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1. Introduction and summary

A finite state channel is defined by (1) a finite nonempty set A, the set of in-
puls, (2) a finite nonempty set B, the set of outputs, (3) a finite nonempty set 7T,
the set of (channel) states, (4) a transition law p = p({'|l, a), specifying the
probability that, if the channel is in state ¢ and is given input @, the resulting
state is ¢, and (5) a function ¢ from T to B, specifying the output b = ¢(¢f) of
the channel when it is in state .

For any sequence {a.,n = 1,2, ---} of random variables with values in 4,
we may consider the process {a.} as supplying the inputs for the channel, as
follows: an initial channel state f, is selected with a uniform distribution over T'.
The input g, is then given the channel. The channel then selects a state ¢, with

(1) Pl = tito, a1} = p(tlte, a1)
and produces output by = ¢(t;). The channel is then given input a. and selects
state ¢, with
(2 P{t: = tlto, &, ay, a3, bi} = p(tlty, a),
and so on. In general, for n = 0,
@) Plawp=0a,tspi=tbup1=0bla;, 1 750 ,0=i2nb,157=n}
= P{a’ﬂ+1 = a|a"1 IS n}p(tltm a)X(tr b)7

where x(f, b) = 1 if y(t) = b and 0 otherwise.

For any random variable x with a finite set of values and any random vari-
able y, the (nonnegative) random variable whose value whenx = x,andy = yois
(4) —log P{z = xly = yo}

(all logs are base 2) is called the (conditional) entropy of z given y and will be
denoted by #(z|y). Its expected value, which cannot exceed the log of the num-
ber of values of z, will be denoted by I(zx|y). For y a constant, i(z|y) and I(z|y)
will be denoted by #(x), I(x) respectively. If each of z, y has only finitely many
values, the random variable

G) iy =@ +iy) — il y) = @) —ily) = i) — iyl)

This paper was prepared with the partial support of the Office of Naval Research (Nonr-
222-53).

57



58 FOURTH BERKELEY SYMPOSIUM: BLACKWELL

is called the mutual information between = and y. Its expected value will be
denoted by J(z, y). For any stationary process {z., —» < n < «} whose vari-
ables have only finitely many values, we write I*(x) for I(zo|z_1, Z—g, + - *).

An inequality of Shannon [8] and Feinstein [3] relates the existence of codes

to the distribution of j{(ai, - - - , an), (by, --- , bw)} = jn, as follows.
Shannon-Feinstein inequality. For any integer D, and any number v there
are two functions f, g, where f maps (1, - - -, D) into the set U of sequences of

length N of elements of A, g maps the set V of sequences of length N of elements
of B into (1, --- , D), for which

© Py ) = di@, o a) = F@) S Pliv <7} + 5

ford=1,---,D.

Note that the left side of (6) is independent of the distribution of {a.}; it is
simply the probability that, when an initial state for the channel is selected with
a uniform distribution and the channel is then given the input sequence f(d), the
resulting output sequence by, - - - , by will be one for which g(by, - - - , by) #= d.
The pair (f, g) can be considered as a code, with which we can transmit any of D
messages over our channel in N transmission periods; when message d is pre-
sented to the sender, he gives the channel input sequence f(d) ; the receiver then
observes some output sequence » and decides that message g(v) is intended.

For a given number ¢ = 0, let D = [2¥¢] and write
O fx(c) = min max P{g(by, ---,by) # dl(ay, -+, an) = f(d)}.

fg 15d<D
Thus 0x(c) is small if and only if we can transmit any binary sequence of length
Ne¢, by using the channel for N periods, with small error probability.

Shannon [7] associated with each channel a number C, called the capacity of
the channel, and proved that, for certain channels, 6x(c) -0 as N — » for
every ¢ < C but not for any ¢ > C. His original work has been considerably
simplified and extended by several writers, including Shannon himself [8],
MeMillan [6], Feinstein [2], [3], Khinchin [5], and Wolfowitz [9], [10]. In
particular, for certain channels, Wolfowitz has shown that y(c) > 1as N —
for every ¢ > C.

For a certain class of finite state channels, the indecomposable channels defined
below, the fact that 6x(c) — 0 as N — « for ¢ < C was first proved by Breiman,
Thomasian, and the writer [1]. We present in this paper a simpler proof of the
slightly stronger fact that for these channels 6x(c) — 0 exponentially: for any
¢ < C there are constants « > 0, 8 < 1 for which, for all N,

8) On(c) < aBV.

The Shannon-Feinstein inequality reduces (8) at once to the study of the
distribution of jx for large N, as follows: if for a given ¢ we can find an input
sequence {a,} for which, for some oy > 0, 8: < 1,

9) P{jx = Nc} = ol
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for all N, the Shannon-Feinstein inequality yields, for every ¢ > 0 and all N,
(10) On(c — € < aifY + 277 < aff,

where a; = a1 + 1, 82 = max (81, 27¢). Thus our result (8) is implied by: for
every ¢ < C, there is an input sequence {ayx} for which, for some oy > 0, 81 < 1,
(9) holds.

We now define indecomposable channels and the number C. Let
{xnyn = 1;2) “'}
be any Markov process with a finite number R of statesr = 1,2, - -+ , R and in-
decomposable transition matrix r = #(r’|r) = P{%s41 = 7’|z, = r}. Let ¢ be any
function from (1, - - - , R) to 4, and let a, = ¢(x.). We consider the source proc-

ess {a.} as driving the channel, as described above. The process {z, = (2, )}
is then a Markov process, with transition matrix

m = m(r', t'|r, ) = =('[r)p[t'l¢, $(r")].
If for every indecomposable r and every ¢, the matrix m is also indecomposable,
the finite state channel (4, B, T, p, ¥) is called tndecomposable. There is then,
for each m, a unique stationary Markov process {z5 = (23, 1}), —© <n < =}
with transition matrix m. Define a = ¢(x%), b5 = ¢(&), —© <n < «, and let
J*(w, ¢) = I*(a) + I*(b) — I*(a, b). The number

(11) C = sup J¥(m, ¢),
L4

where the sup is over all indecomposable = and all ¢, is called the capacity of
the channel. The main result of this paper is

Tueorem 1. Let (A, B, T, p, ¥) be an indecomposable channel of capacity C.
For every ¢ < C there is an input sequence {@.,n = 1,2, -+ -} and there are num-
bers a > 0, 8 < 1 for which, for all N,

(12) P{j[(ah <ee,an), (by - ;bN)] = NC} < ap?.

2. Preliminary reduction of theorem 1

To prove theorem 1, we choose m, ¢ for which J* = J*(r, ¢) > c. Let
2n = (Tu, ts), With n = 0,1,2, --- be a Markov process with the transition
matrix m and some initial distribution for which the initial distribution of ¢ is
uniform. Let a, = ¢(x.), bn = ¢(fs), withn = 1,2, - - - . We shall show that the
input sequence {a.} has the property specified by theorem 1. Let us write uy =
(@, +++, an), ox = (by, ---, bx). Since j(uw, vw) = i(un) + 1(vx) — i(un, vn)
and J* = I*(a) + I*(b) — I*(a, b), theorem 1 would be proved if we could
bound the probability of each of the events

{i(uy) = N(I*(a) — 9)},
(13) {i(ow) = N[I*(b) — 81},
{i(un, vw) Z N[I*(a, b) + 3]}
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above by of" for some a > 0, 8 < 1, where J* — ¢ = 34. That we can do this
is the assertion of

THEOREM 2. There are functions a = a(R, w, ¢), B = B(R, w, €), defined for
R =23, ---,w>0,e> 0, continuous in w, ¢, increasing in R and decreasing
inw, ewitha > 0and 0 < B < 1 such that, for any Markov process

{zﬂ)n = 1,2, }

with R states r = 1,2, --- , R, indecomposable transition matriz = = «(r'|r) =
P{zn = 1’|z, = v} with smallest positive element = w (r may have some ele-
ments 0) and any function ¢ from 1, - -+ | R into a finite set A,
(14) P{li(as, -+, an) — NI*(a)| 2 Ne} < (R, w, €)B8¥(R, w, €)
for all N, where a. = ¢(2,), and I*(a) is as defined in section 1, namely if
{24, —0 < n < »} is a stationary Markov process with transition matriz = and
an = ¢(21), then I*(a) = I(agla*,, a*s, - - ).

Theorem 2 is a form of the equipartition theorem (Shannon [7], McMillan [6])
for “finitary” processes, with an exponential bound on the probability of excep-
tional sequences.

3. Proof of theorem 2 for ¢ the identity

For ¢ the identity function, so that a.(= z.) is itself a Markov process, we
have

N-1
(15) v =12, - ,2v) = —logNMz1) — 21 log m(2n+12x).

We use the following inequality of Katz and Thomasian [4]. _
Katz-Thomasian inequality. For {z.}, w as in theorem 2 and ¢ real-valued,
Pl{l¢(z) + -+ 4+ ¢(zv) — Nu| 2 Ne} < a8y where

w3Re2
Br = Bu(R, w, ¢, M) = exp — (28727‘2>’

®_1
’le—'Bl

M = max ¢(r') — min ¢(r),

(16) a = a(R,w, e, M) =

and p = 3 Nr)¢(r), where \ 1s the stationary distribution for =.

We apply the Katz-Thomasian inequality to 2z, = (2, Z.41), with ¢’ =
—log w(r'|r),sothat p = — 3, » N(r)x(r'|r) log x(r'|r) = I*(z),and M < —logw
[we may exclude from z, the pairs r, r’ with =(+’|r) = 0], obtaining

2 (V- 1}

a(R? w, ¢, —log w)BY ~'(R?, w, ¢, —log w)
= a2(R) w, G)ﬁg’(Rl w, e))

an P{‘NZ: log 7(zanilzn) + (N — 1)I%(z)

A
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say. Thus

(18) P{liv — NI*) + log \(z) + I*(9)| 2 Ne} < asfl.
Since 0 £ I*(z) =< log R and, for every § > 0,

(19) P{llog Mz)| = N&} rj(r)zéz_wx(r) < R2-%

we easily obtain a;(R, w, €), 8:(R, w, €) for which
(20) P{lin — NI*(z)| 2 Ne} < asfy.

4. Proof of theorem 2, general case

We prove the general case by approximating the process {a,}, in blocks, by a
suitable Markov process, and using the fact that we have already proved the
theorem for Markov processes. The idea is this: if, in addition to observing the
a, = ¢(2,) process we observe periodically, say every k trials, the current state
of the underlying z. process, the process now observed, with observations grouped
in blocks of k, is a Markov process, so that all long sequences, except a set of
exponentially small probability, have about the correct probability. We can
choose k so large that (1) this correct probability is nearly the correct probabil-
ity for the corresponding a sequence and (2) except with exponentially small
probability, the probability of the actual a sequence will be near the probability
of the actual observed sequence.

Thus choose a positive integer k, and let z; = (ay, - - , ak_y, 2x), 22 =
(@ryay ** 5 Gor1y 208) * 0 5 Tn = (Gn-pk41y *** 5 Guk—1, 2nt), -+ . The {za} proc-
ess is Markov and, for k relatively prime to the period of {z.}, is indecomposable.
It has at most R* states, and the smallest positive element in its transition
matrix is at least w*.

Thus, from the preceding section,

@1) P{li(zy, - -+ ,an) — NIi| 2 N} < auff
where

as = au(R, w, ¢ k) = as(RF, w*, €),

B = Bu(R, w, ¢, k) = Ba(RF, w*, ¢),

and I, = I*(zx). Now kI*(a) < Ix < kI*(a) + log R and i(xy, -+, 2w) =
t(ay, -+, ane) + 9z, -, 2welay, - -+, awx), which we write in(z) = ini(a) +
in(z|a). Then

(22)

23) Plivs(a) = Nk[I*(a) + ¢} < Pdin(z) = Nk (I"—‘%’ﬂ + e)}

= P{ix(x) = N[ + (ke — log R)]} < aif?,
provided ke — log R = ¢, that is, k = 1 + (1/¢) log R. Similarly,
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(24)  Plivi(a) £ NK[I*(a) — 4€]} < P{in(x) — in(zla) < Nk (% - 4e>}

< P{in(x) £ N(Ix — ke)} + P{in(2la) = 3Nke} = P, + P».
As above, P; £ ay8Y. To bound P,, write ix(2) = ©(2x, 22t, * - - , 2v&). Then
(25) P; £ P{in(2) = Nke} + P{in(z|la) = in(2) + Nke} = P3 + P,

The process {z,,,n = 1,2, --- , k fixed} is a Markov process with R states and
(k is relatively prime to the period of {z,}) indecomposable transition matrix.
For k so large that ke = log R + ¢ that is, £k =2 1 + (1/¢) log R, we have
P; £ o385

For P, we use

LEmMmA 1. For any two random variables a, z each with a finite set of values,
and any 6 = 0,

(26) Pli(zla) = i(2) + 8} < 2.

ProoF. A pair (zg, as) of values of z, a for which 7(z]as) = (20) + & is one
for which

@7 P{zP?zziaz; o} <9

that is, P{z = 20, 0 = ao} < 2P {z = 29} P{a = ao}. Summing over all pairs
(20, G0) for which the inequality is satisfied yields the lemma.

From the lemma, we obtain P, £ 2%, Thus
(28) P{iyr(a) £ NkI*(a) — 4¢} < a5B7,

where a5 = as(R, w, ¢, k) = as + a3 + 1 and 85 = max (Bs, B3, 27%¢).
Combining (23) and (28) we obtain ag(R, w, €, k), Bs(R, w, ¢, k) for which

(29) P{lin — NkI*(a)| = Nke} < afs.

The block size k is still at our disposal, subject to k = 1 + (1/e) log R and rela-
tively prime to the period of {z.}. We can find such a

E=2k*=[R4+1+4+ (1/¢) log R]
and obtain, for this %,
(30) P{line — NkI*(a)| Z Nke} < as7,
where
ar = ar(R, w, €) = ag(R, w, ¢, £¥),
Br = Bi(R, w, €) = Bs(R, w, ¢ k*).
Finally, for any n, say, n = Nk + d, with0 = d £ k — 1, we have

@31)

(32) in — n{I*(@) + €] < iy — (N + Dk I*(a) + € — I’;\(fazi-_i-l. e}

< davior = (V + Dk I%0) + 5}
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for

*
(33) I*a) + e <$,

N+1 2
which, since I*(a) =< log R, will certainly hold for
(34) N22<@+1>=N‘,,
say, and similarly 7, — n{I*(a) — ¢ = inv — Nk{I[*(a) — ¢/2} for
(35) N2 2(1%6—1—3— 1).
Thus
(36) P{lin, — nI*(a)| = ne} S a7,
where

as = as(R, w, €) = 209 (R, w, %)

(37)

B = Bu(B, w, 9 = 6 (B, 5)
Finally, with

(38) oy = agfis ™, By = BV,
we obtain
P{li, — nI*(a)| = ne} £ afs

for all n, completing the proof.
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