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1. Introduction
The following process was introduced by Robbins and Monro [1]. For each real num-

ber x let Y(x) be a random variable such that E[Y(x)] = M(x) exists. We assume that
M is Borel measurable, that the regression equation M(x) = a has a single root 0, which
we wish to estimate, and that (x - 0) [M(x) - a] > 0 for all x # 0. An initial value xi
and a sequence {a.} of positive numbers are selected. The (n + 1)st approximation
to 0 is defined inductively by the formula

(1. 1) xn+1= xn-a. [ Y (x.) - a]
In [1], [2], conditions were investigated under which X,, tends to 0 in mean square, and
in [3], [4] for convergence with probability 1.

The statistician is naturally concerned with the speed of convergence, and with the
choice of coefficients {a.n} to maximize the speed. This problem was attacked by Chung
[5] who studied the asymptotic behavior of the moments of X., and thereby was able to
prove asymptotic normality under certain conditions.

Chung considers two cases, using different coefficients an and getting variances of dif-
ferent orders in the two:

(i) The "quasi-linear" case (theorem 9). Here, a. = c/n, and /ii (X,, - 0) tends
in law to the normal distribution N[0, c2c2/(2aic - 1)] where a, = M'(0) > 0 and a2 is
the variance of Y(0). The variance of X. tends to 0 with the speed l/n which a statis-
tician would hope for. Chung proves optimum properties for these estimates. Among the
assumptions of theorem 9 we mention particularly

(1.2) him M(x) >0,
X

which as Chung emphasizes is quite restrictive from the point of view of statistical appli-
cations, since it is not satisfied in any problem in which M(x) is bounded. For example,
the quantal response problem (in which up-and-down methods generally had their origin
and to date their most important applications) is excluded.

(ii) The "bounded case" (theorem 6). Here, M(x) is bounded, but unfortunately the
coefficients an are taken to be 1/n1- where e must exceed a positive number 1/2(1 + K4)
whose value depends on the problem. Chung now shows n(1E)/2(x. - 0) to have a nor-
mal limit, so that the variance of x,, tends to 0 with the speed 1/n1 . The statistician
is naturally unhappy with estimates of such great variability.

* Thispaper was prepared with the partial support of the Office of Naval Research, and of the Office of
Ordnance Research, U.S. Army, under Contract DA-04-200-ORD-355.
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A main purpose of this paper is to point out that (1.2) is not an essential condition
of Chung's theorem 9. Relying heavily on Chung's analysis, and using a result on con-
vergence with probability one, obtained independently by Blum [3], Kallianpur [4], and
Kiefer and Wolfowitz [3], we are in fact able to prove the result of theorem 9 under as-
sumptions about the model somewhat weaker than those of theorem 6. As a consequence,
we recommend that the coefficients 1/nl' not be used in statistical practice.

It should be emphasized that Chung's penetrating analysis of the moments of X. ac-
tually proves more than the mere convergence in law to the normal which is asserted in
theorems 6 and 9. Since he knows the asymptotic behavior of the variance, he can assert
optimum properties concerned with squared error for his estimates in theorem 9. Our re-
sult is in this regard much weaker, since our method involves a truncation that prevents
any control over the variance. We discuss in section 3 the statistical significance of the
two ways of studying the asymptotic variance of estimates, which are involved here.
An alternative approach to the performance characteristic of the Robbins-Monro

estimates is presented in section 5. There, instead of studying the limiting distribution
of the actual estimates, we examine the actual variance of the estimates obtained from
the linear model approximating to the actual model. For the linear model it is possible
to compute the exact variances, and it is comforting to observe that the limiting values
of the exact variances of the linear model agree with the variances of the limiting dis-
tribution of the actual estimates.

2. The bounded case with harmonic coefficients
Our considerations are based on theorem 9 of Chung [5], which states that V;

(X. - 0) tends in law to N[0, a2c2/(2ajc - 1)] under the following assumptions:

(I) al = M'(@) > 0,
(II) for every 5 > 0, inf IM(x) - al > 0,

Iz-91>I
(V) E[Y(x) - M(x)]2 = a2> 0 for all x,

(VI) (a) M(x) is bounded in every finite interval, (b) 0 < lim [M(x)/x], and
IX1 c

(c) lim [M(x)/x] < x,

(VII) for every even positive integer p,
E [Y (x-M (x ]P K21 (P) < -

(2.1) c,=~ hr 1
a. = n where c >2R

and K is any positive number not greater than inf [M(x) - a]/(x - 0).
As Chung remarks (footnote 4), (V) may be replaced by the weaker assumption that

V(x) = E[Y(x) - M(x)]2 is continuous and has the value a at x = 0. We observe that
the proof of the theorem also remains valid with only minor changes if we merely as-
sume na. -. c instead of na. = c.
We shall now show that Chung's theorem 9 remains valid if we remove assumption

(VIb). This permits the theorem to be applied to problems (such as the bio-assay prob-
lem) in which M(x) is bounded.

It was discovered independently by Blum [3], Kallianpur [4], and Kiefer and Wolfo-
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witz [3] that Xn tends to 0 with probability one under certain conditions. The conditions
of Blum's theorem 1 are implied by the assumptions of theorem 9.

Let A be any positive number, and suppose that a model M satisfies all of the as-
sumptions of theorem 9 except possibly (VIb). Let K' = inf [M(x) - a]/(x- 0),

Ix01:I SA

and construct a new model Al' by defining Y(x) to have the same distribution as before
if Ix - 01 < A, but the normal distribution N[K'(x - 0), 1] otherwise. The new model
satisfies the conditions of theorem 9. Now introduce a sequence of coefficients a. such
that nan -, c> 1/2K', and consider the process X1, X2, ***generated under the model
AM. Inasmuch as Xn converges to 0 with probability one, we can associate with each
e> 0 a number N(e) such that the probability is at least 1- e that IX - 1 < A
for alln > N(E).
We define a new process, whose starting point is X' = XN+1 and which is generated

by the model Al' and coefficients a' = a.+N. We shall have X.' = XN+. for all m with
probability at least 1- e. Let us denote generically the distribution of a random vari-
able Z by Fz. We observe that for all m I FXN+m -Fx < e. Since the process X' satis-
fies the conditions of theorem 9, we can choose m so large that I Fv(x'_9) - 'I < e

where I is the normal distribution function with mean 0 and variance oec2/(2ac - 1).
Consequently F4(xN+,_m) - < 2e, from which it follows that for m sufficiently
large F/vN+(XN+M.o) - *I' < e. Since e is arbitrary, our result follows.

The above proof was obtained by the authors in cooperation with Professor Charles
Stein, whose help we gratefully acknowledge.

3. Two measures of asymptotic accuracy

Two measures of the limiting accuracy of a sequence of estimates are used (and some-
times confused) in the literature. We shall in this section briefly discuss some of their
relationships, with particular reference to our problem.

Consider a sequence of estimates X1, X2, * * for a parameter 0, and let Y1, Y2,... be
the corresponding sequence of errors of estimate, appropriately normed. We consider the
normed error variances, v_ = E(YF2,), which may approach a limit u as n tends to in-
finity, and say in this case that u is the asymptotic error variance of the sequence of esti-
mates. It often happens that Y. tends in law to a random variable Y (usually normal),
and that Y possesses an error variance w = EY2. In the usual situation, E(Y) = 0 so
that w is the actual variance of Y. We then call w the asymptotic variance in law (or
asymptotic normal variance in the normal case). It is easy to show that w < u, but strict
inequality is possible.

Both u and w are used in the literature as measures of precision of estimates. The sig-
nificance of w lies in the approximate probability statements which can be based on it.
For example, if -vn (X. - 0) has asymptotic normal variance w, while V4i (X, - 0)
has asymptotic normal variance w' > w, then for each A > 0, P[ Xn- 01 < A/ni] >
P[IX- 01 < A /-./i] for all sufficiently large n. Thus w is an appropriate measure
if we are more interested in the frequency of errors greater than A/N/n than in their
magnitude. On the other hand, u is an approximation to v. if n is large, so that it weights
large errors much more heavily.

In practice our estimates are usually truncated, which suggests that we consider the
random variables Y,, obtained by truncating Y,, at + A. Let v"A denote the error variance
of this truncated estimate, and call tA = lim vA, if it exists, the asymptotic error vari-

n xj'C
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ance truncated at A. It is easy to show that tA __ w as A -* -, which suggests that w
has the interpretation of a limiting truncated error variance. This notion does not require
that we introduce the limit law or even that a limit law exist. We note that more pre-
cisely lim him vA = lim inf vA < lim supvA = lim lim vA,provided the limits in-

A--c ,--o A, n- A,is-+co n- A-co

volved all exist. This is a simple consequence of the fact that vA' is for each n a non-
decreasing function of A.

Since in practice both n and A are finite, it is not clear whether w or u (in those cases
in which w < u) will be the better approximation to vn. However, if u > w, this can
only mean that very large errors occur with very small probability. The situation is
similar to that in the Petersburg paradox. The usual human practice of not attaching
undue importance to large errors which are extremely unlikely to happen would lead to
the use of w in preference to u. Another argument which also supports this choice lies
in questioning the reasonableness of squared error as a loss function when the errors are
very large.

As a consequence of these considerations, we are inclined to use the asymptotic nor-
mal variance as a reasonable means of appraising the estimates discussed in section 2
when n is large. In particular, we recommend that coefficients an c/n be used in the
quantal response problem. Further, we suggest that c be chosen so as to minimize a2c2/
(2aic - 1). This leads to c = 1/a, and reduces the asymptotic normal variance to e/la.
(In practice, of course, it will usually be necessary to guess at the value of a,.)

It is hardly necessary to remark that the only interest in any asymptotic theory re-
sides in the hope that it will provide a useful approximation for the values of n with
which we are dealing. Thus, for example, we use the asymptotic normal variance as an
approximation to the variance of a normal distribution which approximates to the actual
distribution of the estimate. For many statistical problems the only way of appraising
the accuracy of these approximations lies in comparing them with computed values for
small n or sampling experiments with moderate n. In the next section we consider com-
puted values of the variance for small n of an approximate model, leading to conclusions
about the choice of c in general agreement with those given above.

4. A linear approximation
If one attempts to apply the asymptotic normal theory of section 2, two difficulties

arise. As with most asymptotic theories, it is not known how large n must be before the
theory becomes applicable. Furthermore, the theory holds only if c > 1/2K, where K is
any positive number satisfying K < inf [M(x) - a]/(X - 8). An examination of the
proof shows that in this condition the infimum may be restricted to the values x- 10
A, where A is an arbitrarily small positive number. Since we assume M'(0) = a, > 0,
it is therefore enough to require c > 1/2ai. This is consistent with the recommendation
made in section 3 that c = I/al. In practice, however, ai is usually not exactly known,
and one might be tempted to use a "safe" small a priori estimate for a,, and a corre-
spondingly large c, to avoid the possibility that c < 1/2al in which case the estimates
have unknown behavior. This tendency would produce a bias towards values of c too high
for greatest efficiency, but as c2/(2c - 1) increases slowly when c increases beyond 1, it
would be natural to prefer a c which might be too large to one which might be too small.
We shall now present an alternative approach which (while it also has drawbacks)

does work for all values of c > 0 and does provide measures of precision for finite n. The
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current approach is based on replacing the actual model by a simpler linear model, for
which the actual error variances can be computed. Specifically, we assume M(x) = a +
,8(x- ) and V(x) = T2, where P and r2 are known constants. We might take P = ai,
72= a2[= V(O)], obtaining a model which is a good approximation to the actual one
when x is near 0; alternatively, we might attempt to fit a straight line to that portion of
M(x) where the x3 are likely to fall. To simplify the notation, we shall set a = 0 = 0.

It is easily shown that

(4.1) E (X2+,) = (1-a,,)2E (X") + a2

from which it follows that E(X,+1) equals

(4.2) E(X2) ] (#a.)2 1 I ) 2.

Both of the terms of (4.2) have a significance. Since X.+, = X. -aY, E(X,+1) =

(1 - ftan)E(X.), so that given X, = xi, E(X.+1) = xi rI (1 - a.). If we square and
v-1

take expectations, we find that the first term of (4.2) is the expected squared bias of the
estimate. It is the contribution to the total error variance of the error of our initial
guess xi, and vanishes if xl = 0 = 0. The second term of (4.2) is independent of Xi, and
represents the variance component of the error variance.
We shall now specialize to harmonic coefficients a. = c/n, so that (4.2) becomes

(4.3) E (X2l) S(Cp) +(-)n(C
where

(4.4) CP(c) = I( _ c) CA(6) = i(c) h(1 c)

It is easily seen that (pn(c) = 0 if c 5 n is a positive integer, and that for nonintegral
c > 0, (p.(c) is of the order n-2e. The analysis of the second term is more complicated,
but it can be shown that it is asymptotically equivalent to

(4.5) T2c2 if c>
n (2cj3-1) 2j3

(4.6) T2 log X 1 1fc= I

(4.7) Ro/r2 (1- CO) + 2 C2p (C) if 0< c<

where

(4.8) P (c) 1 1c k1-ir2 (1 - C)

These formulas may be compared with the formulas (31), (33), and (35) of Schmetterer
[9], who obtained the same asymptotic orders for an upper bound on E(X2) without as-
suming linearity.
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We observe that (4.5) becomes the familiar formula a2/n(2cal- 1) if we take S = o
and r2 = a2; that is, the asymptotic variance of the linear model which replaces M(x) by
its tangent at 0 coincides with the asymptotic normal variance of the original model.
However, our main interest here is in actual values of the expressions (4.4) and not in
asymptotic theory, and in practice one might choose a P different from a, to obtain a
better fit to M(x) for small or moderate n.

Tables I and II present a few values of nmon(c) and n4,6(c)which facilitate the compu-
tation of (4.3). We note that np,() =- 0, while n(p.(1/2) -. /r = 0.318 ... by virtue
of Wallis' product. For values of n larger than 30, one may use the approximation
(p(c)= pao(c) *(30.5/n + 1/2)2c.

TABLE I

nfor(c)

C-

0.2 0.4 0.6 0.8 1.2

5 1.878 .593 .140 .017 .003
10 2.878 .698 .125 .012 .001
15 3.707 .763 .116 .009 .001
20 4.417 .811 .110 .008 .000
25 5.057 .850 .106 .007 .000
30 5.648 .883 .102 .006 .000

The recursion formula
( 2 (l1- C)2

permits easy computation of #,6(c). For values of 4,.(c) not in the table one may use the
quick approximation

(4.10) 2c;,(c) _ (n- 1)(n-1 2) +2 (2-C)2(n +n

which is based on quadratic interpolation of n#,(c) against l/n at the values 1/n = 0,
1/2, 1.

TABLE II

C-

0.2 0.4 0.6 0.8 1.2 1.6 2.0 3.0

5 0.192 0.502 0.748 0.904 1.075 1.253 1.500 2.300
10 0.326 0.700 0.889 0.961 1.048 1.203 1.407 2.008
15 0.435 0.830 0.963 0.985 1.041 1.189 1.381 1.932
20 0.530 0.929 1.011 0.998 1.037 1.182 1.368 1.896
25 0.616 1.009 1.046 1.007 1.035 1.178 1.361 1.877
30 0.696 1.077 1.074 1.013 1.034 1.176 1.356 1.867

coco co 1.800 1.067 1.029 1.164 1.333 1.800

Note the good agreement between the values at n = 30 and n = O except for c near
or below 1/2.

Wee nQw examine the choice of c from the point of view of the linear approximation,
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taking l= a ', = V(O). The value of E(X21), as given by (4.3), depends on E(X2) as
well as on the quantities n, (a/al)2 and cal which enter into the determination of the
asymptotic normal variance. (This is an advantage of the linear theory, since in practice
the accuracy of the initial guess will be important.) The figure shows nE(X2+i)/(0P/ai)2

0.5 I 2

0 d' V I1.5 \ \

1.0

-.5 0 .5
log (CaO)

for n = 20, and for E(X2)/(cr/al)2 = 1/2, 1 and 2, as functions of log (cal); such charts
are quickly sketched with the aid of the tables. For comparison, we also show as a solid
line (ca1)2/(2caj - 1), which corresponds to n = c, E(X2) arbitrary; or to the asymptot-
ic theory of section 2.
An examination of the chart suggests that in general the two theories lead to similar

conclusions as to the choice of c and n in that both suggest c = I/a, as a good value, and
for this value lead to about the same n for given variance. There are however differences.
The best agreement occurs for cal above 1, the worst for cal near or below 1/2. We have
here an example in which an asymptotic theory is somewhat misleading. When cal =
1/2, the asymptotic normal variance is infinite; the linear variance tends to Xas n -a ,

but only slowly. In general, the linear analysis leads to the choice of a smaller c than the
asymptotic theory, particularly if E(X2)/(a/a1)2 is small. The effects noticed vary in-
versely with the size of n, the linear model tending to agree with the asymptotic results
asn c.

The main drawback of the linear model is, of course, the fact that we do not know
how nearly linear M(x) must be, nor how nearly constant V(x) must be, in order that the
linear approximation will represent what actually happens. The only evidence on this
point known to us consists in a sampling experiment [8]. There it is found that the linear
theory is in reasonable agreement with the data, although intuitively the model is quite
"nonlinear." Further experience is needed on this question.

5. Parametric estimation

The greatest advantage of the Robbins-Monro scheme is the fact that it provides con-
sistent estimation in a broad nonparametric situation. However, it may also be applied
to parametric estimation problems. Hitherto we have supposed that the distributions of
Y(x) were arbitrary except for some restrictions on the first two moments. In many
problems one can however assume that the distributions of Y(x) are known except for
the value of a real parameter y. The parametrization (which of course is not unique) will
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be chosen so that y is the quantity which is to be estimated. We shall use the notation
E[Y(x)] = M,(x), V[Y(x)] = V,(x), and still assume that these functions satisfy the
conditions of the theorem of section 2. Since y now determines the model, 0 is a function
of a and Sy, and we shall make the additional assumption that for each a, 0 is a 1- 1
function of y, permitting us to invert to find y = Ia(0). We may then use the Robbins-
Monro estimates X. for 0 to provide estimates ha(Xn) for -y. Our problem now becomes
that of choosing an (and perhaps also a) to minimize the asymptotic normal variance of
these new estimates.

It is then obvious that the estimates ha(Xn) are such that -V4 [ha(Xn)- y] is asymp-
totically normal with mean 0 and variance

[h (0) ] 2of2 c2
(5.1) 2a1-

As illustration, consider the quantal response problem, in which Y(x) is capable of
assuming only the values 0 and 1, so that M,(x) = P[Y(x) = 1] and V,(x) = M,(x)
[1- M,(x)]. We take 0 < a < 1, and estimate 0 by means of a Robbins-Monro scheme.
This provides a sequence of estimates X,, such that N'n/ (X. - 0) - N[0, V(0)c2/
(2aic - 1)].

Let the partial derivatives of M.,(x) with respect to x and to y be denoted respectively
by M.(x) and M*(x). Given a, the best value of c = lim nan is c = 1/M'(0); the re-
sulting asymptotic normal variance is a2/[M'(0)]2.

In parametric problems such as the present one, we may be able to choose a with an
eye to minimizing (5.1), which becomes

(5.2) [ha'() a
(0)

( . ) ~~~~~~~[MI(0)12

where we now make explicit the dependence of a2 on 0.
On differentiating the identity Mha(6)(0) = a with respect to 0, we get ha(0)=

-M.(0)/M*(0) and therefore (5.2) becomes

(5.3) ~~~~Ml (0) [1 -M (0)]
[M* (0) 12

The numerator of (5.3) being equal to a(1- a), it is seen that the value of a that
minimizes (5.3) will be independent of the unknown y provided M,(0) factors into a
function of -y alone and a function of a alone. This is the case in particular if M,(x) is a
function of x - y or x-y or more generally if there exist functions r, s and t such that
M7,(x) = r[s(,')t(x)I-

As an illustration we consider the bio-assay form of the quantal response problem in
which it is customary to take M,(x) to be a distribution function with y a location
parameter. (Our theory is essentially uniparametric; we assume that the scale parameter
of the distribution is known.)

If F is any cumulative distribution function and 0 < # < 1, we may obtain a para-
metric family by defining P[Y(x) = 1] = M,(x) = F[x - y + F-1(j3)]. Then y has
the significance of the value of the stimulus x for which probability of response is ,B;
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that is, y is the "lethal dose 100 ,B." Formula (5.3) for the asymptotic normal variance
now becomes
(5.4) a (1 a)

IF' [F'1 (a) 2'

It is not surprising that expression (5.4) is independent of 13, since the problem of esti-
mating a location parameter remains substantially unaltered when the origin is changed.
It happens that (5.4) is minimized by taking a = 1/2 when F is either normal or logistic,
which are the most common choices for F.

The estimation of y = lethal dose 100 13 does not require the use of a parametric mod-
el, since we may set a equal to 13, with -y = 0, and thus estimate -Y directly by X" as in
section 2. The advantage of this approach is that it requires very little assumption about
the form of F; its disadvantage is that there may be a substantial loss of efficiency, par-
ticularly if 18 is not near 1/2.

Further illustrations are provided by the testing problems treated in [6]. In both of
the specific situations analyzed there, both x and y are essentially nonnegative and
M,(x) is a function of the product xy only, say M,(x) = m(xy). It is easily seen that
the restriction of range causes no difficulty.

As an example, consider the problem of estimating the mean bacterial density y of a
liquid by the dilution method. That is, we take a volume x of the liquid at random, and
determine whether there is one or more bacteria in it, indicating this event by Y(x).
Then M.(x) = 1 - exp (- yx) under the usual Poisson assumption. It is easily seen
that (5.3) becomes [a/(l- a) log2 (1 - a)]-y2, and, whatever be -y, this is minimized by
minimizing the first factor. The same extremum problem occurred in [6], in connection
with choosing a for maximum asymptotic power. The best a [see equation (19) in [6]]
is the root of 2a = -log (1- a), or a = 0.797. Thus the following procedure is recom-
mended: use the Robbins-Monro method with a = 0.797, and a. = 4.92/-in where -y is
our best a priori guess for y. Our estimate for y after n steps is 2a/Xn+l = 1.594/Xn+1.
The asymptotic normal variance is -y2/4a(1- a) = 1.544 y2.

Actually, the entire family of testing problems considered in [6] can be thus treated
as estimation problems; the task of minimizing (5.3) is identical with that of maximizing
equation (12) of [6]. A further example there considered relates to the quality control
of variability.
We have given a detailed discussion of the estimation of -y in the binomial case since

the only interesting examples that we know are of this type. However, we shall sketch
briefly an extension of these results to the case of arbitrary distributions belonging to the
Darmois-Koopman-Pitman family.

Following the notation of Girshick and Savage [7] let us assume that the generalized
density of Y(x) with respect to a measure 4,6 is

(5.5) 1e(r
CO (Tr)

where r = r(-y, x). We denote the mean and variance of Y(x) by M,(x) and V,(x) re-
spectively and we then have from [7] that

d
Mz (x) = d log w [rT (Y, x)]

(5.6)
V-, (X) = d2_ log w [ T (-f, X)].
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As usual we define 0 by M,(O) = a, and solving this equation for y obtain y = ha(O).
Setting kn= ha(X,t+i) we then obtain as before the asymptotic normal variance,

[h'()]2V() _ V (1V)
[MI(M ) 1 2 [M* ( ) 12

for ./In yn-
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