for a determination of the structure of the class

of matrices M(t) for which t is D-optimum for O(M), for the modifications neces-
sary when @(l) is estimable but all of 0 is not, et cetera. When s = k we obtain
theorem 2.3.1, and when s = 1 we obtain a different proof of the algorithm of
[19] for this case. When 1 < s < k, the algorithm of [19] differs from that of
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theorem 2.3.2, the latter so far seeming to have yielded simpler arithmetic in
examples (see [17]).

Invariance. The subject of invariant optimum designs, invariant complete
classes for O(M), et cetera, has been dealt with extensively in [16]. Here we will
only comment briefly on a slightly different approach to invariance where
D- (hence, G-) optimality is involved. Instead of working with det M(t) or
det M*(t) as in [16], we can work with d(x, t) or D(x, t). For example, let S
be a compact group of transformations on 9C with Haar measure ,u, IA(9) = 1.
Suppose that, for g in 9, there is an associated transformation g on the space of
t, such that

(2.3.3) d(gx, t) = d(x, at).
Writing

(2.3.4) f= (pt)j(dg),
the trivial fact that XA-' + (1- X)B-' - [XA + (1 - X)B]-l is nonnegative
definite for 0 < X _ 1 if A and B are, yields

(2.3.5) supz d(x, t) _ supz f d(gx, t)1,(dg) = supz f d(x, 9t)g(dg)

= supxf(x)' 4 M-1(9t)M(dg)} f(x)

_ supAf(x)' {f M(#t)1s(dg) }-'f(x) = supz d(x, ().

Since t is an invariant design, that is, t(gA) = t(A) for all g and A, we conclude:
THEOREM 2.3.3. Under the above conditions, there is a 9-invariant D- (and G-)

optimum design for estimating 6.
This result can be extended without serious difficulty to noncompact groups

(just as with the usual invariance theory in statistics, for example, as in [18]),
as well as to the estimation of @(), in the same way that such extensions were
obtained in [17].

Bounds. For computational purposes in obtaining designs which are almost
optimum in complex settings, it is useful to know when one has obtained a design
which is sufficiently close to optimality for practical purposes. For the criterion
of G-optimality of 0, we have such a method: [() - k]/k is, by theorem 2.3.1,
the relative excess of a(t) over the minimum attainable. No such simple expres-
sion is available in terms of det M(t), but we can use this expression in terms of
8() to obtain a bound on det M(Q)/maxt' det M(Q'). Thus, one can in practice
compute 2() and, if it is close to k, conclude that det M(t) is within a bound we
shall derive, from the maximum attainable. For completeness we shall give such
bounds in both directions. For brevity we shall consider only the case s = k;
the case s < k can be treated similarly.
Write A = maxt det M(t). Suppose 1 is D-optimum. Fix t. An elementary
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computation of the first two derivatives of q(a) = log det M[aq + (1 - a)t]
for 0 < a < 1 (see [20] or [17] for details) yields

q'(0) = dqa) k
(2.3.6) da _--

d-2 q(a) < 0,

and hence
d(2.3.7) d-q(a) )-k for 0 < a 1.

Hence, q(1) - q(0) < d(t)-k, and thus

(2.3.8) det M(t) > exp [k -

Inequality (2.3.8) is easily seen to be strict unless t is D-optimum.
In the other (less useful) direction, suppose d(t) = k + e. For simplicity,

assume E < 1. Again following the derivation of [20] or [17], we conclude that
there is an tj (not necessarily optimum) for which q' (0) = E. Let A be nonsingular
and such that AM(Q)A' is the identity and AM(,q)A' is diagonal with diagonal
entries di. Then, for 0 < a _ 1,

(2.3.9) d 2q(a) t (di-1+ 2
d2i= (1 - a + ad )2

Also, the fourth derivative of q(a) is nonpositive, so that d2q(a)/da2 is concave
and thus attains its minimum L on 0 _ a _ r _ 1 at 0 or r. Thus,

(2.3.10) L = -max (di- 1), (1(d1- + )2 ]

Now, _(di - 1)2 is convex in the di on the set B = {(d1, * * *, dk)j all di _ 0,
_di = k + e}, which must contain the actual (di, , dk) corresponding to ,7,

since q'(0) = _(di - 1). The maximum of _(di - 1)2 on B, taken on at an
extreme point, is k - 1 + (k + e - 1)2.

Consider now the second term in the expression (2.3.10) for L. Let h(u) =
(u -1)2/(1- r + ru)2. Then d2h(u)/du2 = 0 if 0 _ u _ 1 + 1/2r. Since
di _ k + e _ k + 1 on B, we conclude that, if r = 1/2k, this second expression
of (2.3.10) has its maximum over B at an extreme point, where this maximum
is easily estimated to be less than k2.
We conclude that, if r = 1/2k, we have L > -k(k + 1). Hence, q(a) _ ea -

k(k + 1)a2/2 for 0 < a < 1/2k. Putting a = e2/2k(k + 1) and i' = aq +
(1 - a)t for this a, we obtain
(2.3.11) log [det M(Q')/det M(t)] _ e2/2k(k + 1),
where again the inequality is strict unless e = 0. Summarizing our results, we
have
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THEOREM 2.3.4. For any i,

(2.3.12) mxdet M(W ' >eP [ (
maxt, det M(Q') =ep[

and, if 1(t) - k < 1,

(2.3.13) det M(t <Q)< k- }maxE' det M(t') -= exp 2k(k + 1)
with strict inequality unless t is D-optimum.

In the unlikely situation that one has computed a lower bound on det M(t)/A
and wants to obtain an upper bound on 8(t), one would invert (2.3.13). Thus,
if A/det M(t) _ exp (1/2k[k + 1]), we obtain, from (2.3.11),

(2.3.14) d(t) _ k + [2k(k + 1) log det

Extension to the vector case. Various extensions of our theory are possible,
to models where Y. is a vector. For example, if YI is an h-vector of components
Y.,, and 0 and f are hr-vectors (k = hr) of components Ojj and fij with EeYzi =
_jOijfij(x), the Y. being uncorrelated with E6YzY' = a21 (other cases are easily

reduced to this form), then the information matrix of any t breaks up into r
diagonal h X h blocks Mj(t), and the previously discussed theory goes over
into this setting with d(x, t) becoming jf(J) (x)'M7 l(t)f(1) (x) where f() is the
h-vector of fij. Other vector models can also be treated.

The number of points supporting a design. In general, if H is the dimension of
the linear space spanned by the functions fifi, i _ j, then for any t there is a
i' supported by no more than H + 1 points of X and for which M(t') = M(t).
Often more can be said. For example, if H is the maximum possible [k(k + 1)/2],
then there is a D-optimum design on H points, since the optimum design yields
a boundary point in the convex body of M(t). Various results for the number
of points needed when s < k can be found in [11], [6], [19], [16], [23]. In certain
cases, improvements are possible because of the nature of the fi. For example
in the case of polynomial regression of degree m = k - 1 on a real interval,
we have H = 2m, but for any t there is a i' on at most m + 1 points with
M(') = M(t). The admissible t were characterized in this example by the
author in [16]. An outstanding problem is the characterization, in terms of SC
and the fi, of the smallest number q such that, for any i, there is a i' supported
by at most q points, and with M(Q') = M().
We cite an example to indicate the theoretical importance of the above con-

siderations (the practical importance being obvious). The author [17] has com-
puted D-optimum t for the problem of quadratic regression on an m-cube when
m < 5, these optimum designs being supported by the vertices, midpoints of
edges, and midpoints of two-dimensional faces. When m = 6, a design with
such support can not be optimum. Already for m = 4 and m = 5 the optimum
designs of this structure are supported by more than H + 1 points, which,
incidentally, exemplifies the fact that the optimum t is no longer unique as it
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is in the case m = 1. It is reasonable to suppose that, if one could obtain D-opti-
mum designs supported by fewer points when m = 4 or 5, this might suggest
a structure which would also work when m _ 6.

Note added in proof. Such designs for all m have been obtained recently by
Dr. R. H. Farrell and the author. Details will appear elsewhere.
Another question is this: Suppose we restrict our attention, as has often been

done in the literature (see, for example, [4]) to designs supported by k points.
The best [for example, in terms of det M(t)] design of this structure need not
be optimum among all designs, but by how much does it miss? Using the con-
cavity of log det M(t), one can develop bounds of the sort developed earlier in
this section, but it would be useful if these could be improved by using the form
of the fi.
The results we have cited on the number of points needed to support designs

do not apply to the exact theory as has sometimes, especially in the polynomial
case, been assumed. However, the error introduced by assuming these results to
apply is only of order 1/N, as indicated in subsection 2.1.

3. Applications

3.1. Systematic Designs. Systematic designs arise in contexts where observa-
tions are taken over time. Thus, if at time t = 1, 2, ... , T, one or more observa-
tions can be taken at points in a space S, we can view 9C as ST; however, there
will usually be restrictions on the number of observations which can be taken at
each time point t. Thus, although it can happen that an approximate design,
obtained without imposing any restrictions, either turns out to satisfy these
practical restrictions, or is close to a design which satisfies them, this will usually
not be the case, and the theory of subsection 2.3 is thus not always useful. What
would often be useful here is a theory which is approximate with respect to S
but exact with respect to T.
There are many recent papers in this area, some of which are those of Williams

[25], Cox [8], [9], [10], Box [1], Box and Hay [2], and Patterson [21]; further
references can be found in these papers.

In the simplest of these problems, the model is such that the dependence on
the time variable can be treated as the block effect in a BIBD or as the row or
column effect in a Youden square. The theory of subsection 2.2 can then be used
to give optimum designs.
In more complex models, this device will not suffice. As mentioned in sub-

section 2.2, it is often erroneously assumed in such problems that an optimum
design is to be found among those designs for which the b.l.e. of treatment
effects are orthogonal to the b.l.e. of time effects (see, for example, [1], [2]).
A simple counterexample is the following: Suppose that S is the interval [-1, 1],
that T = 4, and that the expected value of an observation at the point z in S
at time t is az + 300 + #It + 32t2, where a and the #j are unknown. All observa-
tions have the same variance a2 and are independent. We wish to estimate a.
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For simplicity of computation in this counterexample, we suppose that we are
allowed one observation at each of the four times t; thus, a design is a quadruple
(Z1, Z2, ZS, Z4), where zt is the point at which an observation is to be taken at time t.
One sees easily that the restriction to designs for which the b.l.e. of a is orthogonal
to those of the f3j means that the design is of the form (z1, -3z1, 3zj, -zi), and the
variance of the b.l.e. of a is obviously a minimum among designs of this form,
namely 90.2/20, when z1 = it1/3. On the other hand, the design (-1, 1, -1, 1),
for which we do not have this orthogonality, yields a b.l.e. of a with variance
5a2/16. The variance for the best orthogonal design is thus 44% larger!
For settings where S is higher-dimensional, the computation of optimum

designs will usually be very tedious. The neat approach of Box [1], which yields
designs with the above computationally useful orthogonality property, will not
yield optimum designs, both because of the phenomenon illustrated in the
previous paragraph, and also because the method of construction used in [l]
is not geared to the specification of a fixed S with respect to which all designs
are to be compared. For example, if S is replaced by the unit disc in the example
of the previous paragraph with T > 5, the method of [1] yields as a design a
T-tuple (zI, Z2, * * *, ZT), where zt = (Zgi, Zt2) is a two-vector and the T-vectors
(Z11, Z21, T1,z) and (Z12, Z22 , ZT2) are chosen so as to yield the orthogonality
property. But the method does not insure that zl + zt2 < 1 for all t; thus, to use
such a design for the S we have specified, it would be necessary to change
the origiral design of [1] by dividing all ztj by the factor maxt (z1 + z4)iI2.
Hence, the various choices of (z1, * * *, ZT) in [1] which yield the same informa-
tion matrix there do not yield the same matrix when we scale them down to our
specified S. We shall again encounter this need for a careful scaling of the designs,
which are usually scaled in a different manner in the literature, in our considera-
tion of rotatable designs in subsection 3.2.

Williams' model. We shall now consider in detail the model studied by
Williams [25], wherein the effect of time appears entirely through a correlation
among observations. There are k treatments, any one of which can be tested at
time t for t = 1, 2, . , T. Thus, a design dT is a T-tuple (V1, V2, ... , VT), where vt
is the label number of the treatment tested at time t, (1 < vt < k). If treatment i
is tested at time t, the expected value of the observation Ye, say, is OA.

The first order model. We shall first consider Williams' first order model,
wherein Yt = pYt+l + t, the eg being uncorrelated with common variance c2 for
t < 1. The variance al2 of Yi is assumed positive, but will be shown not otherwise
to concern us, since we will be concerned with an asymptotic theory as T X-* o.
It is often customary to assume var (Y1) to be such as to make Y, - EY, sta-
tionary in the wide sense, but this is unnecessary. For the present, we assume
p known, -1 < p < 1; actually, we shall see that it is only necessary to know
that -1 < p . 0 or 0 _ p < 1 in order to choose an asymptotically optimum
design. Later we shall consider a minimax approach when nothing is known
about p.
The problem is to estimate all contrasts of the Oi, and we shall find designs
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which are asymptotically optimum as T -+ o, in any of the senses (a) through
(f) of subsection 2.2. Our considerations are thus asymptotic, but for exact
designs.

Williams discussed in detail two types of designis for this problem: A design
is of type II(a) if (i) each unordered pair of distinct integers between 1 and k,
inclusive, appears the same number of times among the pairs (V1, V2), (V2, V3), *. *,
(VT_1, VT), and (ii) vt.l 6 vi for all t. A design is of type 11(b) if (i) is satisfied and
if each unordered pair of different integers appears twice as often as each pair
of equal integers. Examples of these two types of designs when k = 4 are
(2123423143142) and (11234413224133421). In constructing such designs, it is
often convenient, as here, to have Vrk+2, Vrk+3, .*. , V,r+)k^+ constitute a permuta-
tion of 1, 2, * * *, k for each integer r _ 0. Williams showed that, between these
two types of designs, as T -- oo, 11(a) is the better in the sense of criterion (e) of
subsection 2.2 if p > 0, while II(b) is the better if p < 0. It has often been con-
jectured (see, for example, Cox [9]) that these designs are optimum among all
designs in the two respective cases. This conjecture turns out to be true for
II(a) but false for II(b) [although II(b) will turn out to have a different optimum
property], as we shall now see.

Let Wt = Yt- pYt_, for t > 1. The Wj are uncorrelated with common
variance ti2. Since acr > 0 and IpI < 1, it is easy to see that, for any design,
T-1 times the information matrix associated with Q20 (in the notation of subsec-
tion 2.2) is asymptotically the same as T -X o, whether based on Y1, Y2, * **, YT
(or, which is equivalent, on Y1, W2, * - *, WT) or on W2, * * *, WT, and approaches
a positive definite limit for the asymptotically optimum designs obtained below.
It follows that we can ignore Y1 and base our considerations on W2, * , WT in
the asymptotic considerations which follow.
Writing W(T)' = (W2, * * *, WT) and EW(T) = JTO, we thus must consider the

information matrix JTJT = Ad,, say, of the WT) associated with any design
dT = (V1,I , VT) based on T observations. Write Ad = lladiiJI. We see at once
that
(3.1.1) adii = (number of r, 2 < r < T, for which vr = i)

+ p2(number of r, 1 < r . T -1, for which v, = i)
- 2p(number of r, 1 . r < T -1, for which Vr vr+1 = i)

and, for i 0 j,
(3.1.2) adii = -p[number of r, 1 _ r < T - 1, for which (v,, v,+±)

= (i,j) or = (j,i)].
For any d based on T observations, write
(3.1.3) QAdQ' hdb hZd
where Zd is (k- 1) X (k - 1). The covariance matrix of the b.l.e. of Q20 based
on W(T) is o2T1(Zd - hdbdhd)-l. Since hdbdh' is nonnegative-definite, the discus-
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sioni of subsection 2.2 shows that dT is optimum in all of the senlses (a) through
(f) of subsection 2.2, provided that (1) Zd* is a multiple of the identity and
hd4 = 0, and (2) tr ZdT is maximized by dT. We shall exhibit a design dT for which

ZdT approaches a positive definite limit as T -* oo and for which (1) and (2) are
satisfied to within order T-1; these designs are thus asymptotically optimum as
T-*oo.
Since Q2 has row sums equal to zero, (1) is satisfied to within order T-1 by

any sequence, with T, of designs {dT} for which (3) for all T and some finite
constant c, independent of T, ladrii - adTijl < c and ladij- adfl < c for all
i F# j and e F- f. Moreover, if we define
(3.1.4) 7rdT = T-'(number of r, 1 < r <_ - 1, for which v, =vr+,)
we obtain easily, since bdT = k-1(1- T-1)(1 - p)2 for all dT,
(3.1.5) tr Zdr = Yl tr Adr - bd1. = (1 - Y-')(I + p2) - 2p7rdr - bdT

= (1 + p2)(1 - T-)(l - k-') - 2p[7rdT - k-'(1 -T-')]
Thus, condition (2) is satisfied to within order T-' by any sequence of designs
d* for which (4a) T7rdT < c for all T, if p _ 0, or (4b) T(1 -dl ) < c for all T,
if p < 0. Noting that our omission of Y, changed ZdT by order T-1, we conclude:
THEOREM 3.1.1. A sequence {dr} of designs is asymptotically optimum to

within relative error T-1 as T -x oo in Williams' first order model provided {d}
satisfies condition (3) of the previous paragraph and also condition 4(a) (respec-
tively 4(b)) if p _ 0 (respectively, p _ 0).
The statement of necessary and sufficient conditions for asymptotic optimality

without having the error term of order T-', is obvious. Theorem 3.1.3, for the
second order case, will be stated in that form.

Thus, when p > 0, Williams' designs of type 11(a), or ones of approximately
this structure (which exist for any T), are asymptotically optimum. However,
when p < 0, Williams' designs of type II(b), although better than those of type
II(a), are not asymptotically optimum. Rather, an approximately optimum design
is now one which observes approximately Tlk treatments of type 1, then T/k
of type 2, et cetera (or which is almost of this structure): dT = (1, 1, - , 1, 2, 2,
*,2, **,k,k, ,*- , k). Fora design oftype II(b), rdT +1/kasT---oo; thus,
by (3.1.5), the "relative efficiency" of such designs for p < 0, compared with
optimum ones (in terms of the variance of the b.l.e. of any contrast) as T -

,

is 1 - 2(-p)/(l - p)2.
It is clear that, for fixed T with the appropriate divisibility property, designs

of the above forms will be exactly optimum if au/of2 is sufficiently large. On the
other hand, if 2/a2 is sufficiently small, an exactly optimum design will have
vj 5- v1 for all j > 1. It would be interesting to delimit the sets of values of ll/a2
wherein these extreme designs and others between them are exactly optimum.

Of course, all designs for which the treatments appear with (approximately)
equal frequency are asymptotically optimum when p = 0.

Suppose p were not known exactly, but that we only knew in advance of the
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experiment that p _ 0 (or, similarly, that p _ 0). Then p can be estimated
consistently from the data (see [24] for details) and one finds that the same
limiting formulas hold as before (of course, estimators are no longer linear).
Thus, theorem 3.1.1 specifies asymptotically optimum designs for this situation,
too.

Next, suppose we know in advance of the experiment only that -1 < p < 1.
We seek a design which is minimax over p as T -> oo, with respect to any of the
criteria (a) through (f) of subsection 2.2. Since p can be estimated as indicated
in the previous paragraph, the problem thus reduces to choosing dT so as to
maximize min, tr ZdT as T -- oo. The result is clear:
THEOREM 3.1.2. If p is unknown, {dr} is asymptotically minimax over p for

criteria (a) through (f) if and only if, for i $ j and e # f,
lim T-'(adPii - ad*Jj) = 0,
T-x

(3.1.6) lim T-l(adTj - ad*f) = 0,
T X,

lim 7rd 1/k.
T-

Williams' type II(b) designs satisfy these conditions.
Thus, the type II(b) designs do possess an optimum property, but not the

one they are usually thought to possess.
It is easy to give sequential designs which improve upon those specified in

theorem 3.1.2: It is only necessary, in standard fashion, to decide after n(T)
observations, where n(T) -o and T-ln(T) -O 0 as T -* oo, whether p > 0 or
p < 0, and to use the appropriate design of theorem 3.1.1 for the remaining
T - n(T) observations, as dictated by this decision. As T -+ oo, the resulting
designs yield the same limiting information matrix as would have been obtained
if p had been known.

The second order model. Williams' second order model differs from the first
order model only in that we now assume Yt + plYt-1 + p2Yt-2 = et, t > 2,
where the -Et are again uncorrelated with common variance a2. The joint distribu-
tion of Y, and Y2 is assumed to be nonsingular, and it is assumed that -1 <
p2 < 1 and -(1 + p2) < pi < (1 + p2). The model for EYt, and the notation
for a design, are as before.

Williams considers in this setting designs of type III, which satisfy the condi-
tions of a design of type 11(a) and also the condition that vt_2 5! vt for all t
and that each unordered pair of integers between 1 and k, inclusive, appears
the same number of times among the pairs (V-2, Vi), 3 _ t _ T. Thus, k 2 3 for
such a design to exist. An example of such a design for k = 4 is d = (2, 4, 1, 2, 3,
4, 2, 1, 3, 4, 1, 3, 2, 4). There is no corresponding analogue of type 11(b) designs
here.
We now define 7rd, as before, and also

(3.1.7) 'YdT = Th1(number of r, 1 _ r _ T - 2, for which v, = V,+2).



OPTIMUM EXPERIMENTAL DESIGNS 395

We now replace our analysis in terms of the Wt by one in terms of V, = Yt +
pIYyt1 + p2Yt_2 for 3 < t . T. A simple computation now shows that
(3.1.8) tr ZdT = T-1 tr Ad, - bdT = l + p' + p2 + 2{pI(1 + p2)7rdT + P2YdT}

-k- [1 + P1 + p2]2 + O(T-').
As before, we will obtain designs which are approximately symmetrical with

respect to treatments; that is, dT will be such as to make the adTii almost equal
and the adTij for i $4 j almost equal, while maximizing tr ZdT.

Since P2 + 1 > 0, the maximization of (3.1.8) breaks up into four cases ac-
cording to the signs of pi and P2. If pi and P2 are both positive, optimality neces-
sitates 7rdT -- 1 and 'YdT -- 1 as T -+ o ; for example, one can take approximately
Tlk consecutive observations on treatment 1, then the same number on treat-
ment 2, et cetera. If pi < 0 < p2, we want 'YdTr_ 1 and 7rdT- 0; this can be
achieved while maintaining the approximate symmetry with respect to treat-
ments by taking observations in consecutive blocks of approximately 2T/k(k - 1)
observations each, each block being of the form ijij ... ij for a different pair
i < j.

If p1 < 0 and p2 < 0, there are two cases to consider, according to whether
k = 2 or k > 2. If k > 2, we can obviously achieve optimality by using an ap-
proximately symmetric design with 7rdT -+0 and YdT-+0; for example, we can
construct a design consisting of k(k - 1) (k - 2) blocks of approximately equal
numbers of observations, each of the form hijhij ... hij for a different triple of
unequal integers h, i, j. On the other hand, when k = 2, we cannot achieve
both lrdT -O0 and 'YdT -- 0. The set of achievable points (TrdT, Ydr) has as its limiting
set (topologically, not set-theoretically) a set B in the plane which is clearly
convex. We must determine the lower left hand boundary B' of B. It is easy to
see that, in any approximately symmetric design containing the same number
of l's and 2's (which is all we need consider, since any dT can be replaced by a
d2T with approximately the same 7r and y and with the two treatments appearing
approximately symmetrically), any appearance of blocks of three or more con-
secutive l's can be broken up by exchanging some l's with 2's from a correspond-
ing block of 2's, without increasing 7r or -y. Thus, in determining B', it suffices
to consider designs which never contain more than two consecutive l's or 2's.
It is now easy to see that B' consists of the line segment {27r + -y = 1, 0 <
-y _ 1}. It follows that an asymptotically optimum sequence {dT} satisfies
(i) 7rdT , 'YdT 1 if pIlO + P2) < 2p2, (ii) rdT 1/2, -YdT O if pi(1 + P2) >
2p2, and (iii) 27rdT + 'Ydr - I if pi(l + P2) = 2p2. Examples of such designs in
the respective cases are (i) d = (1212 ... 12), (ii)d= (11221122 ... 1122), and
(iii) many designs, including the previous two and d = (112112 ... 112; 221221
... 221).
When pi > 0 > P2, we must determine the lower right hand boundary B" of B.

This time if there are many occurrences in d of triples of the form lal, lbl, lcl,
et cetera, it is easy to see how to combine them (for example, into lllabclll here)
so as not to increase -y or decrease 7r. Thus, we need only consider designs which
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contain blocks of at least two i's in a row, every time any i occurs. Symmetrically
arranged blocks of exactly m _ 2 equal integers yield, approximately, 7r =
(m- 1)/m, -y = (m- 2)/m, and it is easy to verify that convex combinations
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- 2p2. Examples are (i) the design described above with m = 2; for example,
d = (112233113322 ...) for k = 3; (ii) the above form with m -- oo as T -;
and (iii) the above form for any m > 2.
We summarize our results in figures 1 and 2 and in the following statement,

which traces counterclockwise around the boundary of B, starting with the
point (1, 1), and around the (pl, p2) domain starting with the region pi > 0,
P2 _ 0:

THEOREM 3.1.3. The sequence {dT} is asymptotically optimum in senses (a)
through (f) for Williams' second order model, if and only if (1) Th1AdT approaches
a limit with diagonal elements equal and off-diagonal elements equal, and (2) 7rdT -d7r

and dT Yy, where
(a) ir = y =1 if pI > O, p2 _ °;
(b) y = 1 if pl=O,P2>0;
(c) =l.,7r=O if Pl<O,P2>0;
(d) 7r = 0 (hence, if k = 2, y = 1) if Pl < O, p2 = 0;
(e) k > 2: r = 0, y = 0 if pl < 0 p2 <O;

k = 2: (i) 7r = 0, -y if pl(l + p2) < 2p2 <O;
(ii) 27+ y = 1 if pI(l + p2) = 2P2 < 0;
(iii) X = 1/2, y= 0 if 2p2 < pl(l +p2) < °;

(f) y = 0 (hence, if k = 2, i = 1/2) if pi = 0, p2 < °;
(g) (i) r = 1/2, y = 0 if 0 < pl(l + P2) <-2P2;

(ii) 27r-y = 1 if O < p(1 +p2) = -2p2;
(iii) 7r = y = 1 if 0 < -2p2< P1(l +P2);

and where, in cases (b), (d) for k > 2, (e) (ii) for k = 2, (f) for k > 2, and (g) (ii),
the vector (Od,, 'YdT) need not approach a limit, but only the designated line.
The version of theorem 3.1.3 with error term T-l (as in theorem 3.1.1) is

obvious.
We note that Williams' type III designs are thus optimum only in cases (d),

(e), (f) for k > 2.
When p = 0, the same designs are asymptotically optimum as in the case of

the linear model.
The case where pi and p2 are not known exactly, but are only known to fall

in a specified one of the regions listed in theorem 3.1.3, is treated as in the linear
case. So is the case where pi and P2 are completely unknown, but where a se-
quential design can be used.

Finally, a nonsequential minimax (over pi and p2) design is obtained by making
the coefficients of terms other than 1, p, and p2 in the expression (3.1.8), equal
zero. We obtain:
THEOREM 3.1.4. If pi and p2 are unknown, {dT} is asymptotically minimax

over pi and p2 for criteria (a) through (f) if and only if it satisfies the first two lines
of equation (3.1.6) and also

(3.1.9) lim 7rd, = lim W k,
7,-. 7,-. ~ k
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Since the point (1/k, 1/k) is an interior point of B, there are many ways of
obtaining asymptotically minimax designs. Two examples when k = 3 are
d = (112113112113 ... ; 221223221 ... ; 331332331 ... 332) and d = [11 ...

122 ... 233 ... 3 of length T/3 together with 123123 * 123 of length 2T/3].
Higher order dependence. Models with higher order dependence can be investi-

gated in the same fashion.
3.2. Polynomial regression on an m-ball; rotatable designs. Let m and d be

positive integers. We now treat the problem where XE is the unit m-dimensional
ball, consisting of those points x = (x('), . .. , x(n)) in Euclidean m-space for
which 7j(x(i))2 < 1, and where thefi are all the functions Hj(x(J1)rifor which the rj
are nonnegative integers satisfying E_jrj _ d; thus, k = (d + m We refer to

this as the problem of dth degree regression on the m-ball. We shall consider the
approximate theory, and shall treat the problem of D-optimal estimation of all
regression coefficients, which by theorem 2.3.1 is the same as G-optimal estima-
tion of the entire regression function.
The optimum orthogonal-invariant approximate design characterized in

theorem 3.2.1 below is not a discrete measure. In theorem 3.2.1 we also give an
upper bound on the number of points needed to support a discrete measure which
is D-optimum (see subsection 2.3). We shall not be concerned here with the
actual construction of these discrete (, except for brief mention of the cases
d = 1 and d = 2; these considerations when d > 2 and m > 2 are considerably
more difficult, since it is no longer generally possible to replace uniformly dis-
tributed measure on an (m -1)-sphere by a uniform discrete distribution on an
appropriate finite set of "uniformly spaced" points as in the case m = 2. The
construction of exact rotatable designs, which is the subject of much recent
literature, is also not our concern here. In fact, such designs may be far from
being optimum, as we shall exemplify below in the case d = 2, m = 2. In fact,
our results do not imply that there exists an exact rotatable design which is
within order N-l of being optimum, but only that there is an exact design which
is within order N-1 of being rotatable [in the value of its M(t)] and which is
within order N-1 of being optimum. The term "rotatable" will be used by us in
reference not only to exact, but also to approximate, designs.
The case m = 1, where OC is an interval, was treated in full by Guest [13]

and Hoel [14]. Unfortunately neither of their elegant methods is applicable
when m > 1, and we shall not obtain such explicit results for general d as those
of Guest and Hoel.

Rotatable designs were invented by Box and Hunter [3], and their intuitive
appeal (which has never been justified until the present paper) has attracted
considerable interest and usage. As mentioned in the first part of subsection 3.1,
the usual treatment in the literature of design problems where such designs are
employed does not make a precise specification of DC. Thus, in [3] and in subse-
quent papers on the subject, it is standard to employ the normalization F4=lx1lD
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= 0, that is, J (x(0))dt = 0, and the normalization iN (x))2 = N, that is,

J (x(i))2dt = 1, and then to compare the variance of the estimated regression
for various designs at each distance p from the origin. Now, the use of two differ-
ent designs with the same such normalization will usually entail taking observa-
tions in balls of quite different radii, that is, maxi _j (xEii)2 will usually not be the
same for two such designs. Thus, the comparison of various rotatable designs
in this manner is of questionable practical value! If the set of points x at which
one is interested in estimating the regression function and at which observations
can be taken is actually a ball of radius R, it is meaningless to insist on the above
normalization, since it can exclude many good admissible rotatable designs and
can include many poor ones, namely, those taking all observations within a ball
of radius < R, when mN < R2. In fact, a trivial consequence of the behavior
of $ (and the f,) under multiplication by RIR' is that any design which takes
all observations in a ball of radius R' with R' < R yields a larger generalized
variance and a larger d(t) than the corresponding design in the ball of radius R.
We shall return to this point in the final paragraph of this subsection.
The reader is warned that certain formulas which are relevant to the material

of this section will differ from corresponding formulas of [3] and other papers
on the subject, because of the above-mentioned normalization used in these
papers (see, for example, the second paragraph above theorem 3.2.2, below).
We shall use, in this section only, a notation which is more convenient in this

particular setting than is the general notation employed in the rest of the paper.
Instead of using a single subscript, we label the elements of 0 and of the vector f,
as well as the rows and columns of M(t), by m-tuples (r,, r2, *-* , rm), correspond-
ing to the function IIj(x(2Dri.

Let 9 be the orthogonal group on m-space. For g in 9, the design g9 is as usual
defined by (ge)(A) = t(g-'A). Since the problem (set of possible regression
functions, et cetera) looks the same with respect to gt as with respect to t, we
clearly have d(gx, g9) = d(x, E), or d(gx, t) = d(x, g1-). Hence, theorem 2.3.3 is
applicable and we conclude that there is an optimum t* which is invariant under
9; that is, for which t*(A) = t*(gA) for every orthogonal transformation g
and Borel set A. Such a t* can be factored into the form (t X t*:

(3.2.1) t*(A) = f0 {l(p-[A n Si])2(dp),
where S, is the (m -1)-sphere of radius p, t; is the uniform probability measure
on Si, the integrand is taken to be 1 or 0 when p = 0 according to whether or
not 0 C A, and t2 is a probability measure on the interval [0, 1]. Write

(3.2.2) 2=f0 p'2(dp)
and
(3.2.3) F(sl, 82 * , Sm) ffIs (x(0))"t2(dp).
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Then the elements of M(t*) for t* = t; X t2 can be computed as follows:

(3.2.4) 2fl(a, ) )(,*) = I2.(aj+#j)F(ai + 01, * * *, a. + 3rn).
In particular, this is zero if ai + fi is odd for any i, and is positive otherwise,
unless t;(0) = 1.
Now, suppose t* is D-optimum and invarianit, as above. Then d(x, t*) is easily

seen to be a polynomial in p2, of degree .d in p2, say d*(p2, *) = q p2i. From
the behavior as x(l) , we see that qd > 0. Now, f q(x, t)t(dx) = k for any t
(see subsection 2.3), so that, by theorem 2.3.1, d*(p2, t*) = k on a set of t*-meas-
ure one if t* is optimum. It is easy to prove for any invariant t* that M(t*) is
singular if t2 gives measure one to a set consisting of fewer than (d + 1)/2
points of the interval 0 _ p < 1, where the origin is counted as 1/2 point (the
converse of this for general invariant t* is also simple to prove, but will not be
needed here, since it will follow from other considerations that t2 has exactly
(d + 1)/2 points of support for a D-optimum invariant t*). Hence, for an op-
timum t*, the function d*(r, t*) is a polynomial of degree d with qd > 0 and
such that d*(T, t*) = k at least (d + 1)/2 points.

If d is even, say d = 2b, it follows from elementary algebraic considerations
that d*(ir, t*) is equal to its maximum k on 0 _ T < 1 at T = 0 and at b other
points, of which one is r = 1, since d*(r, t) must be increasing at T = 1. Sim-
ilarly, if d is odd, say d = 2b + 1, then d*(r, t*) is equal to its maximum k at
b + 1 points, all different from zero, one of them being 1. In either case, write

, **, rb+l for these values, so that t is supported by {ri', * , Tbr+ }.
Thus, an invariant design can be optimum only if t2 has exactly (d + 1)/2

points of support, one of which is at 1.
According to theorem 2.3.1, M(t) and d(x, t) are the same for all D-optimum (,

whether or not t is invariant. Thus, all D-optimum approximate designs t are
rotatable, in that d(x, t) is a function only of p for all of them. Since the function
d(x, t) is the same for all D-optimum designs, and since d(x, t) attains its max-
imum on a set of t-measure one if t is D-optimum, we conclude that every
D-optimum t (invariant or not) gives measure one to the union of the same
b + 1 (m -1)-spheres (one of which may degenerate to the origin) of radii
1/2 . . . ,1/2

Ti X X Tb+l-
Any D-optimum t can be integrated over 9 to yield an invariant D-opti-

mum t* with t2(p) = t(S,) for all p. For fixed values of Ti, *Tb+l, the function
log det M(t) is strictly concave in the positive weights yj = 62(rt) among in-
variant designs, so that the optimum weights, as well as the ri, are unique.
For any invariant designs t' for which t2 is supported by (d + 1)/2 points
I/2 , )4{+2 with Xb+l = 1 and -with Xi = 0 if d is even, write d*(r, (') =

d(T; 1, * * *, yby+I, Xl,, * * , Xb+i) = d(T; Y, X) to exhibit the support points and
weights. Consider the equations

d(Xi; y,X) = k;
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(3.2.5) da d(;Y,X) = I2 j<j b if d iseven;

Xb+±= 1;

Xi = 0 if d is even.

The first line contains only b independent equations. Clearly, the unique op-
timum choices of -y and X satisfy these equations. Conversely, any positive prob-
ability vector -y and any X, with 0 _ Xi _ 1, satisfying these equations clearly
define an invariant t* for which d(a*) = k, so that this t* is D-optimum.
The integer H of Section 4 is the number of functions of the form IHj(x(i))i

with sj _ 0 and 1 < Fjsj _ 2d, which is just (2d + ) 1.

We summarize our results.
THEOREM 3.2.1. For the problem of dth degree regression on the unit m-ball,

there are numbers X1 <X2 < ... < 1,1 = 1 with b = (greatest integer < d/2)
and XI = 0 (respectively, > 0) if d is even (respectively, odd), and positive numbers
Yl, * * *, 'Yb+1 whose sum is unity, such that t is D-optimum if and only if it satisfies

(a) t(Sxi112) = yj, 1 < j _ b + 1,
(b) t is rotatable, that is, d(x, t) depends only on p2 = 1 (X(7))2.
In particular, there is a unique orthogonal-invariant design satisfying these

conditions, and there are designs supported by at most (2d + m) points which

satisfy these conditions.
The -y, and Xi can be obtained as the unique solution of (3.2.5) satisfying yj > 0,
Fj= 1, 0 < Xj < 1.
It should be noted that the common practice of combining nonrotatable de-

signs on spheres in such a way as to yield a rotatable design will often lead to a
design on more than (d + 1)/2 spheres, which thus cannot be optimum.
We now consider some examples of optimum designs.
When d = 1, we have the trivial result that t(S1) = 1 if t is optimum. Exam-

ples of discrete i's which are D-optimum are the uniform distribution on the
m + 1 vertices of an inscribed regular simplex or on the vertices of any other
inscribed regular polygon.
When d = 2, we need only consider rotatable designs which assign measure S.

say, to S, and measure 1 -a to the origin. Using formula (3.2.4) (or, renormaliz-
ing formula (49) of [3] in the manner discussed earlier, using V(&-112p) where
V is given by that formula), one can without difficulty write out the func-
tion d*(r, t) for such a t and use its convexity in r (see the next paragraph) to
compute the desired result. However, it is even unnecessary to do this in order
to obtain the result, since a simpler argument suffices to compute d*(O, t) and
d*(1, t) in this example, as we shall now see.
The average U of "observations" at the origin is an unbiased estimator of
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0(o,o -..-o) and yields no information about any other parameters. Moreover, U is
the b.l.e. of 0(o,. -.o), since otherwise it is easy to see that M(Q') would be non-
singular, where t' is the uniform measure on Si, and this last is false by the argu-
ment leading up to theorem 3.2.1. We conclude that U is the b.l.e. of the
regression function at the origin. Hence, d(O, 5) = (1-6)-1. Now, if d(O, ) k,
we automatically obtain d(1, t) = k, since f d(x, t)S(dx) = k for all t; by the
convexity of the second degree polynomial d(T, t) with positive coefficient of
T ,we will then have d() = k, so that t will be D-optimum. Thus, we obtain
THEOREM 3.2.2. When d = 1, t is D- and G-optimum if and only if it is

rotatable and (Si) = 1. When d = 2, t is optimum if and only if it is rotatable
and t(0) = 1 - (S1) = 2/(m + 1)(m + 2).
The authors of [3] say on page 215 that they do not claim any optimum

properties for their designs, but we now see that some, but not all, of their de-
signs are indeed D-optimum. Thus, when m = 2 and d = 2, their design which
takes one observation at the origin and one at each of five equally spaced points
on the unit circle (or any multiple of this design) is D-optimum. The reader is
invited to consult table 1 of [3] to see how the considerations with the nor-
malization used there are, as we have mentioned earlier, misleading for the prob-
lem we have considered unless one is careful about translating their meaning.
For example, "p = 1" there does not mean "p = 1" for us, but rather "p = 6II/21
for designs of the structure considered above; thus, values of V for a given value
of p there actually correspond to different points of $ for different designs, and
one must look at the behavior of various designs on different domains of p
there, in order to obtain their behavior on the same domain $ in our problem.

3.3. Linear regression on a Euclidean subset. Let $r be a compact subset of
Euclidean m-space, which we assume not to lie in an (m -1)-dimensional
hyperplane (if it did, 0 would not be estimable for any t). Writing x = (x(l),
... , x(m)), we consider the problem of estimating all of 0, or the whole regression
function, when k = m + 1 and fi(x) = x(i) for 1 _ i _ m and fm+i(x) = 1.
For any t for which 0 is estimable, d(x, t) is quadratic in x and is in fact

strictly convex. Hence, if $C' is the convex closure of 9$, the function d(x, t)
achieves its maximum on $' only on a set B of extreme points of 9C', which are
clearly points of 9$. Thus, d(x, t) attains its maximum on EC precisely on the
set B, and thus, as in previous examples, t*(B) = 1 if t* is D-optimum. Since
d(x, t*) is quadratic and is equal to k on B if t* is optimum, there must therefore
exist an ellipsoid T (by which we mean the hypersurface, not the solid) which
can be circumscribed about $E in such a way that T n $i = B and d(x, t) =
m + 1 for x in T. Thus, d(x, t*) = (x - c)'C(x - c) + co for a suitable vector
c, positive real co, and positive definite symmetric matrix C, T being the set
where (x - c)'C(x - c) = m + 1 - co,

If A is an m X m matrix such that A'A = (m + 1 - co)C, the affine trans-
formation y = A(x - c) takes T onto the unit sphere S = {yly'y = 1}. Under
this transformation, t* is transformed into a measure i' on S. Since (x(l), *. *,
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x("'), 1)M-1l(*)(x(l), , x(-), 1)' = (x - c)'C(x - c) + co, we conclude that

(3.3.1) ~~C -Cc
(3.3.1) llI-l(t* = ||_-c'C c'Cc + coll'
and hence that

C-1 + c-C(c, co-c(3.3.2) MQ*) coicc co- I

Hence,

C-l + c61cc' = f xx't*(dx) = f (A-'y + c)(A-'y + c)'t'(dy),

(3.3.3) co- c = f xt*(dx) = f (A-1y + c)t'(dy),

Co 1 = f 1t*(dx) = 1,

from which we conclude at once that

f yt'(dy) = 0,
(3.3.4)

f yy't'(dy) = m-II

Since E, f x22(dx) = 1 for any t on S, we easily compute that H = (M2 +
3m - 2)/2.
We summarize our results:
THEOREM 3.3.1. For the problem of linear regression on a compact subset XE

of Euclidean m-space which does not lie in an (m - 1)-dimensional hyperplane,
there is an affine transformation t of 9t into the unit m-ball such that the intersection
of t9C with the unit sphere supports a probability measure t' for which

f yjt'(dy) = 0, 1 i _ k,
(3.3.5)

J yjyjt'(dy) = m-'5ij, 1 < i,j < k;

a D- and G-optimum t* is then defined by

(3.3.6) t*(W) = i'(tW).
Conversely, each optimum t* can be obtained in this way from such a t', for some t.
Whenever such a t' existsfor a given t, there exists such a t' supported by m(m + 3)/2
or fewer points.

Of course, the optimum t* need not be unique.
The ellipsoid T which was circumscribed about Xt (or X') above, and which is

"closest" to it in the sense appropriate for our considerations, does not seem to
have been considered in the literature on circumscribing figures about convex
bodies. The explicit determination of T or t for a given $t or 9C' poses an interest-
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ing geometric problem. In the case m = 2, using complex notation, i' must be
such that

(3.3.7) f zt'(dz) = O, f z2t'(dz) = 0.

If the subset DC of the unit circle supports such a measure, then a subset of t9C
consisting of 5 or fewer points will also support such a measure. Fewer points
may suffice, as when SC is a triangle, square, or circle; if Xt is a regular pentagon,
five points are needed.
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