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1. The problem

The problem, seemingly simple, which led to the work reported in this paper,
was this: to find a ‘“‘usable” test for a difference in position of two regression
lines if it is known that the two lines have the same slope but it is also known
that the marginal distributions are extremely skewed and one is loath to use
transformations and normal theory may be inadequate. More precisely, we con-
sider the following situation. Suppose that there are two sets of bivariate cor-
related observations, n; in the first set and 7 in the second set, with n; + ny = n.
Neither the functional form of the bivariate population (or populations) nor any
of the parameters descriptive of the population (populations) from which the
observations have been drawn is known. However, the number of observations
(between 20 and 50) is sufficient to indicate that the marginal distributions may
be extremely skew Type III and the regression may be linear. Furthermore, from
the description of the experiments generating the bivariate observations, it seems
reasonable to assume that, if indeed they do come from different populations,
the regression lines of the parent populations have the same slope with the dif-
ference occurring in the intercepts or position of the lines. The data may be
analyzed in a variety of ways, including the orthodox one of transforming the
data and using normal theory tests. Here we discuss the possibility of using
tests based on the rank correlation coefficient attributed to Spearman. We pro-
pose the use of these tests in their conditional form. In order that the criteria
proposed may be compared with others, we suggest a bivariate functional form
for the population, which we have been unable to find discussed elsewhere and
which enables us to throw some light on the behavior of the mean value of
Spearman’s rho when the population is nonnormal.

2. Rank correlation in the normal correlation distribution

Before proceeding with the discussion of the problem outlined, it is useful to

recall what is known about Spearman’s rho in the case of the bivariate normal
1 This paper was prepared with the partial support of the Office of Naval Research (Nonr-
222-43).
2 This investigation was supported (in part) by a research grant (No. RG-3666) from the
National Institutes of Health, Public Health Service.
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distribution when the correlation is not zero. Suppose that »n pairs of observa-
tions {x, y;} are randomly and independently drawn from a bivariate normal
population with correlation p. The {z;} and {y.} are each ranked in order of
magnitude. The product moment correlation between the ranks, r,, is, of course,
Spearman’s p. Sundrum [6] derived the exact distribution of r, for n = 3. In
general for all n, it is known (Moran [3]) that

? _ 6 [ - -1 2,
1 E(ry) = P [sm p+ (n — 2)sin 2]
Kendall [2], modified by Fieller, Hartley, and Pearson [1], gave
@ els- i o [1 = 15634650 + 0.304743" + 0.155286p°

=+ 0.061552p% + 0.022099p'° + 0.019785p'2].

David, Fix, and Mallows, in an unpublished manuscript, have shown that, to
order p?, this variance is

®3)
g 1 3p° 3 _ 2 Ry — — AUn — 1)@
=TT T e T 1 [(19n% — 89n® + 168n — 108) — 8V3(n — 1)®@].

Fieller, Hartley, and Pearson suggested from an empirical investigation that, if

1 147
4) z= §log l—i-—r;,
then z is approximately normally distributed. If we write E(r,) = R, then
®) BG) = 5log [ + o
and
(©) Varz = of ————
(1 — R?)?

This may be applied in the two sample problem to deriving a test for the equiva-
lence of the slopes of the two regression lines. Thus, if r; and r, are the rank
correlation coefficients of each sample ranked separately and the corresponding
transforms z; and 2, are calculated, the criterion under the null hypothesis of no
difference of slope,

(21 - 22)(1 — Igz)
@ CETIE

is approximately a unit normal variable.

)

3. Criteria for position

The equivalence of position of two regression lines in terms of ranks does not
appear to have been discussed. If one desires to analyze data in this way, it is
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difficult to choose criteria except by very general considerations, for there is no
really workable procedure such as the likelihood ratio which will indicate the
appropriate test to use against specified alternatives. Four criteria are put for-
ward here, the first two by analogy with orthodox normal theory for the original
observations, the last two on common-sense grounds. We consider the problem
in the following terms.

Under the null hypothesis H,, there will be one population II. Let

(8) E@z)=¢ E@) =n
Under the alternative hypothesis H,, there will be two populations II; and II,. Let
©) E@L) =&, EQL) =,

E(@|ll) = &,  E@y|) = n.

It should be recognized that, although the problem seems very like that of
testing the difference between two means, there is a difference in that one has
the additional information that the slopes of the regression lines under H; are
the same and this information should not be ignored.

In terms of ranks, write R, for the rank of z; and Ry, for the rank of y;. For
all four criteria designed to test a variant of Hy, and sensitive to a variant of
H,, it is assumed that the two samples are ranked together but that calcula-
tions are carried out on these ranks relating to one sample only.

() Heti=&=¢  Hib#b

Recall for a moment the situation in which there is a bivariate normal dis-
tribution with marginal means ¢ and n, marginal standard deviations unity and
correlation coefficient p, assumed known. Given a bivariate normal sample
zi, ¥i,t = 1,2, .-+, n, from this distribution, we wish to test the hypothesis
that ¢ = & (some specified value) against the alternative that £  &. The likeli-
hood ratio criterion is

(10) T — oy
When p is not known, the criterion
(11) Z—1ry

might be used where r is the sample product moment correlation coefficient.
Let R, and R, be the ranks of the pair z;, y; belonging to the first set of

observations, n; in number, the ranks, however, as given by the combined

ranked sample. By analogy with the procedure for the bivariate normal sur-

face, we choose the criterion

(12) -1y R,i—n-zl-l—r.(Rw—-n;—I)],

10

where the sum is over only those observations which belong to the first set of 7,
observations indicated by n,. Further, 7, is the Spearman product moment cor-
relation coefficient for the combined set of n observations and o2 = (n?2 — 1)/12.
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A similar criterion to test

Ho:m =1 = 1, Hy:m # 1,

will be
. _nrt+l_ _rt1\]
(13 7t = oo £ [ R - 232 - (R - 2E) ]
() Ho: & = & = ¢ m=n =
Hy: & # &, m # .

Again, one recalls that, given the same normal distribution as in (i) with p
known, the likelihood ratio test procedure yields the criterion,

(14) E—-8'—20@-HF—n) +F—
This suggests that the appropriate rank eriterion would be

RSN ()

m

- [z (R =) L3 (R - 25 ]+ [ (- 257 [}

It is certain that the criteria T; and T. are not the optimum' possible since
the original variables {r;, y;} are not normally distributed whereas the criteria
are based on analogy with criteria obtained from underlying normality. Two
other criteria may be suggested on common-sense grounds. These are the
average of the sum of the distances from the line R, = R, for one set of observa-
tions as one possibility and the average of the sum of the distances from the
line B, = —R, + (n + 1) as the other. Thus,

(i) Heti=b =& m=m=n;

Hi:t>8 m<n &H<& ¢m>mn
The criterion is

1
(16) ¢ = o2 (Bo— By).
Similarly, given that

(iv) He: b1 = & = § m=mn =1,
Hi: 5 <&, m < ng; & > b, m > N,
the criterion is

17 0= =% (Ru+ R — (n+ 1))

4. Conditional tests

Consider any one particular combined ranked sample and, for the sake of an
example, the criterion.T. There will be n pairs of ranks and we may construct
n quantities
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(18) &= (Ro = 232) = v (R - 2 F1)

This set of {d,} can be looked on as a finite population of n with polykays,

K1=—Zd =0,
n =1
(19)

-nKy =K, =

2
z & = ”j (1= 1.

The second and higher polykays of this set are conditional on the r, that is, on
the particular combined sample, as is expected. We treat the {d;} as a randomiza-

n—l

tion set and consider all possible (: ) samples of n, which may be generated from
1

it. T is the mean of a sample of n; which under the null hypothesis is randomly
drawn without replacement from the finite population of the {d;}. Accordingly,
from known results,

oE(T,) = 0,

. o Var (Ty) = Ka(+ — 1) = 2= (| _ )

! 2\m n mn — 1) s
or

T n—n

@D L ferord Ry
The third and fourth polykays are
(22)

2 n n 2
Ks = 7%:';1 a3, K, = (4) (n+1)® Z dj—3(n—1) (jgl di) }’

whence

(23) o’us(T1) = nTi) (1171 B %)(7%1 B %)(JZ::I d:})

and

(24)  ou(Ty) = K, |:<,%1 - %)3 - ;1;(%; - }z)z + ;2 (7%- B %)]

3n—1 (1 1V (s K

T o1 n+1 n1 n Kz n
When n; = n the third moment is zero and, in general, provided n, is not very
different from 7, the distribution of T will not be far off normal. The distribu-
tion exhibits the expected saw-tooth effect characteristic of rank distributions
and the B, is usually less than three. The significance levels for T given B8; and 8,

may be found directly from table 42 (Pearson and Merrington) in [5]. Usually,
however, it will be enough to assume normality. The conditional test which we
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Ficure 1

Randomization distribution of niee for a sample
of n, = 5, for three particular samples of 10.
Sample before ranking is bivariate normal, p = 0.5

and (150 ) = 252. Finite population.

Sample (a): d = —3, —1,0,0,0,8,4, =2, —4, —2; B2 = 2.15.
Sample (b): d = 2, —2, 4, —4, 6,0, —5, —5,4,0; B = 2.66.
Sample (¢): d = 3,7, =5, =5, -1, =1,2,1, =3, 2; B2 = 2.48.
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propose is that 71/(1 — rZ)V/2 be considered as a normal variable with variance
ng/m(n — 1). The effect of B2 < 3 will be to make the first kind of error less
than that nominally given by the assumption of normality.

The same procedure may be used for ¢ and . We have that

E(e) = 0 = E(9),

) _2(n—=mny _ 0

Var[(l - nw] e [(1 + r.w]‘

Then ¢/(1 — r,)V/2 and 6/(1 4 r,)'/? may each be assumed to be normally dis-
tributed. For purposes of illustration, the randomization distributions for nio¢,
n = 10, n; = 5 are given in figure 1 for three samples drawn from a bivariate
normal with p = 0.5. It will be noted that even with such small numbers the
assumption of normality for the distribution is not unseemly. Numerical com-
parisons of the critical levels are given in table I.

(25)

TABLE 1

COMPARISONS OF THE CRITICAL VALUES

Sample (a) (b) (e)

Critical level =210 211 =12 =12 =14 216 =11 =12 =213 215
True 040 .016 .004 036 .016 .008 040 028 .012 .004
Normal 046 .031 .021 034 .016 .007 039 .027 .018 .008
Pearson-Merrington | .042 .020 .006 032 014 .... 039 .024 .013 ....

The criterion 7T is the mean of a sum of squares. In the randomization set
it may be assumed that T is distributed (approximately) proportionally as x*
with two degrees of freedom. We have that

(26) BTy = L=t~

and the test of significance may be carried out from reference to the x? tables.
The agreement between the distribution of the (Z )values of T, and the modified
1

x? distribution is not very close for small samples and its use is not recommended
for samples less than 10 4 10 = 20.
If we write

@7) _mue =D g

T omg(l —73)

then #, is distributed (approximately) directly as x2 Table II gives the mean
and standard deviation of £, in the randomization set when the original sample
before ranking is randomly and independently drawn from the normal bivariate
distribution with correlation p = 0.5.
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TABLE II

CRITERION {; (OR T3) WHEN THE ORIGINAL SAMPLE
Is BivARIATE NorRMAL (p = 0.5)

Standard

n n Ts Mean ¢z Deviation of ¢
10 5 0.636 2 1.716
10 5 0.091 2 1.720
10 5 0.467 2 1.703
10 4 0.636 2 1.702

9 4 0.733 2 1.566

7 3 0.679 2 1.501

6 3 —0.257 2 1.481

Three of the randomization distributions of ¢, are given in figure 2. As n, the
combined sample size, increases and if n; is not very different from n/2, it is to
be expected that the randomization distribution will be more closely approxi-
mated by the x3 or the modified xZ distribution.

6. Mean value of 7, for any surface

For all four criteria, the variances given in the preceding section are dependent
on r,, the rank product moment correlation coefficient of the particular sample.
If it is required to use the criteria in an unconditional test, then it becomes
necessary to discuss E(r,) for Th, ¢, and 8, and E(r2) for T.. Such a discussion
will need to be referred to the particular surface which it is thought might
describe the original unranked observations. We begin with a few general con-
siderations.

Define a function H(Z) such that

=1, t > 0.

Then

(29) R, —1= ;gl H(z; — x;), Ry, —1= m; H(ys — ym),
Ficure 2

Randomization distribution of ¢,
Finite population; » = 10 = 5 + 5.

Samyple (a): Rz. =8,7,85,4,26,9, 1, 10;
=84,1,3, 5 6,10,9,2, 7.

Sample (b): Rz‘ =4,1,3,7,8,62,10,9, 5;
Ry, =17,3,6,10,1,8,2,5,4,9.

Sample (¢): Rz; =1,8,9,4,5,2,6,7, 10, 3;
v =5,10,7,6,2,3,9,8,4,1
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and since

() 4)
(30) r, = =1 — )
we have that

S — (n — 1>2
2

(31) Te = —
where
(32) S = '.gl jgl ,,,Z=1 H(:IZ, -— x,)H(y, - y,,.).

Consequently the expectation of r, reduces to the expectation of S which will be
(33)

E(S) = n®P{x; > yj, i > Ynlt £ J #Z m} + nOP{x; > zj, y: > yilt # 4}
= n®P, + n@P,
say, and
(34) E(r) = —2— [(n — )P 4+ Py — L (n - 1)]-
n 41 4

This is the technique which Moran applied for evaluating E(r,) for the bivariate
normal distribution and for which he found

_1_1 e _1_1
(35) P, = 5 " gp 08y P, = 3~ g,c057"p.
It is clear that the functional form assumed for the bivariate population distri-
bution will affect the mean value of r,.

6. Double Gamma distributions

In the first section we stated that the set of bivariate observations was such
that the margins might be described by extremely skew Type III distributions
and the regressions could be linear. This suggests that a surface with Type III
margins might be a suitable functional form to describe the parent population
generating the samples. Rhodes [4] proposed a surface of this kind which also
had linear regressions. He was followed by Van Uven [7], who did not seem to
be aware of Rhodes’” work and who proposed essentially the same surface.
Rhodes’ distribution is however unsuitable for the present purposes since it is
constrained to lie within a wedge-shaped area whereas we require the bivariate
surface to take all values between zero and infinity. To meet the conditions of
the problem we devised a distribution which must be known although it is new
to us.

It was Weldon, in his well-known dice problem, who first suggested taking
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three independent variables x, ¥, z and studying the surface formed by X, Y,
where

(36) | X =z4y, Y=z+42

In Weldon'’s case, z, y, and z were each binomially distributed but it is clear

that his distribution is only one of a broad class of bivariate populations result-

ing from the addition of independent random variables. This will be discussed

elsewhere by C. L. Mallows. For present purposes, we propose the addition of

independent Gamma variables. The resulting surface has the merit of simplicity

but has a discontinuity of functional form which is not entirely satisfactory.
Let A, B, and C be independent random variables with

- a—1,— I — —B
p(A) = T@ A% le™4, p(B) = I‘(b) B¢
(37)
p(C) = f,-(—) C—leC,  a,bc>0; A B C>0.
Define
(38) U=A+ B, V=4+4C,
whence
e—U—-V min U,V

(39) p(UV) = AU — AUV — A)—let dA.

T(@)T®)T(e) Jo

In order to display the properties of the surface, we may also build it up in the
following way. The cumulants of A are «, = a(r — 1)! and similarly for B
and C. The center of the distribution is at (¢ + b, @ + ¢), the correlation be-
tween U and V is

a
40 SR CED IR
and
(41) p(U) = 2o

T@+b)
For the regression we consider the moments of V for U fixed and vice versa.
We have

(42) p(AB) = F(?z)ll‘(_bj Ao—1Bb—1g—(4+B)

so that if we write

4
9=a+B

then, integrating out G,

(43) 4 G¢=4+B=U

(44) v0) = 2(§) = Fgapy o1 — 9"
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Accordingly for U fixed _ ‘
(45) (VIU) = k(e) + Unlg),  E(VIU) = ¢ + Un(g).

The cumulants of C are ¢(r — 1)! = k, forr = 1,2, - -- and the cumulants of g
are those of a Type I variable of which the first four are

K1(9)=§’ | » A=a+b

ab
xe(g) = AT D)

(46)

(o) = Aa(Azai%-(_Aajr 2)’

MO = FE TR T AT E .~ saT )
The regression of V on U, that is,
(47) E(V|U) = ¢+ Ua—j‘_b,

is linear no matter what @, b, and ¢ and thus by symmetry so is the regression
of U on V. We thus have a distribution with Type III margins and linear regres-
sions which extends over the whole plane 0 < V, U < 4.

Since C and A are assumed independent,

(48) PAC|U) = =@t D) (A)“‘ <1 _ A)HCH e

T(@)T®)T(c) \U U U
or
- Ta+b) (A AV e
) paviv) = et ts () (1-5)” 0 - a5
or
(50)
p(V|U) = r(a;f?b;(?f(;:ﬂ_l L SO AU — Y = Ayt da,
while
e—U+V) min U,V
G 2UV) =TT HTE ﬁ AU — ALV — A)—leA dA.

In general, it does not seem possible to carry out an integration for A which
will result in a distribution which will itself be integrable. The conditions of the
original problem, however, required the margins to be skew and this implies
that a, b, and ¢ should not be large in order to meet these required conditions.
We have evaluated some special cases.
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(i) a=b=c=1(p = 1/2, center at 2, 2),
- p(VU) =1 = ¢7),

p(VU) = ¥ (1 — e9),
(52) | .
p(VIU) = 7 (1 = &),

p(V|U) = & (& — 1),

(i) a=b=1,¢c=2(p = 1/V8, center at 2, 3),
p(VU) = eV[1 — (V + De],
p(VU) = eV[(V—-U+1) — (V4 1)e?],

(53) .
p(VIU) = 5 [1 = (V + D],

—U
p(VIU) = % [(V = U + De¥ — (V + D),
(i) @ =b=1,¢ =3 (p = 1/2V?2, center at 2, 4)

pV0) = v {1 = Jer IV + 1 + 11},

p(VU) = E LV =~ U+ 1)+ 1] = V[V + 1) + 11},
(54 1
p(V|U) = 55 2 — 7LV + 1)* + 11},

p(V|U) = ;;{} {V[(V = U+ 1)24+1] = [(V + 12+ 1]},

@iv) ea=1,b=2,¢c =2 (p = 1/3, center at 3, 3),
p(VU) = e V{2 + (U = V) — 7 [UV + (U + V) + 21},
p(VU) = €72 + (V = U) = 0[UV + (U + V) + 2},
(55)
P(VIU) = 15 {2+ (U = V) = ' [UV + (U + V) + 2]},

p(VIU) = 25 (@2 + (V = )] - [UV + (U + V) + 21},

(v) a=2=>b=c(p = 1/2, center at 4, 4),
p(VU) = eV{[V(U - V) + 22V - U) — 6]
- 4+ eV[UV 4+ 2(U + V) + 61},
p(VU) = e"{[UWU - V) + 22U - V) — 6]
+ e U[UV +2(U + V) + 6]},

189

vV <U,
V>U,

V<U,

V>"U.

vV <U,
V>U,
VvV <U,

V>U.

V<U,

V>U,
V<U,

V>U.

vV <U,
V>U,

V<U,

V>U.

V<U,

V>U,
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(56)
p(V|U) = 5 ALV ~ V) +2@V ~ U) - 6]
+ e V[UV +2(U + V) + 6]}, V<U,
p(V|U) = 35 (@ TUWU ~ V) + 202U ~ V) ~ 6]
+ [UV +2(U + V) + 6]}, V>U.

7. Expectation of Spearman’s rho for the double Gamma distribution

For those Gamma distributions which are integrable, the E(r,) is easily ob-
tained. We give some values of P; and P, in table ITI for three such distribu-
tions from which one can calculate

E(r) = 12[(n — 2)P, + P» — 0.25(n — 1)]/(n + 1)
TABLE III

VALUEs oF P; AND P; FOR THREE GAMMA SURFACES

p=1/2 p=1/V6 p=1/3
a=b=c=1|a=b=1;c=2|a=1b=c=2
Py = Pla: > x;, yi > Ymlj # m} 125/432 487/1728 5723/20736
Py = Plx; > x;, 45 > y;} 1/3 91/288 131/432

as given in section 5. The result P, = 1/3 will be true for aill Gamma surfaces
for which p = 1/2. This follows from the definition

(57) Py = P{x:> xj,y: > y3}
=P{(A; — A)) + (B: — B;) > 0,(A; — A)) + (C: — Cj) > 0},

and the assumption that A, B, and C are all independent and have identical
distributions. We may, therefore, define a new set of variables

(58) 21 = A,‘ —_ Aj, —Ry = Bi - Bj, —Z3 = C,' - Cj,
whence
(59) Pz = P{Zl > 29, 2 > 23} = P{21 > 2 and 23} = %

This is also the value of P, for the normal surface when p = 0.5. For purposes
of illustration we give some values of E(r,) for different n» and p in table IV. The
values for the normal surface (from Moran’s formula) are also given for com-
parison. It is clear that for these surfaces E(rs) is nearly the same function of p
as for the normal case. Since this is the quantity which enters in the over-all
variance of T, 6, and ¢, it would seem unlikely that these variances would be
greatly affected by differences from the bivariate normal of the type envisaged.
It appears likely, although further research is necessary to establish this point,
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TABLE IV
Vavuges oF E(r,) For n = 5, 10, 20, 50 aAND p = 1/2, 1/\/6, 1/3

p=1/2 p=1/V6 p=1/3
Gamma Normal Gamma Normal Gamma Normal

n ja=b=c=1 a=b=1;¢=2 a=1;b=c=2
5 0.4028 0.4080 0.3229 0.3301 0.2624 0.2681
10 0.4343 0.4419 0.3497 0.3585 0.2849 0.2916
20 0.4524 0.4613 0.3651 0.3747 0.2978 0.3051
50 0.4641 0.4739 0.3750 0.3851 0.3061 0.3138
L] 0.4722 0.4826 0.3819 0.3925 0.3119 0.3199

that, as with the ordinary product moment correlation coefficient, linearity of
regression is a crueial factor. Provided this is retained, the surface may then be
distorted from the bivariate normal to a remarkable extent without unduly up-
setting the expected value.

To study the over-all variance of T it will be necessary to investigate E(r3)
for both the normal and the double Gamma distributions. At present this is
only known to order 1/7 for the normal case and not at all for the double Gamma
distribution.

8. Mean of T}, 0, and ¢ under the alternative hypothesis

The over-all tests using T}, 6, and ¢ may be carried out by assuming that the
criteria are normally distributed with known variance. Since each criterion may
be looked on as the mean of a sample of #; drawn from a finite population of =,
the assumption of normality will be justifiable for reasonable n and n; not too
different from 7n,/2. The variance of the criteria in each case will depend on E(r,)
which itself depends on the correlation in the population. If this is not known
in practice, possibly the best thing to do is to substitute r, for its expected value,
which will mean that again » must be reasonably large.

For the mean value of the criteria under alternate hypotheses of the double
Gamma type, it is enough to consider the marginal distributions. Under the null
hypothesis, let f; be the p.d.f. of the variable U and

(60) P = f;.U 7, dU,

where & is conventional for the start of the distribution. Let f, and F. have
similar meanings under the alternate hypothesis. Since only a margin is con-
sidered, we have a Wilcoxon situation and it is well known that for the jth rank

6)  pG) = [ T FQ — Ry (L = Fyeite sz(f‘) (o1 1)

whence
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(62) E() = /h” {Fo(ny — 1) + miFy + 1} dF».

We take first a positive change in the mean of U and of V, the correlation in
the surface remaining unchanged.

@) h=e7, Fi=1-—¢7Y; fo=Ue", Fo=1—UeV? — ¥,
h=0, p=05  E) ——n1+"+1

In order to keep the correlation unchanged, a similar set of hypotheses is specified
for V and

ET) == [1 E(ry)],
(63) E(e) = 0,
E@) =

To a first approximation, we shall suppose the variance of each criterion under
H, is the same as the variance under Hy and that for T; we have E(r2) the same
as for the normal surface. This will mean that the variance is underestimated in
each case with a consequent magnification of the power of the test. Table V

TABLE V

APPROXIMATE POWER OF THE CRITERIA T; AND 6 TO
DeTeEcT CHANGES OF UNItYy IN E(U) anp E(V)
IN THE DoUBLE GaMMA SURFACE. p = 0.5.
Probability of first kind of error = 0.05. One-tailed test

Power
n n Ny T, 0

10 5 5 0.21 0.46
4 6 0.21 0.45

20 10 10 0.32 0.72
8 12 0.31 0.70

50 25 25 0.58 0.97
20 30 0.57 0.97

shows the approximate power for two of the criteria, namely 7; and 8. In spite
of the fact that the powers calculated are almost certainly too large, two points
emerge. The first point is that @ is superior to T; in detecting change in both
E(U) and E(V). This is as expected since 8 was designed to be sensitive to
precisely this kind of change, whereas 7', is really sensitive only to a change in
E(U). The second point, which is a little unexpected, is that both tests appear
very insensitive to changes in the ratio of n;:n,, although the maximum power
is achieved when n; = n..
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To set up a realistic situation in which the ¢ criterion might be expected to
be the most powerful is difficult for the double Gamma surfaces proposed. Under
the null hypothesis, the surfaces range from zero to 4. Under the alternate
hypothesis, it will be supposed « £ U £+« and —8 =V £ +«. Thus we
have TR '

() fiz=eV, Fri=1—¢V;, fr=eUt, Fo=1—¢Ute

and
. 1

(64) BG) =52 1+ 20 - )
for the U margin. For the V margin

. . 1
(65) BG) =2 120 - o)
so that

E(T) = 32 {1 — e —n(l - &)},
(66) E(¢) = 5> {ef — 3,

| E@®) = % {1 - %(e” + e‘“)}'

Calculations show that the approximate power of these test criteria is largest
for ¢ and smallest for ¢ for « and 8 positive.

9. Other tests

Apart from the obvious method of transforming the data, if we move away
from the idea of a rank test criterion, there are various other tests which might
be applied. Perhaps the most pertinent of these is a slight variant of a test due
to Mood, but it is only one of many. Consider the original observations {z;, y.}
of the combined samples n, + n, = n and order the z in magnitude, making a
dichotomy at the median point zx. Assuming linearity of regression, let the
regression lines of the first and second samples be

Y1 = ay + Bz,
Y: = a 4 Bz

The hypothesis to be tested is @y = a2 = @, unspecified. For the combined data,
a line is chosen so that the median of the deviations from this line in the n/2
observations [(n — 1)/2, if n is odd] to thé left of za is zero and similarly for
the n/2 observations to the right of 2. Counting the observations in the sample
of n; above and below the line to the left of zx and above the line to the right,
a 2 X 2 table may be formed in each cell of which the expected frequency is
n1/4. Since this test is not dependent on the functional form of the bivariate

(67)
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distribution of the population from which n; + n; = n observations have been
drawn, there seems to be no advantage in applying the same idea to the ranks
of the z and the y. The only difficulty in application will lie in the choice of the
line. This can be formidable if the number of observations is large.

From recent work on the power function of test criteria based on ranked and
ordered variables, it would appear possible that tests more powerful than those
discussed here could be obtained if, instead of the ranks, the equivalent normal
deviate of the rank is used. It is proposed to discuss tests based on the equivalent
normal deviate in a subsequent paper after further investigation of the power
functions of the tests proposed here.

We would like to acknowledge stimulating criticism from colleagues, in par-
ticular from C. L. Mallows. Barbara Snow constructed the randomization dis-
tributions.

10. Numerical appendix

As an illustration of the type of data which originally suggested the problem
we give here the precipitation in inches for two areas in southern California for
the two years 1957 and 1958. The experiments to determine the efficacy of cloud
seeding operations of which this is part of the numerical data have been described
elsewhere, and also the statistical analysis used. Table VI shows the precipita-
tion for one target area and one comparison area, seeded and not seeded. The
years 1957 and 1958 are kept separate because in 1958 seeding operations were

TABLE VI

PRECIPITATION IN INCHES

1957 1958
(Not Seeded in Ventura) (Seeded in Ventura)

Seeded in S.B. Not Seeded in S.B. Seeded in S.B. Not Seeded in S.B.

Target | Comparison (| Target | Comparison || Target | Comparison || Target | Comparison
1.035 0.500 0.212 0.120 0.775 0.730 0.325 0.060
0.000 0.000 0.265 0.220 1.232 0.250 1.635 1.400
0.198 0.190 0.100 | . 0.110 0.000 0.000 1.128 0.690
0.235 0.470 0.152 0.090 1.428 0.090 0.335 0.140
0.005 0.000 0.180 0.100 0.558 0.240 0.785 0.030
0.445 0.140 0.015 0.000 2.740 2.990 0.482 0.000
0.312 0.100 1.682 1.500 0.010 0.000 0.258 0.040
0.070 0.000 0.002 0.000 0.055 0.030 0.972 2.510
0.148 0.060 0.688 0.560 0.948 0.010 0.785 2.210
0.000 0.000 0.072 0.000 0.358 0.020 0.162 0.040
0.062 0.430 0.302 0.440 0.320 0.150 0.772 0.860
1.728 0.440 0.008 0.060 0.142 0.060 0.022 0.000
0.008 0.000 2.655 0.430
0.358 0.290
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TABLE VII

RANKED PRECIPITATIONS

195

1957

1958

(Not Seeded in Ventura)

(Seeded in Ventura)

Seeded in S.B. Not Seeded in S.B. Seeded in S.B. Not Seeded in S.B.
Target | Comparison || Target | Comparison || Target ! Comparison || Target | Comparison
]
23 23 16 15 16 21 9 11.5
1.5 4.5 18 18 22 17 24 23
15 17 11 14 1 2.5 21 20
17 22 13 11 23 13 10 14
4 4.5 14 12.5 14 16 17.5 7.5
21 16 7 4.5 26 26 13 2.5
20 12.5 24 25 2 2.5 7 9.5
9 4.5 3 4.5 4 7.5 20 25
12 9.5 22 24 19 5 17.5 24
1.5 4.5 10 4.5 11.5 6 6 9.5
8 19 19 20.5 8 15 15 22
25 20.5 5.5 9.5 5 11.5 3 2.5
5.5 4.5 25 19
11.5 18
26 |
24}
22}
220}
<
~18F
>
é 16+
Siat
§ 12+
°
s lor x
© .
E 8r e Seeded in Sonta Barbora
T X Not Seeded in Santa Barbara
£ x 1957 Not Seeded in Ventura
€ a4t
er ®
0 ,

Ficure 3(a)

0O 2 4 6 8 10 12 4 16 18 20 22 24 26
Ronked Precipitation for Comparison Area

Ranked precipitation for target and comparison areas.

1957—Not seeded in Ventura.
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also taking place in other areas. For each-year the target precipitations (seeded
and not seeded) are ranked and similarly the comparison precipitations. The
ties were ranked by giving each observation in the tie the midrank. Subsequent
calculations showed it to be immaterial whether this procedure was adopted or

- ™
s 3 R RS
L) L) L L) 1

®
T

- x e Seeded In Santa Borbara
X Not Seeded in Saonta Borbara
x 1958 Seeded in Ventura

"Ronkéd Precipitation for Torget Area

0O 2 4 6 8 10 12 4 B 18 20 22 24 26
Ronked Precipitation for Comparison Areo

Ficure 3(b)

Ranked precipitation for target and comparison areas.
1958—Seeded in Ventura.

the procedure of assigning a random order to the observations within the tie.
The ranked observations are given in table VII. These results are shown graph-
ically in figures 3(a) and 3(b). The rank regressmn lines of target area (y) on
comparison area (z) are

1957:  y —13 = 0.8532 (z — 13),
1958:  y — 13.5 = 0.6799 (z — 13.5).

The null hypothesis is that there is no effect due to seeding so that one regres-
sion line represents the true state of affairs. The alternate hypothesis is that
seeding is effective so that there are two regression lines, one for seeded and one
for nonseeded, with the seeded line lying parallel to but above that of the
nonseeded. It is clear that either T or ¢ will be the appropriate criterion to use.

If R,, and R;; are the ranks of the target and comparison precipitation for the
seeded area, then
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el ) o)

©)  p=--3 T (Ru — Ra),
te= M) ey 2w
1 omy(n — 1) m(n — 1)

Substitution from the tabulated ranks gives the results shown in table VIII.
The conclusion is that the tests have failed to detect increase of precipitation
due to seeding operations.

TABLE VIII
Year Ti oty ¢ 7 Ti/ors ¢/op
1957 —0.0056 0.1023 0.0053 0.1063 —0.055 0.050
1958 0.0269 0.1584 0.094 0.1728 0.170 0.546
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