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1. Introduction

The aims of this paper are
(i) to stress the existence of a class of problems that have not received much

attention in the literature;
(ii) to outline a general method, based on the Neyman-Pearson likelihood

ratio, for tackling these problems;
(iii) to apply the general results to a few special cases.
Discussion of regularity conditions will not be attempted.

2. Some problems

The following are examples of the type of problem to be investigated. Through-
out, Greek letters denote unknown parameters. It is assumed in the theoretical
analysis that observed values of random variables are to be used to test one of
the hypotheses, say Hf, and that high sensitivity is required for alternative
hypotheses, H,.
EXAMPLE 1. Let Y1, * *, Y,, be independent identically distributed random

variables. Let HJ(1) be the hypothesis that their distribution function is log-
normal with unknown parameter values, and let H,1) be the hypothesis that
their distribution function is exponential with unknown parameter value. For
remarks on the difficulty of distinguishing these distributions, see [11]. A. D.
Roy [20] has given a likelihood ratio test for the similar example of discriminat-
ing between a normal and a log-normal distribution. Other related examples
include that of testing a Weibull-type distribution against a gamma distribu-
tion, and of testing alternative forms of quanta] dose-response curves.
EXAMPLE 2. Let Y1, *- *, Yn be independently normally distributed with

constant variance and let x1,i , x,, be given positive constants. Let H(2) be
the hypothesis that

(1) ~~~~~~E(Yi)-= Oil + Cf2Xi, i=1***,n,
and let H(2) be the hypothesis that
(2) E(Y1) = 31 +32logxi, i =1, *,n.
EXAMPLE 3. Let Y denote a vector of n independently normally distributed
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random variables with constant variance and let a, b be given matrices and a, S
vectors of unknown parameters, not necessarily with the same number of com-
ponents. Let Hf3' be the hypothesis that
(3) E(Y) = act,

and let H(') be the hypothesis that

(4) E(Y) = b3.
Examples 2 and 3 are related to the problem, first considered by Hotelling [10],

of choosing between independent variables in a regression relation; see [9], [24],
and especially [25], for further discussion of Hotelling's results. As an instance
of example 3, see [6] Nwhere, for data from a Latin square, a model is given quite
different from the usual one.
EXAMPLE4. Let a be a given matrix. Let H,4' be the hypothesis that

log Y1,,.. , log Y. are independently normally distributed with constant vari-
ance and with
(5) E(log Y) = aa

and let H'4' be the hypothesis that Y1, , Y. are independently normally
distributed with constant variance and with

(6) E(Y) = a#.
Whereas examples 2 and 3 concern discrimination between alternative forms

for the independent variable in a least squares problem, example 4 concerns
alternative forms for the dependent variable. For instance, in a simple factorial
experiment Hf4) might be the hypothesis that log Yi has zero two- and higher-
factor interactions, H'4) the same hypothesis about Yi. Rough methods for
tackling these problems are almost certainly widely known, but the problems do
not seem to have been considered theoretically.

Except in certain degenerate cases, as for example when a1 = = 0 in exam-
ple 2, the hypotheses Hf and H. are separate in the sense that an arbitrary
simple hypothesis in Hf cannot be obtained as a limit of simple hypotheses in
H, This contrasts with the usual situation in hypothesis testing.
There is a further group of problems that arise when one of the hypotheses,

say H,, involves a discontinuity in the model occurring at an unknown point in
the sequence of observations. A sensible test criterion can be found by the
methods of this paper, but the distributional problems seem difficult and will not
be tackled in the present paper. The problems will, however, be recorded for
reference.
EXAMPLE 5. Let Y1, Y. be independently normally distributed with

constant variance and let H,5' be the hypothesis that

(7) E(Y)= ,i = 1, n,

and let H,() be the hypothesis that
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(8) E(Y1) = 473i i =1,*..,
132, i =yz+ly ** n,

where y is unknown.
This is different from the previous examples not only in involving a discon-

tinuity, but also in that any simple hypothesis in H}5) can be obtained as a
special case of H'). The next examples illustrate a "continuous" hypothesis Hf
and a separate "discontinuous" hypothesis Hg.
EXAMPLE 6. Let the assumptions of example 5 hold and let H(6' be the same

as H,"), and let Hr6) be the hypothesis that

(9) E(Yi) = a, + ia2, i = *fn.

EXAMPLE 7. Let the Yi and xi be as in example 2. Let Hf7) be the hypothesis
that

(10) E(Yi) = al + a2Xi + a3x, i = 1, * n,

whereas H'7' is the hypothesis that

(11) E(Yi) {1 + 32(xi- 7), xi < y,
+ 33(Xi- -y), Xi > TY.

The last example is relevant for testing whether data which obviously arise
from a curved regression relation are better fitted by two straight lines at
an angle than by a parabola. If Hg is preferred to H,7, there is evidence for a
discontinuous, or at any rate rapid, change in the regression relation. For
instance x may be temperature, Y some physical or chemical property, for exam-
ple, electrical resistance. It may be claimed on the basis of an apparent discon-
tinuity in slope that a change in chemical structure occurs at temperature -y,
and we may be concerned to examine the evidence for this claim.
Example 5 is a simplified version of the Lindisfarne scribes problem, in the

general form of which the number of "change-points" is unknown; see [19],
[21], and the contribution by Champernowne to the discussion of [19]. Page
[16], [17] has considered a problem equivalent to example 5 with a, I31, 12 known;
see also [3], [5], and for a relevant probabilistic result [8]. Quandt [17] has
considered the maximum likelihood fitting of two straight lines at an angle.

3. A general formulation

Denote the vector random variable to be observed by Y and let Hf and H.
be respectively the hypotheses that the p.d.f. of Y is f(y, as) and g(y, P), where a
and , are vectors of unknown parameters, with a E Qa and 3 C go. It is assumed,
unless explicitly stated otherwise, that

(i) the families f and g are separate in the sense defined above;
(ii) the parameters a and I3 may be treated as varying continuously even
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when a component of say j is the serial number of the observation at which a
discontinuity occurs;

(iii) the values of a, or f3, are interior to U., or Up, so that the type of distribu-
tion problem discussed by Chernoff [4] is excluded.

There are several methods that might be used for these problems. First suppose
that the problem is changed into one of discrimination, either H, or HU being
true, and let there be prior probabilities e7f, c,, with 'f + c, = 1, for H,, H0,
and conditionally on H,, let pf(a) be the prior p.d.f. of a, with p,(j#) referring
similarly to H,. Then if the observed value of Y is denoted by y, the posterior
odds for Hf versus Ho are, by Bayes's theorem,

f f(y, a)pf(a) da
(12)

°o f 9g(y, i)p0(#) d/3

In a decision problem account is taken of wf(a) and w,(13), the losses due to
wrongly rejecting H, and H0 when & and A are the true parameter points. This
leads in the usual way to a decision rule of the form

(13) cf | f(Y, a)pf(a)wf(a) da t 3o ('y, f)pf(y)w0(#) d19.

Lindley [15] has obtained large-sample approximations to (12) and (13) by
expansion about the maximum likelihood points a, #^. His result leads to the
following approximation to (12):

gf(y, a) w (27r)df/2p, &) a-1/2

where df and do are the numbers of dimensions in the parameters a and 13 and
where A. and A# are the information determinants for estimating a and ,
from Y.

If the prior probability distributions in (]A are known numerically, or if the
approximation &) can be used and the first factor is known numerically, this
approach gives a general solution to the problem of discriminating between Hf
and H0, when no other distributions can arise. In the present paper we shal
assume that numerical knowledge of prior distributions is not available.
A natural thing then is to introduce a statistic

L sup f(y, a)
(15) rfo _ e=If sup g(y, 16)

&(Y,)/g(y, 4),
a form of the Neyman-Pearson likelihood ratio. When lf, is considered as a
random variable, it is denoted by Lf,. In the common applications of the likeli-
hood ratio U. C Up so that Lf, < 0; of course this inequality does not hold here.
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The quantity i,s is invariant under transformations of the observations and of
the parameters.

There are several alternatives to (15) that might be considered. One is to
replace pf(a) and p,(a) in (12) by simple functions, for example by the invariant
prior distributions of Jeffreys [12]. In the common cases where one or both
parameters have infinite range, and the invariant prior distributions are there-
fore improper, the procedure is invalid because the normalizing constants for a
and , are not comparable. A second procedure, the OAAAA method (that is,
obviously arbitrary and always admissible) of Barnard [3], is to take a small
number of base points in Qa, each with the same formal prior probability under
Hf, and similarly for Hg. This leads to a ratio of mean likelihoods rather than
to a ratio of maximum likelihoods. If Y is a vector with a large number of in-
dependent components, this approach is equivalent to the use of (15), provided
that for Hf and for Hg at least one of the base points is near enough to the
maximum likelihood point. There are, in fact, many possible statistics that are
asymptotically equivalent to If,; see [1], [22] for two such statistics when
0. C5

4. An alternative formulation

The conventional method of dealing with example 2, and with the more gen-
eral example 3, is to set up a comprehensive model containing Hf and HU as
special cases. Thus for example 2, consider
(16) E(Yi) = Xo + Xlxi +X2 log xi, = 1, ,n.
The X can be estimated by least squares and if, say, XI is very highly significant
whereas X2 is not, a clear conclusion can be reached that the data agree better
with Hf than with Hg.
An advantage of (16) is that it may lead to an adequate representation of the

data when both Hf and Hg are false. However, in some applications, such as
example 1, no very manageable intermediate hypotheses are apparent. The
analysis based on the likelihood ratio (15) seems more relevant either when
we may assume that either Hf or Hg is true, or when high power is required
particularly against the alternative H,.
A different type of comprehensive model is used by Hotelling [10] in his for-

mulation of the problem of selecting the "best" single predictor. In this approach
the hypothesis to be tested is not one of the hypotheses Hf and H9, but is the
hypothesis that in a certain sense HI and Hg are equally good.

5. Distribution of Lfg for simple hypotheses

If both Hf and H9 are simple hypotheses, we may write (15) as

(17) Lf, = log f)-og(y)
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For some purposes it may be sufficient to take the observed value of (17) as
a measure of the evidence in favor of IIf. The same, incidentally, is not true
of (15), since if, for example, a contains more adjustable parameters than P, it
may be expected, other things being equal, to produce a better fit. Two general
arguments relating (17) to probabilities of error are available.

First, Barnard [2] and Roy [20] have pointed out that the remark on which
Wald's approximations in sequential analysis are based [23] gives a simple in-
equality in the present application. Suppose for simplicity that we fix a critical
value a > 1 and regard the data as decisive in favor of Hf if rf, > a. Then

(18) P{Rfg > ajH0} > a,

so that in particular

(19) P{Rf0 > a1H0} <-'

giving an inequality for the probability of error. However in nonsequential prob-
lems (19) is usually a poor result because of the inclusion in the critical region
of points for which rf, >> a.

Secondly, when the components of Y are independent, Lf, is the sum of n in-
dependent terms, and we can usually apply the central limit theorem to prove
the asymptotic normality of Lf,, and hence can obtain approximations to the
percentage points of Lf, both under Hf and under H, The integrals defining the
expectations of Lf,, namely

(20) [logf(Y) ] f(y) dy, [log f'y) ] g(y) dy,

have been studied in connection with information measures in statistics [13];
the first integral in (20) exceeds the second unless f(y) = g(y).

If the method of section 4 is used for this problem it is natural to consider
the family of p.d.f.

(21) [f(y)]X[g(y)]l- dy
|_ [f(y)]X[g(y)]1_Xdy

regarding X as an unknown parameter. The statistic Lf, of (17) is sufficient for X.
Cox and Brandwood [7] have applied this family to arrange in order some works
of Plato.

6. Distributional problems for composite hypotheses

We discuss now the distribution of Lf, under Hf when the hypotheses Hf and
Ho are composite. First it is often in principle possible to obtain an exact test,
that is, a test of constant size for all a. This is so when there are nontrivial suf-
ficient statistics for a; the distribution of Lf, conditionally on these sufficient
statistics is independent of ae and can be used to determine a critical region. The
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method fails only if Lf, is a function of the sufficient statistic itself. Most of
the problems we have in mind are, however, rather complicated ones for which
the conditional distribution is difficult to determine, and therefore it is natural
to examine large-sample approximations.
As a preliminary it is necessary to consider the distribution of the maximum

likelihood estimator A under the hypothesis Hf. That is, we consider a maximum
likelihood estimator obtained assuming one distribution law to be true, and
examine its distribution under some other distribution law.

7. Remarks on the distribution of maximum likelihood estimators

Suppose first that the parameters are one-dimensional and that Y1, *Yn.
are independently identically distributed with p.d.f. f(y, a) under Hf and g(y, ,B)
under H. [No confusion will arise from denoting the joint p.d.f. by f(y, a) and
the p.d.f. of a single component byf(y, a)]. The log-likelihood for estimating , is
(22) L,,(,) = log g(Yi,)
and the maximum likelihood equation is

(23) 2LJ,( = 0

Assume for the moment that for given a, ,converges in probability as n -o
to a limit t3a say. Expanding (23) in the usual way, we have that

a)Ltp(a)

(24)
0t2

where numerator and denominator are separately sums of n independent terms.
Since , converges to O,S we have that

(25) EF a log g(Y, a)]

where EA denotes expectation under the p.d.f. f(y, a). Equation (24) can be taken
as a definition of 4,f. It follows from the form of (24) that , is asymptotically
normal with mean 13a and variance va(,)/n, where

(26) v.(3) -= E.(G32s) ]2

We have written

(27) G a log g(Y, 13a) G = a2 log g(Y, da13 a#2
and have assumed the right side of (26) to be finite and nonzero.

If we differentiate (25) with respect to a, we have that, in a notation analogous
to (27),
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(28) Ea(FaGp) = ddd Ea(-aG).
When f gg, so that (B a, equation (28) is a familiar identity in maximum
likelihood theory.
In many applications, especially where an explicit expression for , is avail-

able, it will be easy to see whether /3a exists. Thus suppose that f(y, a) is the
normal distribution of mean a and unit variance, and that g(y, d) is the Cauchy
distribution centered at f3 and with unit scale parameter. Then 03a exists and
equals a, whereas ap does not exist, because & is the sample mean and does not
converge in probability under the Cauchy distribution.
A simple extension of the argument leading to (13) shows that the joint dis-

tribution of & and , is asymptotically bivariate normal, and that the covariance
of a and ,B is

(29) d0.1da

where Faa = a2 logf(Y, a)/la2. Thus the asymptotic regression coefficient of ,B
on &, under H,, is dI3a/da, a result that could have been anticipated from the
asymptotic sufficiency of &.
To generalize the above results to apply to vector parameters a and ,, we

assume that under Hf, A converges in probability, say to P. It is convenient to
introduce some special notation. Let

Fi a logf(Y, a) i 1, df,
aai

G = dlogf(Y,a) i =1, **,

(30)
i = n- logf(y),a) 1_ log g(Y,j, ,)

Fij 02 logf((Y, a), Gij 2 log g(Y, ).

Further let {E,(F* *.)} ii be the (i, j)th element of the matrix inverse to E,,(Fi,).
Define similarly {E.(G - .)}.i. Note that in all our calculations under H,, P is
taken to be P.. We use the summation convention for repeated suffices.

Corresponding to (24) we have that asymptotically
(31) 5i + E.(F11)(cd, - aj) = 0,
(32) Si + E.(Gt,) (Pi - (3j) = 0.

For the convergence of ,, we need Ea(9t) = 0, that is,
(33) Ec(Gt) = 0.

Equations (31) and (32) give
(34) cZZ-haAi !&F j
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(35) JEi-a = -{E(G * -)}ii9j.
Now 3Yj is the mean of n independent identically distributed random vari-

ables of mean 0, and so also is gj. Therefore

(36) E.(gjlFI) = 1 Ea(FjFI),n

(37) E.(51Fj91) = 1 Ea(FjGI),
n

(38) Ea(9j91) = I Ea(GjI)).

The asymptotic covariance matrix of (a, j@) follows immediately from (34)
to (38). To simplify the answer we use the standard result that
(39) Ea(FjFI) + Ea(Fjl) = 0.

Further, a result analogous to (28) is obtained by differentiating (33) with respect
to aj. This gives

(40) Ea(Gil) dfa,- + Ea(GiFj) = 0.
daj

We have now from (34), (36), and (39), the standard result that

(41) Cov (i - ai, dj- aj) = - {Ea(F *)} ",

and from (34), (35), (37), and (40),

(42) Cov (&i- ai, ~j -0a,j) = Ij{Ea(F) i

and

(43) Cov (-i- f, 0.- ,j) = - {Ea(G* .)} iEa(GiGm){Ea(G*-)}
To sum up, (&, #^) is asymptotically normal with mean (a, P.) and covariance

matrix given by (41) to (43). The results generalize immediately when the Y,
are distributed independently, but not identically.

For mathematical analysis of general problems in which the number of com-
ponents -in a is not less than that in S, it would frequently be convenient to
parametrize Hf in such a way that ,a = ai. We shall, however, not do this here.
In simple cases it may be possible, in work with data, to evaluate the expec-

tations in (41) to (43) mathematically and then to replace a by a. Otherwise it
is permissible, as in ordinary maximum likelihood estimation, to replace the
expectation by a consistent estimate of it. Thus

(44) Ea(Faa) = Ea [c2 log f(Y a)1

can be replaced by
(45) 1 E2 logf(yt, &)

fl 4a2
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and so on. That is, assuming Hf to be true, all the quantities occurring in the
above formulas can be estimated consistently from the data, and this is enough
for what follows.

8. Tests based on Lfg

Having computed lf,, how do we interpret it? First, a large positive value is
evidence against H0, a large negative value evidence against Hf. The formal
proof of this follows on writing

(46) La0= L (&)-L
= {Lf(a) - L0(P.)} + {Lf(&) - L,(a)} - {Lo(J) - Lg(Pe)}.

Expansion of the last two terms shows them to be of order one in probability,
whereas under Hf the first term has a positive expectation of order n and stand-
ard deviation of order \1n.

This might suggest trying to examine whether lf, is in some sense significantly
positive or significantly negative. This sort of approach would, however, be ap-
propriate when the hypothesis under test is not Hf, but is the hypothesis that Hf
and Ha are "equally good"; see specially the discussion in [25]. Note also that,
even from the Bayesian point of view, and even if Hf and Ho have equal prior
probability, the critical value of zero for lf,, that is, of one for rf,, has justifica-
tion only under certain conditions on the prior probability densities pf(a), p,(9).
In fact in the asymptotic equation (14), the final factor is unity only if

(47) (27r)df/2pf(ac) 4A-/2 = (27r)do/2p0(p) xl/2.

This is so if pf(a) and p,(e) assign equal prior probabilities to standard con-
fidence ellipsoids based on CI and &, and it is hard to see a general reason for
expecting this.

If we take Hf as the hypothesis under test and Ho as the alternative, it seems
reasonable to consider for a test statistic

(48) Tf = L , -E&(Lf
that is, to compare Lf, with the best estimate of the value we would expect it
to take under Hf. A large negative value of Tf would lead to the "rejection"
of Hf.

9. An example

To examine (48) more closely, consider example 1. Here H}l) assigns each Yi
the p.d.f.

(49) Y a) = 1 exp (log y- al)2y(27a2)1/2 exp 2a2
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whereas for H(') the p.d.f. is

(50) g(g, ,) =
Now S is the sample mean of the Y and therefore converges under H,') to the

mean of the distribution (49), that is, to exp (a, + a2/2). Thus

(51) 1 = exp [al + 2 as2j

Further, noting that al and &2 are the sample mean and variance of the log Y,
we find that

(52) Lfg n log 2Xr2 +1 - nd& + n log,.

Incidentally, a practical objection to the criterion (52) in some situations is
that it depends rather critically on observations with very small values, and such
.observations are liable to be subject to relatively large recording errors.
We have that

(53) log A ,3 ) = log (27ra2) -(log y - a,)2g(y,) 2 2a2

-logy + a, +1 + yexp(al + a2

and therefore

(54) E. [log f(Y,) = -log (2wa2) + 2 +
l

a2,

so that

(55) Tf= n log '

because Tf is given by Lfg minus n times expression (54).
An equivalent test statistic is

(56) Tf = log
n

From the results established in section 7 about the asymptotic distribution of
(&, :), it follows immediately that (56) is asymptotically normal with mean
zero. To calculate the asymptotic variance of (56), we need first Ca, the asymp-
totic covariance matrix of (&, ,); this can be calculated, either directly or from
(41) to (43), to be given by

( a2 0 a2
(57) nC= 0 2a22 a2e' .

N (6c b e asa2eypt(eo-
Now (56) can be written asymptotically
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(58) log (1+ 3)-log (1+ 7

/3/3a _B1 da34 (e - al) + da (2 -a2)]
/3421 /3~~~, aa2

= (-1, -2j-',B)(e>i -al, 62 -a2, a -a)

1lz(ei- al, &2 - a2, -

say. Therefore the asymptotic variance of (56) is laCFl'. and simple calculation
shows this to be

(59) -1- a2- a2

which is estimated consistently by replacing a2 by a2.
Thus, finally, we test Hf1) by referring

log
(60) -1- -! )]

to the tables of the standard normal distribution, large negative values of (60)
being evidence of departures from Hf1) in the direction of Hel. Clearly there are a
number of asymptotically equivalent forms for the numerator of (60).
Suppose now that HI"' is true. The statistics et and a2 converge under H,1) to

the mean and variance of log Y, where Y has the exponential distribution (50).
Therefore
(61) al, = log, + A(1),
(62) a2,0 = 46'(1),
where, in the usual notation, P(x) = d log r(x)/dx; 4'(1) = -0.5772, and 0'(1)
= 1.6449.

It follows from (61) and (62) that under H(') the numerator of (60) con-
verges to

(63) log ( -40(1) --#'(1).
exp (a1, + 2a2,0

Since this is different from zero, the consistency of the test based on Tf is proved.
Asymptotic power properties can be obtained by calculating also the variance
of , -,B under H."'; such calculations would be relevant only for values of a
for which a large n is required in order to attain moderate power.

If we take H,'( as the hypothesis under test, we need to calculate

(64) Tg = Lf, - EA(Lf).
Equation (52) still gives Lf,, but (53) must be replaced by
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(65) log(y, 3a) -(log Y - 1log (27ra2,P) + log 3 +

We obtain, from (52), (61), (62) and (65), the result that

(66) Tg = -n(d -al A)-- 1n log 6'(

where #'(1) is, in virtue of (62), the constant value of a2,. An equivalent test
statistic is

4

(67) -( - :A) -1 a2

Under H('), (67) has an asymptotic normal distribution of mean zero and a
variance calculated by replacing (67) by

(68) -(d1- ai,p) - 2- (1)+

~ (~-1, 2|*'(l)' B) (1- al,, 2 - a2.0, - )

- mP(61 - a1,, 62-a2 ,P-),
say. The asymptotic covariance matrix Cp of (61, 62, /) is found either from the
general formulas of section 7, or from first principles, to be given by

(69) nCp = (,"(1) 4,"'(1) + 2[4,/(1)]2 0
\ 0 ,2

The asymptotic variance of (67) is thus

(70) mCSm' = n- [\'P(1) -2 + 61i + 4['(1)]] n0.856
Therefore the test of H,1) is to refer

(71)~~ ~~~ - (& al o) 2log 6'(2(71) 2~~~-a,~1 d

0.925/Vn-
to the standard normal tables, large positive values of (71) being evidence of a
departure from H'1 in the direction of Hf(').
ILLUSTRATIVE EXAMPLE. A random sample of size 50 from the exponential

distribution of unit mean gave for the mean and variance of log y, the values
l = -0.6404, 62 = 1.2553, and for the mean of y, the value B = 0.8102. The log
likelihood-ratio lf, is -5.15, corresponding to rf, = 1/170, apparently a large
factor in favor of Hl), the exponential distribution. However, we cannot in-
terpret this value in a direct way, because we do not know the other factors
in (14).

If we take H() as the hypothesis to be tested we get from (56) the ratio
Tf/n = -0.1977, with an estimated standard error of 0.0965, leading, by (60),
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to the critical ratio 2.048. There is therefore quite strong evidence of a departure
from the log-normal family in the direction of the exponential. If we now take
H(') as the hypothesis to be tested we get from (67), T,/n = -0.0121, with an
asymptotic standard error 0.131. The critical ratio (71) is thus 0.092, indicating
good agreement with the exponential family, in the respect tested. A calculation
of power and a detailed comparison with other tests have not been attempted.

10. Some results for the Koopman-Darmois family

In the special case discussed in section 9, the test of HrJ) reduces to an exam-
ination of whether , - A& differs significantly from zero, and the test of H'1'
reduces to an examination of whether a certain asymptotically linear combina-
tion of (1- al,, 62 - a2,A) differs significantly from zero. This suggests the
question: when does the test of Hf reduce to an examination of whether an
asymptotically linear combination of the components of &- A differs signif-
icantly from zero? When the test does have this form, the asymptotic normal
distribution of the test criterion has mean zero and a variance determined by
the theory of section 7, and hence in such cases our problem is in principle
solved.

Obviously the likelihood ratio test cannot take this form always. For exam-
ple, if the hypotheses Hf and H, correspond respectively to a Poisson distribu-
tion and to a geometric distribution, a and j3 may both be taken as the
distribution mean. Since the sample mean is a sufficient statistic under both Hf
and Hg, Pa = a, ap = f3, and a = = 13a = a,, so that the examination of 3-
leads to a vacuous result.
To try to generalize the results of section 9, it is natural to turn to the so-

called Koopman-Darmois family. Since most of the problems which we want to
answer do not concern random samples, we shall not restrict the Y1 to be iden-
tically distributed.

Let Y1, * *, Y,n be independently distributed with p.d.f. under Hf
(72) exp [ A(f)(a*)B(f)(y) + Ciff (y) + D(f) (a)],
and under Hg
(73) exp [ A((,*j)B(°(y) + C'0)(y) + D(0)(P)],

where the parameters a and P are split into components a*, j3* in such a way that
each term in the leading summations refers to a single component only.
As an instance of (72), consider the linear regression model of example 2.

Here the p.d.f. of Yi under the hypothesis H
1 (y - a, - a2Xi)21

(74) (27rao)112 exp[L 2ao

[X y2 al + a2xO-- 1og (2i&o) - (a' + a2xi)21IxP -2ao yao yao 2ao J
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'lhis is of the form (56) with C'''(y) -0, provided that we take a, = l/ao,
a2 = al/aO, a3 = aO/ao.

It is now straightforward, using (72) and (73), to compute the test statistic
Tf. For
(75) Lf(ax) = E A(vf(ad)B()(yi) + E C(f)(yi) + E D()(a!)

i, X s

and the corresponding expectation is the sum over i of the logarithms of expres-
sions like (72), and so is
(76) Y' A()(a*)Ea[B(f)(Yi)] + , E.[C°)(Yj)] + EDI(f)
The maximum likelihood equation for ee* is

(77) d(j ) B(f)(y) + ,- D(f)(a) = 0.

Also the expectation of the logarithmic derivative of (72) is zero,

(78) dA14f) (a) Ea[B() (Yi)] + a Df(f) (a) = 0.da*3ca
Combination of (75) to (78) gives
(79) L E(&)-Ec&[Lf(&)] = E {Cjf(yj) -E&[C(1)(Y)]j.
The corresponding expression arising from the likelihood under Ho is obtained

by a similar, but slightly more complicated, argument; the answer is

(80) LJ() - E&[L0(#&)] = Ej {Cf (yi) - E&[Ct°)(Yi)]} + H0(B&) -HJ(,
where

(81) H(l) =E
[A ij(j3a)]

The test statistic Tf, equal to Lf, - E&[Lf,], is the difference between (79)
and (80).

It follows that a simple sufficient condition that the Tf test reduces to a com-
parison of A with i3& is that in the representations (72) and (73)

(82) Qf(f )()ct' (Y)( -

In example 1, discussed in section 9, and in the regression model (74), the C
functions are identically zero, so that (82) is satisfied; indeed applications in
which the C are zero are likely to be the main common case in which (82) holds.
When (82) is satisfied

(83) Tf = H, (P&) -Hg
Now ,,-, has an asymptotic multivariate normal distribution with mean
zero and covariance matrix that can be found from the results of section 7.
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Hence, by applying the A-method of asymptotic standard errors to (83), the
variance of Tf under Hf can be consistently estimated and the hypothesis Hf
tested in a way directly analogous to (60). The general expression for the test
criterion is rather complicated and there seems no point in writing it down; the
method fails if the limiting normal distribution of (&,13) is singular in such a way
that the apparent variance of Tf is zero.
The test based on (83) gives an answer in principle to a range of problems of

which examples 1 to 4 of section 2 are instances. Clearly, however, a great deal
remains to be done on special cases, especially if the adequacy of the approxima-
tions is to be assessed.
A case where the results of this section fail badly is provided by taking the

hypothesis H,4) of example 4 as the hypothesis under test. Here, because nega-
tive Yi may arise under H4), the estimate & does not converge in probability
under Ho, that is, ap does not exist.

11. More general situations

In this section we note briefly that the results of sections 9 and 10 can be
extended. First, if the Koopman-Darmois laws (72) and (73) hold, and if condi-
tion (82) is not satisfied, the test statistic Tf is given not by (83) but by

(84) Tf = H0(13&) - HJ(3) + E {Cf(yi) -Ea[Ci(Y)]}
where
(85) CQ(y) = Ct(' (y)-C( (y).
To compute the asymptotic variance of Tf under the hypothesis Hf, we need

the asymptotic covariance matrix not just of (&', A), but of [&, A, E CQ(Y1)/n].
An expression for this can be found.
More generally, if we do not restrict ourselves to distributions of the Koopman-

Darmois type, Lf, can be written in the form (46), the last two terms being
ignored because they are of order one in probability. Further, considering for
simplicity a problem in which a is one-dimensional, we have that

(86) E.(Lf0) -Ea(Lf,) (&-a) dE.(Lf,)
da

the asymptotic normality of Tf = Lf, - E(Lf,) can be proved from this and
the retention of terms of order one in probability would give a further ap-
proximation.
These results will not be followed up in the present paper.

12. A regression problem

An illustration of the difficulties that can arise in applying the results of sec-
tion 10 is provided by examples 2 and 3 of section 2, which will now be discussed
briefly. Let ao, i3o be the residual variances under the linear models
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Hf: E(Y) = aa;
(87) Ho: E(Y) = b
of example 3. Then

(88) Lfg= nlogn 0

2 dto
Conditions (72) and (73) are satisfied and it might therefore be expected that

the Tf test would be equivalent to a comparison of Bo - E&(4o) with its large-
sample standard error, the limiting distribution being normal. However, if we
let n -> o, with the ranks of a and b fixed, we find that the limiting distribu-
tion is not normal. The reason, roughly speaking, is that the statistics do and IBo
contain a large common part, the sum of squares residual to (a: b), and that the
test -statistic corresponds to a singularity in the limiting normal distribution
of (&, ).

If the matrices (a'a), (b'b) are arranged to be nonsingular, and of size Pa, vb, it
is straightforward to show that ,o minus an estimate of its expectation under Hf
can be written in the form

(89) Bo- a a rba& _ -trace [a(a'a)->(a'rba) (a'a)-la'] n }o
fn - Vb - fl V,J

where

(90) rb = I-b(b'b)-lb';
the statistic (89) has mean exactly zero under Hf.
Note that this statistic is defined in certain situations where the variance ratio

for regression on b adjusting for a is not defined, namely when rank (a:.b) = n.
This situation is uncommon but could arise in the study of factorial experiments
with many factors.

It can be shown that when the spaces spanned by the columns of a and b are
orthogonal, and the rank of (a: b) is less than n, the statistic (89) is proportional
to the difference between the mean square for regression on b adjusting for a,
and the mean square residual to a and b, so that a test essentially equivalent to
the classical F-test is obtained.

Finally consider example 2. We can work either from (89), or from an ap-
propriate canonical form for the hypotheses Hf and Ho to show that (71)
reduces to

- UV _r2(n - 3)V2r2(n -3)2
(91) -2r(1 r2)"2 - 2 (n - 2) 2 (n - 2) S

where r is the sample correlation coefficient between the two independent vari-
ables x and log x, 82 is the mean square about the combined regression relation,
and U and V are respectively proportional to the total regression coefficient
of Y on x, and to that of Y on log x for fixed x, both scaled so as to have the
variance of a single observation.
Under Hf, (91) has mean zero, whereas under Hg its expectation is negative.
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To test Hf we can argue conditionally on U, when the variance of (91) can be
estimated in a straightforward way.

It is not clear that (91) has any advantages over the usual one-sided test
of V/s; further when there is appreciable regression U will be large, of order V'n,
and (91) is then essentially an examination of the sign of V. It is possible that
when there is more than one parameter at stake something essentially different
from the conventional test emerges.

13. Discussion

This paper leaves a great deal unsolved, especially
(i) the detailed theory of special cases, in particular the whole matter of the

adequacy of the asymptotic theory;
(ii) the treatment of "discontinuous" parameters;

(iii) the calculation of the power functions of the tests proposed here [see,
however, the comments following (63)];

(iv) the discussion of possible asymptotic optimum properties. It is known
that the ratio of maximum likelihoods can lead to a silly test in some small-
sample situations [14], but that in the common parametric cases optimum prop-
erties hold asymptotically [22]. Is the same true for the tests using Tf and To?
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