EXPONENTIAL ERROR BOUNDS FOR FINITE STATE CHANNELS

DAVID BLACKWELL

UNIVERSITY OF CALIFORNIA, BERKELEY

1. Introduction and summary

A finite state channel is defined by (1) a finite nonempty set A, the set of inputs, (2) a finite nonempty set B, the set of outputs, (3) a finite nonempty set T, the set of (channel) states, (4) a transition law p = p(t'|t, a), specifying the probability that, if the channel is in state t and is given input a, the resulting state is t', and (5) a function ψ from T to B, specifying the output $b = \psi(t)$ of the channel when it is in state t.

For any sequence $\{a_n, n = 1, 2, \dots\}$ of random variables with values in A, we may consider the process $\{a_n\}$ as supplying the inputs for the channel, as follows: an initial channel state t_0 is selected with a uniform distribution over T. The input a_1 is then given the channel. The channel then selects a state t_1 , with

(1)
$$P\{t_1 = t | t_0, a_1\} = p(t | t_0, a_1)$$

and produces output $b_1 = \psi(t_1)$. The channel is then given input a_2 and selects state t_2 , with

$$(2) P\{t_2 = t | t_0, t_1, a_1, a_2, b_1\} = p(t | t_1, a_2),$$

and so on. In general, for $n \geq 0$,

(3)
$$P\{a_{n+1} = a, t_{n+1} = t, b_{n+1} = b | a_i, 1 \le i \le n, t_i, 0 \le i \le n, b_i, 1 \le i \le n\}$$

= $P\{a_{n+1} = a | a_i, i \le n\} p(t | t_n, a) \chi(t, b),$

where $\chi(t, b) = 1$ if $\psi(t) = b$ and 0 otherwise.

For any random variable x with a finite set of values and any random variable y, the (nonnegative) random variable whose value when $x = x_0$ and $y = y_0$ is

$$-\log P\{x = x_0 | y = y_0\}$$

(all logs are base 2) is called the (conditional) entropy of x given y and will be denoted by i(x|y). Its expected value, which cannot exceed the log of the number of values of x, will be denoted by I(x|y). For y a constant, i(x|y) and I(x|y) will be denoted by i(x), I(x) respectively. If each of x, y has only finitely many values, the random variable

(5)
$$j(x, y) = i(x) + i(y) - i(x, y) = i(x) - i(x|y) = i(y) - i(y|x)$$

This paper was prepared with the partial support of the Office of Naval Research (Nonr-222-53).

is called the mutual information between x and y. Its expected value will be denoted by J(x, y). For any stationary process $\{x_n, -\infty < n < \infty\}$ whose variables have only finitely many values, we write $I^*(x)$ for $I(x_0|x_{-1}, x_{-2}, \cdots)$.

An inequality of Shannon [8] and Feinstein [3] relates the existence of codes to the distribution of $j\{(a_1, \dots, a_N), (b_1, \dots, b_N)\} = j_N$, as follows.

Shannon-Feinstein inequality. For any integer D, and any number γ there are two functions f, g, where f maps $(1, \dots, D)$ into the set U of sequences of length N of elements of A, g maps the set V of sequences of length N of elements of B into $(1, \dots, D)$, for which

(6)
$$P\{g(b_1, \dots, b_N) \neq d | (a_1, \dots, a_N) = f(d)\} \leq P\{j_N < \gamma\} + \frac{D}{2\gamma}$$
 for $d = 1, \dots, D$.

Note that the left side of (6) is independent of the distribution of $\{a_n\}$; it is simply the probability that, when an initial state for the channel is selected with a uniform distribution and the channel is then given the input sequence f(d), the resulting output sequence b_1, \dots, b_N will be one for which $g(b_1, \dots, b_N) \neq d$. The pair (f, g) can be considered as a code, with which we can transmit any of D messages over our channel in N transmission periods; when message d is presented to the sender, he gives the channel input sequence f(d); the receiver then observes some output sequence v and decides that message g(v) is intended.

For a given number $c \ge 0$, let $D = [2^{Nc}]$ and write

(7)
$$\theta_N(c) = \min_{f,g} \max_{1 \le d \le D} P\{g(b_1, \dots, b_N) \ne d | (a_1, \dots, a_N) = f(d)\}.$$

Thus $\theta_N(c)$ is small if and only if we can transmit any binary sequence of length Nc, by using the channel for N periods, with small error probability.

Shannon [7] associated with each channel a number C, called the capacity of the channel, and proved that, for certain channels, $\theta_N(c) \to 0$ as $N \to \infty$ for every c < C but not for any c > C. His original work has been considerably simplified and extended by several writers, including Shannon himself [8], McMillan [6], Feinstein [2], [3], Khinchin [5], and Wolfowitz [9], [10]. In particular, for certain channels, Wolfowitz has shown that $\theta_N(c) \to 1$ as $N \to \infty$ for every c > C.

For a certain class of finite state channels, the indecomposable channels defined below, the fact that $\theta_N(c) \to 0$ as $N \to \infty$ for c < C was first proved by Breiman, Thomasian, and the writer [1]. We present in this paper a simpler proof of the slightly stronger fact that for these channels $\theta_N(c) \to 0$ exponentially: for any c < C there are constants $\alpha > 0$, $\beta < 1$ for which, for all N,

(8)
$$\theta_N(c) < \alpha \beta^N.$$

The Shannon-Feinstein inequality reduces (8) at once to the study of the distribution of j_N for large N, as follows: if for a given c we can find an input sequence $\{a_n\}$ for which, for some $\alpha_1 > 0$, $\beta_1 < 1$,

$$(9) P\{j_N \leq Nc\} \leq \alpha_1 \beta_1^N$$

for all N, the Shannon-Feinstein inequality yields, for every $\epsilon > 0$ and all N,

(10)
$$\theta_N(c-\epsilon) \leq \alpha_1 \beta_1^N + 2^{-N\epsilon} \leq \alpha_2 \beta_2^N,$$

where $\alpha_2 = \alpha_1 + 1$, $\beta_2 = \max(\beta_1, 2^{-\epsilon})$. Thus our result (8) is implied by: for every c < C, there is an input sequence $\{a_N\}$ for which, for some $\alpha_1 > 0$, $\beta_1 < 1$, (9) holds.

We now define indecomposable channels and the number C. Let

$$\{x_n, n=1, 2, \cdots\}$$

be any Markov process with a finite number R of states $r = 1, 2, \dots, R$ and indecomposable transition matrix $\pi = \pi(r'|r) = P\{x_{n+1} = r'|x_n = r\}$. Let ϕ be any function from $(1, \dots, R)$ to A, and let $a_n = \phi(x_n)$. We consider the source process $\{a_n\}$ as driving the channel, as described above. The process $\{z_n = (x_n, t_n)\}$ is then a Markov process, with transition matrix

$$m = m(r', t'|r, t) = \pi(r'|r)p[t'|t, \phi(r')].$$

If for every indecomposable π and every ϕ , the matrix m is also indecomposable, the finite state channel (A, B, T, p, ψ) is called *indecomposable*. There is then, for each m, a unique stationary Markov process $\{z_n^* = (x_n^*, t_n^*), -\infty < n < \infty\}$ with transition matrix m. Define $a_n^* = \phi(x_n^*), b_n^* = \psi(t_n^*), -\infty < n < \infty$, and let $J^*(\pi, \phi) = I^*(a) + I^*(b) - I^*(a, b)$. The number

(11)
$$C = \sup_{\pi,\phi} J^*(\pi,\phi),$$

where the sup is over all indecomposable π and all ϕ , is called the capacity of the channel. The main result of this paper is

THEOREM 1. Let (A, B, T, p, ψ) be an indecomposable channel of capacity C. For every c < C there is an input sequence $\{a_n, n = 1, 2, \dots\}$ and there are numbers $\alpha > 0$, $\beta < 1$ for which, for all N,

(12)
$$P\{j[(a_1, \cdots, a_N), (b_1, \cdots, b_N)] \leq Nc\} \leq \alpha \beta^N.$$

2. Preliminary reduction of theorem 1

To prove theorem 1, we choose π , ϕ for which $J^* = J^*(\pi, \phi) > c$. Let $z_n = (x_n, t_n)$, with $n = 0, 1, 2, \cdots$ be a Markov process with the transition matrix m and some initial distribution for which the initial distribution of t_0 is uniform. Let $a_n = \phi(x_n)$, $b_n = \psi(t_n)$, with $n = 1, 2, \cdots$. We shall show that the input sequence $\{a_n\}$ has the property specified by theorem 1. Let us write $u_N = (a_1, \dots, a_N)$, $v_N = (b_1, \dots, b_N)$. Since $j(u_N, v_N) = i(u_N) + i(v_N) - i(u_N, v_N)$ and $J^* = I^*(a) + I^*(b) - I^*(a, b)$, theorem 1 would be proved if we could bound the probability of each of the events

(13)
$$\{i(u_N) \leq N(I^*(a) - \delta)\},$$

$$\{i(v_N) \leq N[I^*(b) - \delta]\},$$

$$\{i(u_N, v_N) \geq N[I^*(a, b) + \delta]\}$$

above by $\alpha\beta^N$ for some $\alpha > 0$, $\beta < 1$, where $J^* - c = 3\delta$. That we can do this is the assertion of

Theorem 2. There are functions $\alpha = \alpha(R, w, \epsilon)$, $\beta = \beta(R, w, \epsilon)$, defined for $R = 2, 3, \dots, w > 0$, $\epsilon > 0$, continuous in w, ϵ , increasing in R and decreasing in w, ϵ with a > 0 and $0 < \beta < 1$ such that, for any Markov process

$$\{z_n, n = 1, 2, \cdots\}$$

with R states $r = 1, 2, \dots, R$, indecomposable transition matrix $\pi = \pi(r'|r) = P\{z_{n+1} = r'|z_n = r\}$ with smallest positive element $\geq w$ (π may have some elements 0) and any function ϕ from $1, \dots, R$ into a finite set A,

(14)
$$P\{|i(a_1, \dots, a_N) - NI^*(a)| \ge N\epsilon\} \le \alpha(R, w, \epsilon)\beta^N(R, w, \epsilon)$$

for all N, where $a_n = \phi(z_n)$, and $I^*(a)$ is as defined in section 1, namely if $\{z_n^*, -\infty < n < \infty\}$ is a stationary Markov process with transition matrix π and $a_n^* = \phi(z_n^*)$, then $I^*(a) = I(a_0^*|a_{-1}^*, a_{-2}^*, \cdots)$.

Theorem 2 is a form of the equipartition theorem (Shannon [7], McMillan [6]) for "finitary" processes, with an exponential bound on the probability of exceptional sequences.

3. Proof of theorem 2 for ϕ the identity

For ϕ the identity function, so that $a_n (=z_n)$ is itself a Markov process, we have

(15)
$$i_N = i(z_1, \dots, z_N) = -\log \lambda(z_1) - \sum_{n=1}^{N-1} \log \pi(z_{n+1}|z_n).$$

We use the following inequality of Katz and Thomasian [4].

Katz-Thomasian inequality. For $\{z_n\}$, w as in theorem 2 and ϕ real-valued, $P|\{|\phi(z_1) + \cdots + \phi(z_N) - N\mu| \ge N\epsilon\} \le \alpha_1\beta_1^N$ where

(16)
$$\beta_1 = \beta_1(R, w, \epsilon, M) = \exp \left(\frac{w^{3R}\epsilon^2}{2^8M^2r^2}\right),$$

$$\alpha_1 = \alpha_1(R, w, \epsilon, M) = \frac{8R}{w^R} \frac{1}{1 - \beta_1},$$

$$M = \max_{r'} \phi(r') - \min_{r} \phi(r),$$

and $\mu = \sum \lambda(r)\phi(r)$, where λ is the stationary distribution for π .

We apply the Katz-Thomasian inequality to $z'_n = (z_n, z_{n+1})$, with $\phi' = -\log \pi(r'|r)$, so that $\mu = -\sum_{r,r'} \lambda(r) \pi(r'|r) \log \pi(r'|r) = I^*(z)$, and $M \leq -\log w$ [we may exclude from z'_n the pairs r, r' with $\pi(r'|r) = 0$], obtaining

(17)
$$P\left\{\left|\sum_{n=1}^{N-1} \log \pi(z_{n+1}|z_n) + (N-1)I^*(z)\right| \ge (N-1)\epsilon\right\}$$

$$\le \alpha_1(R^2, w, \epsilon, -\log w)\beta_1^{N-1}(R^2, w, \epsilon, -\log w)$$

$$= \alpha_2(R, w, \epsilon)\beta_2^N(R, w, \epsilon),$$

sav. Thus

(18)
$$P\{|i_N - NI^*(z) + \log \lambda(z_1) + I^*(z)| \ge N\epsilon\} \le \alpha_2 \beta_2^N.$$

Since $0 \le I^*(z) \le \log R$ and, for every $\delta > 0$,

(19)
$$P\{|\log \lambda(z_1)| \ge N\delta\} = \sum_{r: \lambda(r) \le 2^{-N\delta}} \lambda(r) \le R2^{-N\delta}$$

we easily obtain $\alpha_3(R, w, \epsilon)$, $\beta_3(R, w, \epsilon)$ for which

$$(20) P\{|i_N - NI^*(z)| \ge N\epsilon\} \le \alpha_3 \beta_3^N.$$

4. Proof of theorem 2, general case

We prove the general case by approximating the process $\{a_n\}$, in blocks, by a suitable Markov process, and using the fact that we have already proved the theorem for Markov processes. The idea is this: if, in addition to observing the $a_n = \phi(z_n)$ process we observe periodically, say every k trials, the current state of the underlying z_n process, the process now observed, with observations grouped in blocks of k, is a Markov process, so that all long sequences, except a set of exponentially small probability, have about the correct probability. We can choose k so large that (1) this correct probability is nearly the correct probability for the corresponding a sequence and (2) except with exponentially small probability, the probability of the actual a sequence will be near the probability of the actual observed sequence.

Thus choose a positive integer k, and let $x_1 = (a_1, \dots, a_{k-1}, z_k)$, $x_2 = (a_{k+1}, \dots, a_{2k-1}, z_{2k})$, \dots , $x_n = (a_{(n-1)k+1}, \dots, a_{nk-1}, z_{nk})$, \dots . The $\{x_n\}$ process is Markov and, for k relatively prime to the period of $\{z_n\}$, is indecomposable. It has at most R^k states, and the smallest positive element in its transition matrix is at least w^k .

Thus, from the preceding section,

$$(21) P\{|i(x_1, \dots, x_N) - NI_k| \ge \epsilon N\} \le \alpha_4 \beta_4^N,$$

where

(22)
$$\alpha_4 = \alpha_4(R, w, \epsilon, k) = \alpha_3(R^k, w^k, \epsilon),$$
$$\beta_4 = \beta_4(R, w, \epsilon, k) = \beta_3(R^k, w^k, \epsilon),$$

and $I_k = I^*(x)$. Now $kI^*(a) \le I_k \le kI^*(a) + \log R$ and $i(x_1, \dots, x_N) = i(a_1, \dots, a_{Nk}) + i(z_k, \dots, z_{Nk}|a_1, \dots, a_{Nk})$, which we write $i_N(x) = i_{Nk}(a) + i_N(z|a)$. Then

(23)
$$P\{i_{Nk}(a) \ge Nk[I^*(a) + \epsilon]\} \le P\left\{i_N(x) \ge Nk\left(\frac{I_k - \log R}{k} + \epsilon\right)\right\}$$
$$= P\{i_N(x) \ge N[I_k + (k\epsilon - \log R)]\} \le \alpha_4 \beta_4^N,$$

provided $k\epsilon - \log R \ge \epsilon$, that is, $k \ge 1 + (1/\epsilon) \log R$. Similarly,

$$(24) P\{i_{Nk}(a) \leq Nk[I^*(a) - 4\epsilon]\} \leq P\{i_N(x) - i_N(z|a) \leq Nk\left(\frac{I_k}{k} - 4\epsilon\right)\}$$

$$\leq P\{i_N(x) \leq N(I_k - k\epsilon)\} + P\{i_N(z|a) \geq 3Nk\epsilon\} = P_1 + P_2.$$

As above, $P_1 \leq \alpha_4 \beta_4^N$. To bound P_2 , write $i_N(z) = i(z_k, z_{2k}, \dots, z_{Nk})$. Then

(25)
$$P_2 \le P\{i_N(z) \ge Nk\epsilon\} + P\{i_N(z|a) \ge i_N(z) + Nk\epsilon\} = P_3 + P_4.$$

The process $\{z_{nk}, n = 1, 2, \dots, k \text{ fixed}\}$ is a Markov process with R states and $(k \text{ is relatively prime to the period of } \{z_n\})$ indecomposable transition matrix. For k so large that $k\epsilon \ge \log R + \epsilon$, that is, $k \ge 1 + (1/\epsilon) \log R$, we have $P_3 \le \alpha_3 \beta_3^N$.

For P_4 we use

Lemma 1. For any two random variables a, z each with a finite set of values, and any $\delta \ge 0$,

$$(26) P\{i(z|a) \ge i(z) + \delta\} \le 2^{-\delta}.$$

PROOF. A pair (z_0, a_0) of values of z, a for which $i(z_0|a_0) \ge (z_0) + \delta$ is one for which

(27)
$$\frac{P\{z=z_0|a=a_0\}}{P\{z=z_0\}} \le 2^{-\delta},$$

that is, $P\{z=z_0, a=a_0\} \le 2^{-\delta}P\{z=z_0\}P\{a=a_0\}$. Summing over all pairs (z_0, a_0) for which the inequality is satisfied yields the lemma.

From the lemma, we obtain $P_4 \leq 2^{-Nk\epsilon}$. Thus

(28)
$$P\{i_{Nk}(a) \leq NkI^*(a) - 4\epsilon\} \leq \alpha_5 \beta_5^N,$$

where $\alpha_5 = \alpha_5(R, w, \epsilon, k) = \alpha_4 + \alpha_3 + 1$ and $\beta_5 = \max(\beta_4, \beta_3, 2^{-k\epsilon})$.

Combining (23) and (28) we obtain $\alpha_6(R, w, \epsilon, k)$, $\beta_6(R, w, \epsilon, k)$ for which

(29)
$$P\{|i_{Nk} - NkI^*(a)| \ge Nk\epsilon\} \le \alpha_6 \beta_6^N.$$

The block size k is still at our disposal, subject to $k \ge 1 + (1/\epsilon) \log R$ and relatively prime to the period of $\{z_n\}$. We can find such a

$$k \le k^* = \lceil R + 1 + (1/\epsilon) \log R \rceil$$

and obtain, for this k,

(30)
$$P\{|i_{Nk} - NkI^*(a)| \ge Nk\epsilon\} \le \alpha_7 \beta_7^N,$$

where

(31)
$$\alpha_7 = \alpha_7(R, w, \epsilon) = \alpha_6(R, w, \epsilon, k^*),$$
$$\beta_7 = \beta_7(R, w, \epsilon) = \beta_6(R, w, \epsilon, k^*).$$

Finally, for any n, say, n = Nk + d, with $0 \le d \le k - 1$, we have

(32)
$$i_{n} - n[I^{*}(a) + \epsilon] \leq i_{(N+1)k} - (N+1)k \left\{ I^{*}(a) + \epsilon - \frac{I^{*}(a) + \epsilon}{N+1} \right\}$$
$$\leq i_{(N+1)k} - (N+1)k \left\{ I^{*}(a) + \frac{\epsilon}{2} \right\}$$

for

$$\frac{I^*(a) + \epsilon}{N+1} \le \frac{\epsilon}{2},$$

which, since $I^*(a) \leq \log R$, will certainly hold for

$$(34) N \ge 2\left(\frac{\log R}{\epsilon} + 1\right) = N_0,$$

say, and similarly $i_n - n\{I^*(a) - \epsilon\} \ge i_{Nk} - Nk\{I^*(a) - \epsilon/2\}$ for

$$(35) N \ge 2 \left(\frac{\log R}{\epsilon} - 1 \right).$$

Thus

$$(36) P\{|i_n - nI^*(a)| \ge n\epsilon\} \le \alpha_8 \beta_8^{N-N_0},$$

where

(37)
$$\alpha_8 = \alpha_8(R, w, \epsilon) = 2\alpha_7 \left(R, w, \frac{\epsilon}{2}\right)$$
$$\beta_8 = \beta_8(R, w, \epsilon) = \beta_7 \left(R, w, \frac{\epsilon}{2}\right)$$

Finally, with

(38)
$$\alpha_9 = \alpha_8 \beta_8^{-N_0}, \qquad \beta_9 = \beta_8^{1/k^*},$$

we obtain

$$P\{|i_n - nI^*(a)| \ge n\epsilon\} \le \alpha_9 \beta_9^n$$

for all n, completing the proof.

REFERENCES

- D. BLACKWELL, L. BREIMAN, and A. J. THOMASIAN, "Proof of Shannon's transmission theorem for finite state indecomposable channels," Ann. Math. Statist., Vol. 29 (1958), pp. 1209–1220.
- [2] A. Feinstein, "A new basic theorem of information theory," IRE Transactions P.G.I.T., 1954, pp. 2-22.
- [3] ----, Foundations of Information Theory, New York, McGraw-Hill, 1958.
- [4] M. Katz, Jr., and A. J. Thomasian, "An exponential bound for functions of a Markov chain," Ann. Math. Statist., Vol. 31 (1960), pp. 470-474.
- [5] A. I. KHINCHIN, Mathematical Foundations of Information Theory, New York, Dover, 1957.
- [6] B. McMillan, "The basic theorems of information theory," Ann. Math. Statist., Vol. 24 (1953), pp. 196-219.
- [7] C. E. SHANNON, "Mathematical theory of communication," Bell System Tech. J., Vol. 27 (1948), pp. 379-423.
- [8] ———, "Certain results in coding theory for noisy channels," *Information and Control*, Vol. 1 (1957), pp. 6-25.
- [9] J. Wolfowitz, "The coding of messages subject to chance errors," Illinois J. Math., Vol. 1 (1957), pp. 591-606.
- [10] ——, "Strong converse of the coding theorem for semicontinuous channels," *Illinois J. Math.*, Vol. 3 (1959), pp. 477–489.