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1. Summary

We study the following problem. An isotropic plane stochastic process is
observed at points making up a regular pattern. We are interested in finding
patterns yielding the least limiting variance of the observed values, when the
points are situated within a circle with infinitely increasing radius.

In section 4, a solution is presented for the correlation function (3.5) and some
ranges of point densities. The solution is obtained by solving the related geo-
metrical problem of covering a plane by circles in such a way that the circles
mutually intersect as little as possible (see section 3). From the results obtained
it follows that, in contradistinction to the linear case, no unique pattern of points
is optimum for all convex correlation functions simultaneously. The efficiency
of patterns in general use is, however, quite good.

In section 5, finally, we study a subclass of convex correlation functions of an
isotropic plane process, consisting of functions that admit a spectral representa-
tion in terms of the simple correlation function (5.2).

2. Introduction

In this section, an expository survey of the background of the problem will be
presented.

2.1. Applications of plane sampling. Many applications of the sampling
method may be broadly described as "plane sampling." We give some examples.

Forest surveys. In the simplest case, one might want to estimate the area of a
certain country or geographical district covered by forest. Similarly, one might
want to estimate the proportion of a forest area covered by a certain variety of
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tree. In another case, one might want to estimate the number of trees or the
volume of timber in a forest area. These kinds of applications are discussed in,
for example, Mat6rn [14].

General agricultural surveys. Illustrative examples of plane sampling are
furnished by large-scale surveys carried out in order to estimate the cultivated
area of a certain country or geographical district or the total production of a
particular crop. We refer here to, for example, Mahalanobis [12].
Analogous examples are furnished by such small-scale surveys as "field experi-

ments" restricted to a single field on a farm. There is no need for specific refer-
ences on this point.

Soil surveys. One specific example concerns the estimation of the proportion
of the area of ground of a certain district that is too salty to be cultivated in
the usual way; for a discussion, see Sulanke [20].
Another specific example concerns the estimation of the density of worms in

soil; see Finney [5].
Geological surveys proper. The method of plane sampling has been used in

order to estimate the extension, volume, and other parameters characterizing
such geological deposits as black or brown coal, zinc deposits, and so on. We
refer to Zubrzycki [26].

In this connection, we want to mention briefly applications of plane sampling
in connection with the construction of water-power stations. In such situations,
there often is need for estimating the total volume of earth to be removed (for
example, as a basis for cost estimates), or the total volume of gravel available
for construction purposes.
Some other examples. The examples given so far relate to sampling a geo-

graphical area of some sort. The method of plane sampling is, however, applica-
ble to sampling other kinds of areas; some references will be given.

Drapal, Horalek, and Rezny [2] discuss the problem of estimating the pro-
portions of the surface of cast iron composed of crystals of carbon and of iron,
respectively. This problem bears considerable resemblance to the "corpuscle
problem," discussed by Wicksell [23], [24]. Husu [10] considers the estimation
of a parameter that characterizes the "smoothness" of the surface of a metal
plate. Faure [3] and Savelli [18] consider the problem of measuring the trans-
parency of photographic film.

2.2. The sampling theory. The theoretical task of constructing a (probabil-
istic) sampling theory to cope with the problems of estimation raised by ap-
plications such as those just discussed has long been the subject of considerable
research. By and large, the theory of "field experimentation" is the origin of the
theory of plane sampling. However, from a rather early date, somewhat dif-
ferent paths of advancement have been taken.

In field experiments it is often feasible to apply randomization of the experi-
mental units; the use of randomization may be considered as a device for getting
around the need for a (realistic) model of the role played by "topographic
variation." In applications of plane sampling such as those discussed above, it is
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often desirable, for practical reasons, to use systematic sampling procedures.
As a consequence, it is necessary to account for the role played by "topographic
variation" by means of a (realistic) model of this variation.

The theory of linear sampling. To a large extent the theory of plane sampling
is a formal extension of the theory of "linear sampling," this term referring to
sampling a one-dimensional stochastic process. Therefore we include some refer-
ences to the linear case.

Early contributions include such papers as Osborne [16], Madow and Madow
[11], and Cochran [1]. In the last-mentioned paper it is proved that systematic
sampling is, on the average, more precise than stratified sampling, provided that
the correlogram is concave upwards. Among recent contributions we may men-
tion Hajek [6], [7].

The theory of plane sampling. A classical contribution to the discussion of
topographic variation is given by Smith [19]. In the field of plane sampling
proper, the work of Mahalanobis [12] may be considered pioneer. Mat6rn [14]
presents a most important contribution. In this work, Mat6rn shows how the
theory of stationary stochastic processes, as developed by Khinchin and Cramer,
may be used in the construction of a stochastic model of topographic variation.
The paper by Quenouille [17] is another important contribution from the 1940's.
Among recent contributions, we may mention Masuyama [13], Whittle [21],
[22], Williams [25], and Zubrzycki [26], [27].

3. Formulation of the problem of the paper

Our problem is to find a regular pattern of points which yield the least limit-
ing variance of values associated with an isotropic plane stochastic process
observed at these points. In this section we transform this problem into an
equivalent geometrical problem, the solution of which is discussed in section 4.
To begin, we briefly review some previously established results concerning the

linear case. The typical problem can be found as follows.
To the points t of a real line there are assigned random variables 1(t), subject

to the following assumptions.
(a) All random variables q(t) have common expected value A and common

variance a'.
(b) The correlation coefficient between any two random variables -1(t') and

7(t") depends only upon the absolute difference it' - t"I; in symbols,

(3.1) R[,q(t'), 77(t")] = p(It' - t'').
(c) The function p(t), with t > 0, called the correlation function of the process,

is continuous with p(O) = 1.
The assumptions (a) to (c) characterize the family of random variables 77(t)

as a continuous stochastic process stationary to the second degree.
Suppose now that we want to estimate the mean T-l fT 7(t) dt of the process

by the average
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(3.2) i= n[(t1) + + 71(tn)]n

of its values observed at n points t1, t,, selected in a given segment 0 _ t < T.
Consider all probability methods of sampling n points such that the expected
number of points selected from any subsegment (a, A), with 0 _ a < _. T, is
proportional to d- a. We ask how these n points should be chosen in order to
minimize the quadratic error of estimation, defined as the expected value of

[-T-T foT 71(t) dt]2. This value extends over both the sampling experiment
and nature's experiment in producing the process q(t). Using an argument of
Hhjek [7], involving a kind of spectral representation of the correlation func-
tion of the process with respect to a one-parameter family of properly chosen
simple correlation functions, it follows that if the correlation function is convex,
then the best method of choosing the n points ti, tn, is to select them equi-
distantly.
We now try to generalize the discussion of the linear case to the case of a

plane. Thus we consider a family of random variables 7(p) assigned to the points
p of a Euclidean plane, for which the following generalizations (a') to (c') of
the previously given assumptions (a) to (c) are fulfilled.

(a') All random variables 7(p) have common expected value u and common
variance a2.

(b') The coefficient of correlation between any two random variables 7(p) and
i(q) depends only on the vector joining the points p and q; in symbols,

(3.3) R[?7(p), (q)] = p(q -p),
where q - p is the vector difference between q and p.

(c') The correlation function p(p) is a continuous function of p with p(O) = 1,
where 0 is the zero vector.

In the sequel we shall be concerned with processes which are, in addition,
isotropic. This means that the correlation function depends only on the length
u = p - ql of the vector p - q

(3.4) p(p - q) = p(lp- ql) = p(u),
that is, the correlation function is a function of one real variable. In what follows
we refer to this function p(u) as the correlation function.

In the linear case it turned out that the best method of sampling n points is
to select them e(lqlidistantly. It is, however, difficult to generalize this result in a
straightforward manner to the case of a plane; it is not obvious which domains
in the plane can replace the segment 0 _ t _ T. Therefore we have looked for
regular allocations that can be dealt with by means of limiting theorems relating
to increasing domains. This approach eliminates the troublesome boundary
effect from the problem. On the other hand it introduces some problems of a
purely geometrical nature. An alternative device to cope with the boundary
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effect would be to define the stochastic process 7(p) on the surface of a sphere
or a torus.
As shown in Zubrzycki [26], we can construct a two-dimensional continuous,

isotropic stationary stochastic process v(p), the correlation function of which
is p(u) = r(u/a), where

(u) = {arccos -- [1 - (u)2]l2} O _ u _ a,

0, otherwise,
where a is a positive constant.

In this analytic form, the correlation function does not reveal its most im-
portant feature: the value of r(u/a) for a given u can be computed as

(3.6) r (u) 2Kin K2,

that is, r(u/a) equals the ratio of the area IK1 n K21 of the common part of two
circles K1 and K2 with radius a/2 and centers pi and P2 at distance u = IP1- P21
to the area 7ra2/4 of such a circle. The geometrical interpretation is illustrated
in figure 1.

K, X K2

FIGURE 1

Geometrical interpretation of the value
of the correlation function given by (3.6).

The mean value ,u of the process may be interpreted as IDI-1 fD (p) dp for a

domain D with infinitely large area ID!. Suppose now that we have selected n
points pi, * , pn in the plane and want to estimate u by the average

(3-7) r=n-[r7(Pi) + ***+ '/(Pn)]n

of the values q(p,), * , ql(pn) at these points. This average i is an unbiased
estimate of ,u. Obviously,

- a~~~2n n
(3.8) Var =

2 E E P(IP - PI)lnl i=,,=1
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The double sum of the right member of (3.8) is, by virtue of the geometrical
interpretation of (3.5), equal to the ratio of the sum of the areas of the common
parts of all n2 possible pairs of circles Ki with radius a/2 and centers pi, with
i = 1, * , n, to the area of such a circle; in symbols,

n n

2 IK,ifK2i
(3.9) Var~~~~ -_ t=1j=1(3.9Var =n2 ira2

4
We now ask which distribution of points in the plane with a given plane

density yields (in the limit) the least variance. What we said in connection
with the correlation function given by (3.5) shows that this problem is uniquely
related to certain questions concerning distributions of circles. Let us consider
a sequence of points pi, * , pn in the plane and define the density d, if it
exists, as

(3.10) d = lim 2 Card [i: pi C K(O, R)],
R-. 7rR2

that is, as a limit of a ratio of the number of points pi in a circle K(O, R) of
radius R and center 0 to the area 7R2 of this circle, when R tends to infinity.
Of course, this limit does not depend on the choice of center 0. Then, given a
sequence pl, P2, * with density d, let us call a limiting variance the limit
(3.11) lim nRVar 7R,

where nR = Card {i: pi C K(0, R)} and 7R is the average of those variables
i?(pi) for which pi is in K(0, R).

Let us introduce two more definitions. Given, in a plane, a sequence of circles
K1, K2, *.. with radius a/2 and with centers pl, P2, * * which have a given
density d, we define the mean covering, for short C', as the limit

(3.12) C' = lim R12 Ki K(0, R)I
and the mean double covering, for short C", as the limit

(3.13) C" = lim 12 , E KKi K, n K(O, R)j.
R -- 7rR i j

In this sum the case i = j is not excluded. Of course, the mean covering C' of
the circles K1, K2, - * and density d of their centers pl, P2, * * * are related by
the equality C' = IKild. As a consequence we may use C' as our measure of
density of centers in comparisons where IK1I is kept constant.
Now it is clear that, for stochastic processes 7(p) with correlation functions

given by (3.5), the search for a sequence of points with a prescribed density
which yields the minimum limiting variance is equivalent to the search for a
corresponding sequence of circles yielding the minimum mean double covering.
Moreover, if there exists such a sequence of points that would realize the mini-
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mum limiting variance for all positive values of a in the correlation function
given by (3.5), then it would be the best sequence also for a process with a
correlation function given by

(3.14) p(u) = f r (u) dF(a),

where F(a) is a distribution function with F(O) = 0. Unfortunately, there do
not exist sequences of points that yield minimum mean covering simultaneously
for all values of a in (3.5), as will be shown later in this paper.

4. Optimal nets of points

Consider a sequence of congruent circles K1, K2, ... with centers pi, P2,...,
respectively. Let us denote the indicator function of Ki by ki(p), that is, let us
put

(4.1) k ( ) {~~~1, P E- Ki,
4p o, otherwise.

Moreover, we put
(4.2) k(p) = E ki(p).

In other words k(p) is equal to the number of circles covering p. In terms of
these functions the definitions of the mean covering C' and the mean double
covering C" given in section 3 take on the forms

(4.3) C' = lim f ki(p) dp
R,- wr2 J(O,R)

= lim RI L ki(p) dp
R-oL ? JK(O,R)i

= lim i k(p) dp
R-*ooiiXR j K(O,R)

and

(4.4) C" = lim f ki(p)kj(p) dp
R-- w i j R(O,R)

= lim J K( ER v ki(p)kj(p) dp
R, rR R(0,R) ' J

= him 2 f k2(p) dp.
R-o X7RJ K(O,R)

Our problem is to determine sequences of congruent circles with a fixed mean
covering for which the mean double covering attains its minimum. We now
prove an inequality from which it follows that a sufficient condition for a
sequence of circles to have this minimum property is that the set of values of
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the function k(p) consists of two consecutive integers. It is the content of the
following
LEMMA 4.1. For any sequence of circles with mean covering C', the following

inequality

(4.5) C" > {2[C'] + 1}C' - [C']{[C'] + 1t

holds, where [C'] is the integral part of C'; equality holds if and only if k(p) takes
the values [C'] and [C'] + 1 only.

PROOF. Clearly, we have

(4.6) f, ) k2(p) dpK(0.R)
k{7rRfK(O1c(p) dp} 7{fR| k(p) dp [C']-7rR K(0,R) 1 K(0,R)

+ ,1 2 fK((0R) {k(p) -[C,] -2 dp.

Since always,

(4.7) {k(p) - [C'] - 1}2 >121= 4
we conclude that

(4.8) - l k2(p) dpR JK(O,R)

-{1rR2 | k(p) dp} - R2 | k(p) dp-[C']-2RfK(O},R)}K(OR) 2[ }

For R oo, we get

(4.9) C" _ C,2 - {Ct - [C'] -

and this is an alternative form of (4.5). Now if [C'] and [C'] + 1 are the only
values of k(p), then (4.7) and consequently (4.5) become equalities. This proves
the lemma.
We now describe some sequences of circles minimizing the mean double cover-

ing. We confine ourselves to the case where the centers of the circles form nets
composed of congruent figures such as triangles or squares. This will enable us
to compute the mean covering and the mean double covering from a single
mesh of a net, and we shall exploit this possibility. The minimum property will
follow by our lemma, since the function k(p) will take only two consecutive
integers as its values in our examples. We arrange these examples by increasing
values of C'.
EXAMPLE 4.1. If

(4.10) C' < 0907,2V/3
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then the net of equilateral triangles has the optimal property. This situation is
illustrated in figures 2 and 3. Clearly, the pattern considered here may as well
be referred to as a net of rhombuses.
For purposes of illustration we present the details of the computation of C'

and of C". In figure 2 we put the radius of the circles equal to 1, and the side

FIGURE 2

Optimum sampling pattern for C' < 0.907.
2\/3

of the triangle equal to s _ 2. Thus the area of the triangle is A = (sv'V3)/4.
The circles divide this area into four parts, A = To + 3T1 = Ao + Al. The
meaning of To and T1 is shown in figure 4.

In To we have k(p) = 0, while in T1, we have k(p) = 1. Now

11/(4.11) C'= Odp + 1 dp=A dp.AJAJAiJAi

Thus

4 (36) 82A(4.12) C' = 82V - 82
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For 8 > 2, we have (' < .-/2\/3 -. 0.907, while for s = 2, we have C' =
7r/2\/3 - 0.907. Moreover, C" = C' since k2(p) = k(p).
We now compare this value of C" with the corresponding value of C" for a

net of squares having the same value of C' and, therefore, representing the same
point density. We put the side of the square equal to x. Drawing the four
circles with radius equal to 1, we obtain the configuration shown in figure 5.

FIGURE 3

Optimum sampling pattern for C' = _ 0.907.
2V/3

Now

(4.13) C' = Odp + ldp + 2dp = 2A J , JA, JA

From C' = 7r/2\/3 we get

(4.14) =='12; x =
. 1.86,

that is, the circles intersect as shown in figure 5.
If A2 stands for the area of that portion of the square where k(p) = 2, we get

(4.15) A 8{t 2h2 } =8{{16012360- 4 ,
with v and y having the meaning indicated in figure 6. Carrying out the com-
putations gives A2 = 0.14. Clearly A1 = r- 2A2 = 2.86. Thus
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FIGURE 4

Illustration of the meaning of To and T,.

(4.16) C' = {2.86 + 2(0.14)} = 0.907

as it should be, and

(4.17) C" = i1)2 {2.86 + 22(0.14)} = 0.988 > 0.907.

FIGuRE: 5

Computation of C" for a net of squares.
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L~~~~~~
FIGURE 6

Meaning of v and y.

EXAMPLE 4.2. If

(4.18) 0.907 23 < C'= = 1.209,

then the net of equilateral triangles is still optimal; see figure 7. However, in
this case k(p) has three values: 0, 1, and 2, SO that our lemma 4.1 does not apply.
The optimality of the net in question is a consequence of a known inequality

FIGURE 7

Optimum sampling pattern for 0.907 ,-\--- < C' < -_ 1.209.
2V\3 3V/3

(Fejes T6th [4], inequality (3), p. 80), from which it follows that among all
convex hexagons of a given area and all circles of a given area, the maximum
possible area of a common part of a hexagon and circle is reached when the
hexagon is equilateral and the circle is concentric with it.
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The statement of example 4.2 follows if we apply the quoted inequality to
the cells that are formed by attaching each point of a plane to the nearest circle
center. The above-mentioned inequality is of its greatest interest when the mean
covering is in the range indicated in example 4.2. Let us note, however, that it
also implies the statement in example 4.1 to the effect that the circles should
be disjoint.
EXAMPLE 4.3. If

(4.19) 1.209 _ 27r < C' < 27r _ 1_684

then the net of isosceles triangles is optimal. This is seen as follows. We start with
the situation shown in figure 8. We then increase the mean covering without

FIGURE 8

Optimum sampling pattern for C' = -= _ 1.209.

spoiling the property that k(p) has as values only two consecutive integers,
letting the base of the triangle diminish and its height increase, so that the three
circles still intersect in one point. We can continue this procedure until the
length of the base becomes equal to the radius of our circles, as shown in figure 9.

EXAMPLE 4.4. If

(4.20) 1.571 . < C' < 1.814,
2 V3

a net of rectangles has the optimal property. We start with a net of squares and
circles intersecting in the centers of the squares as indicated in figure 10. This
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FIURE 9

Optimum sampling pattern for C' = 2_r 1.684.
2 + V/3

corresponds to C' = 7r/2 . 1.57 1. We then enlarge the mean covering by length-
ening two sides of the square and shortening the other two, while the circles
still intersect in the middle; the radius of the circles is then equal to the shorter
side of the rectangle. This corresponds to C' = 7r/V33 *. 1.814.

FIGURE 10

Optimum sampling pattern for C' = 2 1.571.
2

We note that the intervals for C' corresponding to examples 4.3 and 4.4
respectively overlap. The nature of this situation will be elucidated somewhat.
Instead of considering the pattern with which we start in example 4.3 as made
up by a net of equilateral triangles, we think of this pattern in terms of rhom-
buses, with the base angle v = 60°, corresponding to C' = 27r/3' . 1.209. If
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we increase v to v = 900, that is, if we change the rhombuses into squares, C'
will increase to C' = ir/2 e . 1.571. Thereafter, by "stretching" the squares into
rectangles, we may further increase C' to C' = ir/lV3 A 1.814.
EXAMPLE 4.5. If

(4.21) 2.418 =. .r< C' _. 67r 2.714,
3V3- 7V7

the optimal property is possessed by a net of hexagons which have two per-
pendicular axes of symmetry and can be inscribed in a circle; in general, they
are not equilateral.
We start with a net of equilateral, congruent hexagons and place the centers

of circles at the vertices, the radius of the circles being equal to the side of the
hexagons. In this case C' = 47r/3V3 . 2.418. This case is shown in figure 11.

FIGURE 11

Optimum sampling pattern for C' = 2.418.
3x/3

We let C' increase without spoiling the property that k(p) has as values only
two consecutive integers, by suitably narrowing our hexagons. We can continue
this procedure until the circles corresponding to the vertices of neighboring
hexagons touch. Figure 12 shows the extreme situation, which corresponds to
C' = 167r/7 N/_7 2.714.
EXAMPLE 4.6. If

(4.22) C' = .7 - 3.628,

the net of equilateral triangles has the optimal property. This pattern is repre-
sented in figure 13.
We may summarize the previous findings. By means of lemma 4.1, optimal

regular nets of sample points were found for the following values of C' shown in
table I.
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FIGURE 12

Optimum sampling pattern for C' = 6 2.714.
7\/7

We observe that lemma 4.1 does not provide solutions for values of C' close
to 1, 2, and 3 respectively. We conjecture that the same holds true for sufficiently
large values of C'. This leads us to formulate the following
PROBLEM 4.1. Determine the range cf values Gf C' fcr which

(4.23) C" = {2[C'] + 1}C' - [C']{[C'] + 1}.
In the solution of this problem the paper by Heppes [9] should prove valuable.

It is of some interest to ccmpare, for given values of C', the corresponding

FIGURE 13

Optimum sampling pattern for C' =-_ 3.628.
A/3
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TABLE I

SUMMARY OF VALUES OF C'

Example

4.1 C' 7'_ 0.907

2w
4.2 0.907 6-_C' -2 1.209

2\3 3-\3

4.3 and 4.4 1.209 _2r CT<_r - 1.814
3V3 Vt3

4.5 2.418 r-S C'< - 2.714
3V3- 7\/7

4.6 C' =
2r 3.628
\3

values of C" for different nets of sample points. In table II we present such a
comparison.
The examples discussed above and given in table II show that the net of

equilateral triangles is not, in general, the optimal net. In other words, this net
does not yield the minimum limiting variance for an isotropic stochastic process
in a plane with correlation function given by (3.5). The differences are, however,
rather small and their sign alternates as C' increases. Therefore we state the
following
PROBLEM 4.2. Is it true that the net of equilateral triangles yields the minimum

TABLE II

THE RELATION BETWEEN C" AND THE PATTERN OF THE NET OF POINTS
FOR SOME VALUES OF C'

C' C" when the Pattern of the Net of Points is
IC']

Exact Num. Equilateral Equilateral
value value triangles Squares Hexagons

2N/3 0.907 0 0.907 0.988 1.165
2w\/

32/3 1.209 1 1.627 1.695 1.870
w 1.571 1 2.861 2.712 2.814
2

4- 2.418 2 6.395 6.389 6.110

7X/7 2.714 2 7.711 7.936 7.736
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limiting variance for a stationary isotropic stochastic proccss with exponential cor-
relation function?
An affirmative answer to this problem would imply the optimality of the net

of equilateral triangles for all isotropic processes with any completely monotone
correlation function. Numerical examples contained in Mat6rn [15] give some
support to such an affirmative answer. Mat6rn compares the limiting variances
for an isotropic process with correlation function exp (u), if triangular, square,
and hexagonal nets of some chosen densities are used. The effect is that in all
cases the triangular net proved to be somewhat better than the other ones.

Finally, we mention without formal proof the almost obvious relation concern-
ing the limiting behavior of the mean double covering. Let us write it down as
LEMMA 4.2. For any regular net of points the ratio of the mean double covering

C" and the square of the mean covering C12 tends to unity when the mean covering
increases over all bounds; in symbols,

(4.24) lim C" = 1.

5. A class of planar isotropic correlation functions

In this section, which is due to Hajek and Zubrzycki, we discuss the class of
convex planar correlation functions admitting representation

(5.1) p(u) = r (a) dF(a),

where F(a) is a distribution function with F(O+) = 0, and

2. [arecos u - u(1 -u2)1/2], 0 < U < 1
(5.2) r(u) = i

O, u>1.

For some related results, see Hammersley and Nelder [8].
Clearly,

{-4 (1- U2)1/2, 0 < u < 1

O, u> 1,
and

(4 u
0_

(5.4) r"(u) = .fir (1-u2)1/2' 0 < u < 1,

19, u > 1.

LEMMA 5.1.

(5.5) j " r" (u) du - 4 7 s>a>0°f, u IL~ 0, >~
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PROOF. The case a > 1u is clear. If u > a, we have, in view of (5.4),

(5.6 1 ,,r/(a)\'.(,, du\ ( 2 1*a du 8
(6 2 (uT\ () U[( 2 - a2)(;,2 - U2)]1/2 =r-

THEOREM 5.1. The correlation functions p(u) of the type given by (5.1) are
characterized by the following properties

(a) p(u) is continuous, convex, and with p(oo) = 0.
(b) p'(u) is absolutely continuous.
(c) fo (1/u2)r"(a/u)p"(u) du is a nondecreasing-function of a.
The functions F(a) and p"(u) are linked by the inversion formulas

(5.7) dF(a) =-8 a3 d f -2 r" (a) p"(u) du,

and

(5.8) p"(u) = f 1 "(r/ ) dF(a).

Condition (c) is fulfilled, for example, if p"(u)/u is a nondecreasing function of u,
which means, provided that p"(u) is absolutely continuous, that
(5.9) p"(u) - up"'(u) > 0, u _ 0.
If (5.9) holds, then F(a) is absolutely continuous and therefore

(5.10) = --2 2 P/P (sa \) id. -da 2 \sin 0/sin20'
PROOF. Property (a) follows easily from the corresponding property of cor-

relation functions r(u/a). Property (b), and simultaneously the relation given by
(5.8), will be proved if we show that the indefinite integral of the right side
of (5.8) equals p'(u). Now

(5.11) f f a2r" (u) dF(a) du f| [ f -r" (u) du] dF(a)
a a ~~~ a aa)

-f r'Qu)dF(a) = -p'(u).

The change of integration order is justified by Fubini's theorem, since r"(u) _ 0.
The last identity follows from (5.1) by differentiation under the integral sign,
which is justified, since (1/a)r'(u/a) is uniformly bounded for u > e > 0.

In view of (5.8) we have, by using Fubini's theorem again,

(5.12) f u2r (a) P (u) du = f -sr" (a) f 2r" (u) dF(M) du

- I [f TI'r"(a)Tr"I() du] dF(,),
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which gives, in accordance with (5.5),

(5.13) f -2 r" (a) p"(u) du = 8 f -dF(,).

The last relation, however, is equivalent to (5.7).
Now assume that the correlation function p(u) fulfills conditions (a), (b),

and (c), and consider the function F(a) given by (5.7). In view of property (c),
F(a) will be nondecreasing.
The fact that the total variation of F(a) equals 1 follows from the subsequent

lemmas 5.2 and 5.3 and from the following relations,

(5.14) dF (a) - a' d f -kr(r ) p"(u) du da

= [ a3 f 2 r" (a) p"(u) dul

+ 8 L [f 2 r (a) da] p"(u) du

= f up"(u) du =-f p'(u) du

= p(O) - p() = 1.

It remains to show that p'(u) is uniquely determined by relation (5.7), that is,
that p(u) coincides with the correlation function obtained from (5.1). However,
(5.7) is equivalent to (5.13), if rewritten in the form

(5.15) fA dF(uA) = f -2 r" (a) dp'(u).

Comparing (5.15) with (5.8) we can see that the p'(u) may be determined from

(8/r) f| (1/u3) dF(A) in the same way as F(a) has been determined from p"(u).

The fact that p'(u) may not have finite variation is irrelevant.
Before proceeding to the rest of the proof, we observe that by substituting

u = (a/sin 0) into (5.7) we get

,2P, ( a

(5.16) dF(a) = a3 d A / ksino do

sin 0

From this form it is easily seen that condition (c) is fulfilled if p"(u)/u is a
nondecreasing- function of u, or, more especially, if (5.9) holds; notice that
{[p11(U)]/Uj = -1/U2[p"(U) - up".(u)]. Now if (5.9) holds, we can differentiate
(5.16) under the integral sign (Fubini's theorem), which gives
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dF(a) _ 1 fl2 F,,... ( a \l sini dO
(5.17) da 2 J L[ a

_pa (sm a2 Ido
12 T/2 /p(a \d + 2ap,, cos 11/2

2 r/ ai \ 2insins2
12 J a"' (sin , sin2 0

-J a2 |/2p... a sin + COS 0 dO

12 f p,,1 ( a_ dO2a2 "' sinG,) sin2 0

The relation p"(oo) = 0 which we have used follows from the subsequent lemma
5.3. Our theorem is thus completely proved.
LEMMA 5.2.

(5.18) f u2r"(u) du = 8
Jo 3r

PROOF. Integrating by parts, we have

(5.19) f u2r"(u) du = -| 2ur'(u) du

=
8 u(j - U2)1/2 =8
7 37r

LEMMA 5.3. Any correlation function p(u), which fulfills conditions (a), (b),
and (c) of theorem 5.1, has the properties

(5.20) lim a3 2r" (a) p"(u) du = lim a3 12r" (a) p"(u) du = 0
a-+O U \u/ a---J u2 u

and

(5.21) lim ap'(a) = lim ap'(a) = 0.

If, moreover, p"(u)/u is nondaain-g, then

(5.22) lim a2p"(a) = lim a2p"(a) = 0.
a-O a-

PROOF. Since p(u) is convex, -p' is nonnegative and nonincreasing, and
we have

(5.23) 0° _-ap'(a) -- p'(u) du = p (a)- p(a).
2 2

Since p(u) is continuous at the points 0 and oo, (5.21) is clear.
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Now, if (5.9) holds true, the function p"(u)/u is nonnegative and nonin-
creasing, so that

(5.24) 0 < - a2p"(a) = a3 Ep( < a2 | du
3 ~~3 a = /

< 2a p"(u) du = 2a p (a) - (2 a

where the expression converges to 0 if a -O 0 or a - oo.

The same consideration will be used in proving (5.20). In view of condition (c)
we have

(5.25) 0°- a3 r" (a) p"(u) du

< ,
1

,al2 r"/ (A) p"(u) du d,u

= 1:X [la2~r" (") dc] p"(u) du

=uJ[ 2r"t(u) du] up"(u) du,

where, using (5.18)

(5.26) f uu2r<<(u) du X< 8 , a _E,

7'r u

Consequently, on the one hand,
~ a/u 8 a/e

(5.27) J u2r"(u) du up"(u) du _37 + up"(u) du

and, on the other hand,

(5.28) L la/ u2r"(u) du up"(u) du<_ up"(u) du.
O /2u I-3 7r

The inequalities (5.25) together with the inequality (5.27) or (5.28) prove the
relation (5.20) for a 0 or a -- oo, respectively. Notice that up"(u) is integrable
with 1o up"(u) = 1.
EXAMPLE 5.1. The convex correlation function exp (-cu) has a negative

third derivative and therefore fulfills condition (5.9). Hence it admits the repre-
sentation (5.1), where the spectral density is given by (5.10).
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EXAMPLE 5.2. The convex correlation function

(5.29) p(u) = J, f e-'/2 du

also admits the representation (5.1), since p"(u)/u = (1/\/27r) exp (-u2/2) is a
nonincreasing function of u.
EXAMPLE 5.3. The linear convex correlation function

(5.30) p(u) ={ U,' 1,
{O, u_> 1,

has a discontinuous first derivative, and therefore does not admit the repre-
sentation (5.1). It may be shown, however, that p(u) is not a planar isotropic
correlation function. Actually, considering a square net of points with coordinates

(5.31) (p * ) 0 < i, j n-1,

we have
n n

(5.32) i2oi p(lpij - pjyj) (-1)i+j+i'+j' n2 -4 1- n(n-1),

which is negative for a sufficiently large n.
Example 5.3 shows that the class of planar isotropic convex correlation func-

tions is smaller than the class of linear convex correlation functions. One might
suspect that all planar isotropic correlation functions are expressible in the form
(5.1). This is, however, disproved by
THEOREM 5.2. There exist isotropic stationary stochastic processes in a plane

with correlation function g(x, y) = f[(X2 + y2) 1/2] such that f(u), where 0 < u < oo,
is a convex function which cannot be represented in the form

(5.33) f(ut) = f r () dF(a),
where

2{arccosu - u(1 -u2)1/2} 0 < u 1
(5.34) r(u) = ~7r

o, 1.< u < oo,
and F(a) is a distribution function with F(O+) = 0.

This theorem follows from the following two lemmas.
LEMMA 5.4. The function g(x, y) = f[(X2 + y2)1/2], where

2 (7- u), 0. u _1,
(5.35) f(u) = { si [U - (U2 - 1)1/2]}, 1 _ u _ cc,

is a correlation function of a stationary isotropic stochastic process (see figure 14).
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V

0 1 2 3
U

FIGURE 14

v = f(u), with f(u) given by (5.35).

LEMMA 5.5. If the function f(u) is representable in the form (5.33), then
f"(u) > Ofor all u > 0 with u < a, where F(a) < 1.

To prove lemma 5$ we consider a linear stationary stochastic process r7(t)
with correlation function h(t) given by

(5.36) h(t) = {1 itl iti < 1,
(h , otherwise.

Define then a plane stochastic process &(x, y) by putting
(5.37) {(X, y) = 1(x cos ac, y sin a),
where a is a random variable independent of the process 7a(t) with

O, a < O,

(5.38) P0C < a, = 2a, o < a < 2T,

t1, 27r _ a.

In other words we first define a plane stochastic process which depends only
upon one coordinate and has with respect to it correlation function h(t), and
then we randomize the direction. It is seen that &(x, y) is an isotropic stationary
stochastic process with correlation function g(x, y) = f[(X2 + y2)1/2], where

(5-39) f(u) = 21 | [1 -h(u sin 46)] d4,6,

which leads to (5.35).
To prove lemma 5.5 we note that the second derivative of a function f(u)

given by (5.33) is given by
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(5.40) f"(u) = f 2 r" () dF(a),

where

(5.41) {~~~~4u > o, 0 < <1
(5.41) r"(u) = {jr( U2 >0 0<<2

O, 1< u <

This proves lemma 5.5.
Now the function f(u) given by (5.35) has a second derivative which vanishes

for 0 < u < 1. This contradicts lemma 5.5 and thus proves our theorem 5.2.
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