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1. Introduction and summary

A finite state channel is defined by (1) a finite nonempty set A, the set of in-
puts, (2) a finite nonempty set B, the set of outputs, (3) a finite nonempty set T,
the set of (channel) states, (4) a transition law p = p(t'lt, a), specifying the
probability that, if the channel is in state t and is given input a, the resulting
state is t', and (5) a function ,6 from T to B, specifying the output b = A(t) of
the channel when it is in state t.
For any sequence {a., n = 1, 2,* } of random variables with values in A,

we may consider the process {an} as supplying the inputs for the channel, as
follows: an initial channel state to is selected with a uniform distribution over T.
The input a, is then given the channel. The channel then selects a state ti, with
(1) P{t, = tIto, al} = p(tIto, a,)
and produces output bi = 4t(t1). The channel is then given input a2 and selects
state t2, with

(2) P{t2 = tlto, t1, a,, a2, bi} = p(tltl, a2),
and so on. In general, for n > 0,
(3) Pja.+, = a, t.+, t, b.+, = blai, 1 _ i _ n, ti,O _ i _ n, bi, 1 _ i _ n}

= P{a.+i = alai, i < n}p(tjt., a)x(t, b),
where x(t, b) = 1 if A,(t) = b and 0 otherwise.
For any random variable x with a finite set of values and any random vari-

able y, the (nonnegative) random variable whose value when x = xo and y = yo is
(4) -log P{x = xoly = yo}
(all logs are base 2) is called the (conditional) entropy of x given y and will be
denoted by i(xly). Its expected value, which cannot exceed the log of the num-
ber of values of x, will be denoted by I(xly). For y a constant, i(xly) and I(xly)
will be denoted by i(x), I(x) respectively. If each of x, y has only finitely many
values, the random variable

(5) j(x, y) = i(x) + i(y) - i(x, y) = i(x) - i(xly) = i(y) - i(ylx)
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is called the mutual information between x and y. Its expected value will be
denoted by J(x, y). For any stationary process {x,, - o < n < x} whose vari-
ables have only finitely many values, we write I*(x) for I(xolxi,, x-2, * * ).
An inequality of Shannon [8] and Feinstein [3] relates the existence of codes

to the distribution of j{(ai, * , aN), (bi, * , bN)} = jN, as follows.
Shannon-Feinstein inequality. For any integer D, and any number y there

are two functions f, g, where f maps (1, * * *, D) into the set U of sequences of
length N of elements of A, g maps the set V of sequences of length N of elements
of B into (1, * * *, D), for which

(6) P{g(bk, * , bN) $ dI(ai, * , aN) = f(d)} _ P{jN < } + 2D
ford= 1,*-,D.
Note that the left side of (6) is independent of the distribution of {an}; it is

simply the probability that, when an initial state for the channel is selected with
a uniform distribution and the channel is then given the input sequence f(d), the
resulting output sequence bi, * * *, bv will be one for which g(bi, . .. , bv) $ d.
The pair (f, g) can be considered as a code, with which we can transmit any of D
messages over our channel in N transmission periods; when message d is pre-
sented to the sender, he gives the channel input sequence f(d); the recei'ver then
observes some output sequence v and decides that message g(v) is intended.

For a given number c >_ 0, let D = [2NC] and write
(7) ON(c) = min max P{g(bi, * , bN) $ dl(a1, * *, aN) = f(d)}.

f,g 1rd.5D

Thus ON(C) is small if and only if we can transmit any binary sequence of length
Nc, by using the channel for N periods, with small error probability.
Shannon [7] associated with each channel a number C, called the capacity of

the channel, and proved that, for certain channels, ON(c) -O0 as N X-+ o for
every c < C but not for any c > C. His original work has been considerably
simplified and extended by several writers, including Shannon himself [8],
McMillan [6], Feinstein [2], [3], Khinchin [5], and Wolfowitz [9], [10]. In
particular, for certain channels, Wolfowitz has shown that ON(c) -+ 1 as N -o
for every c > C.
For a certain class of finite state channels, the indecomposable channels defined

below, the fact that ON(C) -O 0 as N -X oo for c <C was first proved by Breiman,
Thomasian, and the writer [1]. We present in this paper a simpler proof of the
slightly stronger fact that for these channels ON(c) -+0 exponentially: for any
c < C there are constants a > 0, ,B < 1 for which, for all N,

(8) ON(C) < aiN.

The Shannon-Feinstein inequality reduces (8) at once to the study of the
distribution of jN for large N, as follows: if for a given c we can find an input
sequence {an} for which, for some ai > 0, i1 < 1,

(9) P{jN _ Nc} < a13N
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for all N, the Shannon-Feinstein inequality yields, for every e > 0 and all N,

(10) ON(C - e) . al13f + 2-Ne . a2122,
where a2 = a, + 1, 12 = max (13, 2-e). Thus our result (8) is implied by: for
every c < C, there is an input sequence {aN} for which, for some a, > 0, 1, < 1,
(9) holds.
We now define indecomposable channels and the number C. Let

{Xn, n = 1,2, ...}
be any Markov process with a finite number R of states r = 1, 2, * , R and in-
decomposable transition matrix r = ir(r'lr) = P{xn+l = r'lx. = r}. Leto4be any
function from (1, *.. , R) to A, and let an = 4)(xn). We consider the source proc-
ess {an} as driving the channel, as described above. The process {Zn = (Xn, tn)}
is then a Markov process, with transition matrix

m = m(r', t'Ir, t) = 7r(r'jr)p[t'Lt, 4)(r')].
If for every indecomposable ir and every 4, the matrix mis also indecomposable,
the finite state channel (A, B, T, p, 4') is called indecomposable. There is then,
for each m, a unique stationary Markov process {z* = (x*, t*), -xo < n < }
with transition matrix m. Define an = +(x*), b* = 4'(t*), -oo < n < , and let
J*(r, 4) = I*(a) + I*(b) - I*(a, b). The nuimber
(11) C = sup J*(7r, 4)),

where the sup is over all indecomposable 7r and all 4, is called the capacity of
the channel. The main result of this paper is
THEOREM 1. Let (A, B, T, p, 4A) be an indecomposable channel of capacity C.

For every c < C there is an input sequence {an, n = 1, 2, * } and there are num-
bers a > 0, 13 < 1 for which, for all N,

(12) P{j[(al, * * *, aN), (b,, bN)], _ Nc} _ a(3N.

2. Preliminary reduction of theorem 1

To prove theorem 1, we choose 7r, 4) for which J* = J*(7r, 4) > c. Let
Zn = (x., tn), with n = 0,1, 2, * * * be a Markov process with the transition
matrix m and some initial distribution for which the initial distribution of to is
uniform. Let an = 0 (x.), bn = 4'(tn), with n = 1, 2, * - - . We shall show that the
input sequence {an} has the property specified by theorem 1. Let us write uN =
(a,, * - * , aN), VN = (b,, * * *, bN). Since j(UN, VN) = i(UN) + i(VN) - i(UN, VN)
and J* = I*(a) + I*(b) - I*(a, b), theorem 1 would be proved if we could
bound the probability of each of the events

{i(uN) _ N(I*(a) -B%
(13) {i(vN) _ N[I*(b) -]}

{i(uN, VN) _ N[I*(a, b) + 5]}
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above by aI3N for some a > 0, 0 < 1, where J* - c = 3&. That we can do this
is the assertion of
THEOREM 2. There are functions a = a(R, w, e), f3 = j3(R, w, e), defined for

R = 2, 3, * * *, w > 0, E > 0, continuous in w, e, increasing in R and decreasing
in w, e with a > 0 and 0 < , < 1 such that, for any Markov process

{zn,n = 1,2, *--}
with R states r = 1, 2, ... , R, indecomposable transition matrix 7r = 7r(r'lr) =
P {Zn+l = r' Zn = r} with smallest positive element 2 w (r may have some ele-
ments 0) and any function q from 1, * * *, R into a finite set A,
(14) P{Ii(aj, * * *, aN) - NI*(a)l _ Ne} < a(R, w, e)#,N(R, w, E)
for all N, where an = 4(Zn), and I*(a) is as defined in section 1, namely if
{z*, -co < n < oo} is a stationary Markov process with transition matrix 7r and
an = o(z*), then I*(a) = I(aO*a¶i, a*¶2, - * )-
Theorem 2 is a form of the equipartition theorem (Shannon [7], McMillan [6])

for "finitary" processes, with an exponential bound on the probability of excep-
tional sequences.

3. Proof of theorem 2 for 0 the identity

For 0 the identity function, so that an(= zn) is itself a Markov process, we
have

N-1
(15) iN = i(Zl, * * ZN) = -log X(Z1) - E log 7r(zn+11z.)-

n=1

We use the following inequality of Katz and Thomasian [4].
Katz-Thomasian inequality. For {Zn}, w as in theorem 2 and 4 real-valued,

Pl {l4(zi) + * + 4(ZN) - Nuj _ Ne} < a1j3N where

o,=1(R,w, E, M) = exp -(2W R2)C

(16) a, = al(R, w, e, M) = 8R 1

M = max 0(r') - min +(r),
"I r

and ,u = XX(r)ck(r), where X is the stationary distribution for 7r.
We apply the Katz-Thomasian inequality to zn' = (zn, Zn+1), with q' =

-log 7r(r'lr), so that ,u = - r X(r)7r(r'lr) log 7r(r'lr) = I*(z), andM < -log w
[we may exclude from zn' the pairs r, r' with 7r(r'lr) = 0], obtaining

(17) P{ E10log 7(Zn+lZn) + (N - 1)I*(z) 2 (N - 1)e}

< al(R2, W, e, -log w)ON -'(R2, w, E, -log w)
= a2(R, w, E)#2N(R, w, e),
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say. Thus

(18) P {iN - NI*(z) + log X(zi) + I*(z) _ Ne} < a232.-

Since 0 _ I*(z) < log R and, for every a > 0,

(19) P{jlog X(zi)I 2 N5} = E, X(r) < R2-N8
r:X(r) 52-N8

we easily obtain a3(R, w, e), ,33(R, w, e) for which

(20) P{liN - NI*(z)l > Ne} _ a3133.

4. Proof of theorem 2, general case

We prove the general case by approximating the process {an}, in blocks, by a
suitable Markov process, and using the fact that we have already proved the
theorem for Markov processes. The idea is this: if, in addition to observing the
an = O(z.) process we observe periodically, say every k trials, the current state
of the underlying zn process, the process now observed, with observations grouped
in blocks of k, is a Markov process, so that all long sequences, except a set of
exponentially small probability, have about the correct probability. We can
choose k so large that (1) this correct probability is nearly the correct probabil-
ity for the corresponding a sequence and (2) except with exponentially small
probability, the probability of the actual a sequence will be near the probability
of the actual observed sequence.
Thus choose a positive integer k, and let xi = (al, * , ak-i, Zk), x2 =

(ak+l, * ,- X a2k-1, Z2k), - - , X. = (a(.-l)k+l, * - - X ank-1, Znk), ... . The {x,} proc-
ess is Markov and, for k relatively prime to the period of {z}, is indecomposable.
It has at most Rk states, and the smallest positive element in its transition
matrix is at least Wk.
Thus, from the preceding section,

(21) P{li(xi, * , XN) - NIhJ _ eN} .< 004,
where

(22) aa4 = a4(R, w, e, k) = a3(Rk, wk, e),
()4 = j34(R, w, e, k) = 133(Rk, wk, e),

and Ik = I*(x). Now kI*(a) _ Ik < kI*(a) + log R and i(xi, x, XN) =
i(al, * * , aNk) + i(Zk, * * ZNkIal,*, * aNk), which we write iN(X) = iNk(a) +
iN(zla). Then

(23) P{iNk(a) 2 Nk[I*(a) + e]} < P{iN(x) _ Nk (Ik -log R + e)}

= P{iN(x) _ N[Ik + (ke- log R)]} _ a£4134,
provided ke- log R > e, that is, k _ 1 + (1/e) log R. Similarly,
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(24) P{iNk(a) < Nk[I*(a) - 4e]} _ P{iN(x) - iN(zIa) < Nk k- 4e)}

< P{iN(x) _ N(Ik - ke)} + P{iN(zIa) > 3Mke = PI + P2-
As above, P1 < a4341. To bound P2, write iN(Z) = i(Zk, Z2k, * * , ZNk). Then
(25) P2 _ P{iN(Z) > NkE} + P{iN(zIa) > iN(z) + Nke} = P3 + P4-
The process {Znk, n = 1, 2, * * *, k fixed} is a Markov process with R states and
(k is relatively prime to the period of {z,J) indecomposable transition matrix.
For k so large that ke _ log R + E, that is, k _ 1 + (l/E) log R, we have
P3 <_ a3133-

For P4 we use
LEMMA 1. For any two random variables a, z each with a finite set of values,

and any >. 0,
(26) P{i(zja) _ i(z) + 6} _ 2-1.

PROOF. A pair (zo, ao) of values of z, a for which i(zojao) _ (zo) + 6 is one
for which
(27) P{z = zola = ao} < 2-

P{z = zo}
that is, P {z = zo, a = aO} _ 2-5P{z = zo}P{a = ao}. Summing over all pairs
(zo, ao) for which the inequality is satisfied yields the lemma.
From the lemma, we obtain P4 _ 2-NkE. Thus

(28) P{iNk(a) _ NkI*(a) - 4E} < a05/35,
where a6 = ar,(R, w, e, k) = a4 + a3 + 1 and (6 = max (034, 133, 2-ke).
Combining (23) and (28) we obtain a6(R, w, e, k), (36(R, w, e, k) for which

(29) P{IiNk - NkI*(a)lI_ Nke} < a°6#N
The block size k is still at our disposal, subject to k > 1 + (1/e) log R and rela-
tively prime to the period of {zn}. We can find such a

k < k* = [R + 1 + (1/e) log R]
and obtain, for this k,
(30) P{IiNk - NkI*(a)l _ Nke} < a7O37,
where

(31) oa7 = a7(R, w, e) = a6(R, w, e, k*),
3)7 = ,37(R, w, E) = 136(R, w, e, k*).

Finally, for any n, say, n = Nk + d, with 0 < d < k - 1, we have

(32) in-n[I*(a) + e] < i(N+l)k - (N + 1)k {I*(a) + E - I*(a)+ e}

< itN+l)k- (N + 1)k {I*(a) + e2
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for

(33) I*(a) + <

which, since I*(a) < log R, will certainly hold for

(34) N > 2 (logR + 1) = N.,

say, and similarly in n{I*(a) - _ iNk- Nk {I*(a) -e/2} for

(35) N _ 2 (loR-1).
Thus

(36) P{Iin - nI*(a)l > ne} < a8ON-A°,
where

as = a8(R, w, e) = 24,7 (R, w,E
(37)

(8 = 38(R, w, e) = 17 (R, w, 2
Finally, with

(38) a9 = a8O -No, 0
= 0I/kF

we obtain
Plin- nl*(a)l _ ne} < a9039

for all n, completing the proof.
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