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1. Introduction

The advent of exceedingly complex electrical and mechanical systems, such as
high-speed electronic computers, guidance systems for missiles, or the mechanical
structure of a contemporary airplane, has made it a matter of great importance
to follow up the design of such a system by some evaluation of the probability
that it will perform its task without failure. If the probabilities of successful
performance are known for each component of a structure, then it is usually
theoretically possible to compute the probability that the entire structure will
perform by carefully tracing the design step by step. This procedure may become
prohibitive when the structure becomes very complex, that is, consists of a very
large number of components.

It is the purpose of this report to present some results obtained by J. D. Esary,
S. C. Saunders, and the writer, which deal with certain properties of complex
structures and their reliabilities, and either do not depend on the number of
components, or else display an asymptotic behavior as the number of compo-
nents increases. In section 2, a number of properties of structures will be dis-
cussed which may be described as combinatorial and which, while interesting in
themselves, are preliminary to a probabilistic discussion of structure reliability.
In section 3 the probability of successful performance will be studied for the
kinds of structures analyzed in section 2. A number of our results are generaliza-
tions ideas of originated by von Neumann [1] and systematically developed by
Moore and Shannon [2]. The present report is meant to give a survey of the
main findings and does not contain the mathematical derivations of the theory.
A detailed mathematical presentation is contained in a manusecript submitted
for publication [3].

2. Structures and their combinatorial properties

2.1. Dichotomic structures. We will limit our presentation to devices (compo-
nents as well as systems built of components) which can be in only one of two
states: they eithér perform or fail. The state will be described by the value of an
indicator variable which will be given the value 1 when the device performs and
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the value 0 when it fails. In studies of this kind, methods of Boolean algebra
could be applied, but we will not make use of this mathematical tool.

It should be mentioned that the limitation of the possible states of a device to
performance or failure only is in many instances an oversimplification of the
real situation. To emphasize this simplifying assumption, we shall refer to
structures capable only of these two states as ‘“‘dichotomic structures.” In
reality one frequently encounters devices which are capable of a continuous
range of partial performance, from perfect performance to total failure. A large
part of the statements reported in the following can be generalized to such
structures with partial performance, but a detailed theory of this kind has not
yet been fully developed.

2.2. Structure functions. By a structure function of order n we will understand
a function ¢(z;, 2o, * - - , ) which ascribes to each of the 2" vertices (0,0, - - -,
0,0, (0,0---,0,1), 0,0,---,1,0),---,(,0,---,0,0), --- , (L1, -,
1, 1) of the n-dimensional unit cube one of the values 0 or 1.

The intuitive interpretation of such a structure function is that it describes a
design such that z;, 25, - - - , z. are the indicator variables corresponding to the
first, second, and nth component, and ¢ ascribes to each state of these n compo-
nents a state of the entire structure. Instead of “structure function ¢’ we shall
often say in short “structure ¢.”

To each state vector x = (x1, x2, -+ , x,) we ascribe a nonnegative integer
defined by
(2:2.1) S@) = Sy, @y +o0y2) = X
=

called the size of that state vector. Clearly S(x) is the number of components
which perform at the particular state x of the components.
A state vector x = (x,, T, -+ + , &) s called a path for the structure ¢ if ¢(x) =
o(x1, 22, -+, z,) = 1, and it will be called a cut if ¢(x) = ¢(x1, T2, - - , Ta) = 0.
We furthermore define path numbers and cut numbers for a given structure ¢
as follows:

(2.2.2) A; = jth path number = number of paths of size j for ¢,
(2.2.3) A% = jth cut number = number of cuts of size j for ¢.

One verifies easily that
(2.2.4) A; + A% = (;‘)

2.3. Coherent structures. Not all of the possible 22# structures of order n are
of equal practical importance. In particular, practically all designs occurring in
practice have the property that, vaguely speaking, the better the components
perform the better the performance of the structure. To give a precise formula-
tion of this property of structures we state the following definitions.

We say that (z1, -+ ,Zn) = (1, *++ ,Yn) When z; = y; fore =1, ---  n.
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A structure ¢ is called coherent when

(23.1) (@1, -, %n) Z S, =+* ,Yn) forall @y, -++ ,2a) = W1, **+ , Yn)

and
(2.3.2) 6(0,0,---,0) =0, $(1,1,--+,1) =1.

The assumption that a structure is coherent imposes considerable restrictions
on its path numbers and cut numbers. For example, one can prove that the path
numbers for a coherent structure must satisfy the inequalities

(2.3.3) A; A for j=0,1,---,n— L
()" G3)
J j+1

The class of coherent structures has a number of useful properties. Most of
them will be discussed in the next section but it should be mentioned here that
the combinatorial theory of reduction of structures, that is, of replacing a given
structure by an equivalent structure with the smallest possible number of
components, takes a particularly simple form for coherent structures.

In the practice of designing circuits, or mechanical structures, one frequently
proceeds by first designing a structure of fairly low order and later on replacing
each component by a structure which itself consists of a number of components,
This is for example the case when “moduls” are put into the place of single
components in circuit design. This practical procedure has its counterpart in a
formal operation applied to structure functions which is called “combination”
of structures. The class of coherent structures is closed under the operation of
combination, that is, when all structures used are coherent then the structure
obtained by combination is coherent.

3. The reliability function

3.1. Assumptions and definitions. From now on it will be assumed that all
components of a given structure may perform or fail in a random manner and
independently from each other. More specifically, for a structure ¢ of order n
we assume that its n components are independent random variables
X = (Xy, - -+, X,) each with the same probability distribution

@ll) P{X;=1}=p, P{X;=0=1-p, i=1,2---,m,

so that ¢(X) = ¢(X,, - - - , X,) is also a random variable capable of the values
1 and 0.
The reliability function h(p) is defined by

3.1.2) he(p) = E[¢(X); p] = P{o(X) = 1;p}.

One verifies easily that the reliability function for a given structure ¢ can be
expressed in terms of the path numbers of that structure by the formula
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(313) ho(p) = 3 Apit = )

For ¢ coherent one clearly has 4o = 0, 4, = 1.

For any structure ¢, the size S(X) of the random vector is a random variable
with a binomial distribution, ¢(X) a random variable with the probabilities
P{¢(X) = 1} = h(p) and P{p(X) = 0} = 1 — h(p), and S(X) and ¢(X) are
dependent random variables. It is natural to consider the conditional
expectations

(3.1.4) E[SX)|¢(X) = 1] = L(p) = mean path,
(3.1.5) E[n — S(X)|¢(X) = 0] = W(p) = mean cut for the structure ¢.

Using the same pair of random variables ¢(X), S(X) we introduce the
definition:

A structure ¢ is coherent in probability when
(3.1.6) P{e(X) = 1|S(X) = k} = P{¢(X) = 1|8X) =k + 1}

for k=0,1,:---,n—1

and
3.1.7) P{$(X) = 1|SX) = 0} =0, P{X) =1|SX) =n} = 1.

3.2. Properties of the reliability function. If ¢ is coherent in probability,
then k(p) is nondecreasing for 0 < p < 1. Since a coherent structure is always
coherent in probability, a coherent structure must always have a nondecreasing
reliability function.

For any structure ¢ of order n (without assumption of coherence) the
inequality

(3.2.1) L)+ W) >n

is necessary and sufficient for the reliability function h(p) being strictly increas-
ing for 0 < p < 1. The inequality

(3.2.2) Lip)+ W) >n+1
is necessary and sufficient in order that the function

h 1—
3.2.3 - ke _1-p
( ) Uh(p) 1— h(p) P

be strictly increasing.

If ¢ is a coherent structure then either (a) h(p) = p or (b) ax(p) is strictly
increasing and A(0) = 0, (1) = 1.

If ¢ is a coherent structure then the conditions

3.24) Ai=0 and A, =n

are necessary and sufficient in order that o,(p) assume the value 1in 0 < p < 1.
The last statement has an important intuitive interpretation. It is easily seen
that A(0) =0, h(1) = 1, onx(p) strictly increasing, and oa(p) = 1 for some
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0 <p <1, imply that h(p) <pfor 0 <p <pand h(p) > pfor p <p <1,
so that A(p) is an S-shaped function, that is, has the form indicated in figure 1.
We see therefore that any coherent structure for which 4, = 0 and A,—; = n
has an S-shaped reliability function.

| =

h(p)

Fieure 1

S-shaped reliability function

This establishes the fact that the very wide class of coherent structures, for
which there are no paths of size 1 and all vectors of size n — 1 are paths, have
S-shaped reliability functions, and therefore exhibit two practically important
properties:

(1) There exists a value p such that for p < p the structure is less reliable
and for p > p more reliable than a single component.

(2) We consider iterated combinations ¢y, ¢2, -+ - , ¢pj, - - - of a given struc-
ture ¢, defined as follows:
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¢1(le Xo oo, Xp) = ¢(X17 X27 0y Xn);
¢2(le XZ: ) Xﬂ’)

(3.2.5) -

= ¢1[¢(X1; ) Xﬂ)) ¢(Xﬂ+1: R X2ﬁ); e ;¢(Xﬁ(n—1)+1, LAY Xn')],

v
’

¢in1(Xy, X, -+, Xai)

= ¢j[¢(X15 ) Xn)y ¢(Xn+l, cee ,Xﬂn), ttey, ¢(Xn(nl—1)+1, teey, an‘ﬂ)].

If h(p) is the reliability function for ¢, then the reliability functions for

¢1’¢2’ o

l
h;(p)

hg(P)

h.(p)

hy(p)

he (p)

h;(ﬁ)

) $is1, * - are
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Ficure 2

Ordering of h;(p) for an S-shaped reliability function.
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h(p) = kp),
ha(p) = m[h(p)],

hin(p) = h;[h(p)],

(3.2.6)

For a structure ¢ whose reliability function A(p) is S-shaped, an argument
indicated in figure 2 shows that

(3.2.7) ki(p) > ha(p) > « -+ > hjn(p) fand 0, p <op,

and

(3.2.8) k() < ha(p) < -+ < hjna(p) — 1, p>p
F ]

so that by iterated compositions of ¢ one can obtain structures whose reliability
functions are as close to 1 as desired if the component reliability is p > p, but
tend to 0 if p < p.
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