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8. POWER ESTIMATES .

In this chapter we study the behavior of the percolation proba­
bility and the expected size of an occupied cluster in a one-paremeter 
problem. As defined in Ch. 3 this means that we consider probability 
measures for which

P (v 
P

is occupied} = p

is the same for all vertices v of the studied graph q , and the 
occupancies of all vertices are independent. We want to know the 
asymptotic behavior of

0(p) = e(pszQ) = Pp{#W(zQ) = °o}

and of  ̂̂

Ep{#W(z0); #W(zQ) < °°}

as p approaches the critical probability p^ (see Sect. 3.4).
By analogy with results in statistical mechanics, and on the basis 
of numerical evidence (see Stauffer (1979) and Essam (1980)) it is 
generally believed that

(8.1) e(p) •" C0^P'PH^ ^ 5 p + p|

(8.2) Ep{#w(zQ ); #w(zQ ) < “} ~ c + (p -p h )‘y+

and

(8.3) Ep(«(z0)> - c_(pH-p r Y - . p + ph

for suitable constants CQ C+ and 0 < 6, y+< 00 . Similar power
laws are conjectured for other quantities. It is also conjectured 
that the so-called critical exponents 3, y+ do not depend (or

^  E{X;A} stands for E{X I. } , i.e., the integral of X over 
the set A. A
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depend very little) on the detailed structure of q , but depend 
(almost) entirely on the dimension of q only. In other words, these 
exponents should be (almost) the same for all periodic graphs Gd "
imbedded in k  with one particular d . As far as the author knows 
power!aws like (8.1)-(8.3) have been established mathematically for 
very few models, and not at all for any of the percolation models 

discussed in this monograph. It is not even clear how strictly (8.1) 
should be interpreted. Does it mean

lim
P+pH

e(p)

(p-ph )b
= co f  0 s

or

e(P)

(p -ph )b
is a slowly varying function of p-pu as p T pu,

H H

or perhaps only

1 im 
P+PH

lQ9 9(P) .
log (p-ph)

?

A similar comment applies to (8.2), (8.3) and other conjectured 
power laws. The best we can prove so far is that the left hand 

sides of (8.1)-(8.3) are bounded above and below by suitable powers 

of |p-p^| "f°r percolation problems on certain two dimensional graphs 
q. We believe that the method of proof will work for many graphs in 
the plane in which the horizontal and vertical direction play 
symmetric roles, but to simplify matters somewhat we restrict ourselves 

here to site - and bond - percolation on the simple quadratic lattice.
p

The graph for site percolation on TL is q^ of Ex. 2.1 (i). In

keeping with the tenor of these notes we treat bond percolation on 
2

Z  in its equivalent version as site percolation on the graph q^ of 
Ex. 2.1 (ii) (see Sect. 2.5, especially Ex. 2.5 (ii)). We also deal 
with the matching graph q* of qQ described in Ex. 2.2 (i) 
and the matching graph q* of q^ . q* is isomorphic to q^ (see 
Ex. 2.2 (ii)). When q = (j| , i = 0 or 1, then q* will be the 
graph q. itself, in accordance with Comment 2.2 (v) .

The principal result of this chapter is the following theorem. 
Theorem 8.1. For one-parameter site-percolation on q = qg ,

Q-j > Qg —  Q* there exist constants 0 < Ĉ ., < 00 such that
for pH = pH(q) one has



200

( 8 . 4 )
e ic3( p- pH)
“Y

( 8 . 5 ) c 5 (p H-P)

and
-y.

( 8 . 6 ) Cy(P”P^)

> P > PH » 
-Yo

V hH

”Y/

JH

> P > PH ‘
In the course of proving this theorem we derive the following 

estimates, some of which will be used in the next chapter.

Theorem 8.2. For one-parameter site-percolation on Q = Qq >Q-]>Qq > or 
q * there exist constants 0 < C., < 00 such that uniformly for

0 £  p £ 1

“Yr
(8.7) 

and

(8 .8)

Also, at 

(8.9)

P {n < #W < °°} < CQn 9p - - 9

1Y
Ep{(#W)2 5 ; #W < -} < C]0

P = PH = ph (q )

Clln < P {#W > n} = P {n < #W < °°} < CQn 
- PH - PH " “ 9

Remark .

"Yc

For q = Q-j or Q* pH(q ) = j  by Application 3.4 (ii). Also, 
by Application 3.4 (iv) (see also Russo (1981))

PH(Q-|) = 1 - ph(Q*) •

In the graphs considered here all vertices play the same role
so that 0(p,zQ) and the distribution of #W(z^) are the same for
all vertices Zg . Therefore no reference to zQ is necessary in
the theorem. Finally, for p < pu #W < » with P -probability one— n p
(see Theorem 3.1 (ii)). Therefore, for p < pu (8.8) simply becomes

1 ~ H
E„{(#W)2Y5 } < c

10 '
I I I

In each of (8.4)-(8.6) one of the inequalities is much easier 

to prove than the other one. In (8.4) the first inequality is the 

difficult one. To motivate our principal lemma we shall work backwards 
from this inequality. Assume then that we want to prove

31e(p) >_ c,(p-p„) , p > p„ .
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First we fix a vertex zQ . If q = qQ or q* we take zQ = (0,0) , 

the origin, and if Q = Q-j or q* we take zQ = (|-,0) • We intro­
duce the following notation. For any vertex v = (v(l),v(2)) of q

(8.10) S(v,M) = [v(1)-M, v(l)+M] x [v(2)-M, v(2)+M]

(a square around v). The topological boundary of S(v,M) is denoted 

by

(8.11) AS(v,M) = {x = (x (1) ,x(2)) : |x(l)-v(l)| = M , |x(2)-v(2)| < M

or ]x(l)-v(l)| < M , |x(2)-v(2)| = M} .

If some point y e AS(Zq ,M) belongs to an edge in W = W(Zq ) , 
then W can be finite only if there exists a vacant circuit on q* 
surrounding zQ and y , by virtue of Cor. 2.2. Such a circuit c* 
must contain at least M vertices, (e.g. if y is on the top edge 
of AS , then c* must contain a vertex below the horizontal line 
x(2) = 0 and a vertex above the horizontal line x(2) = M.) Conse­
quently, for any M

0(p) 21 Pp{ 3 occupied path on Q from zQ to some y

on AS(Vq ,M) but there does not exist a vacant circuit on
q* surrounding zQ and containing at least M vertices} .

By the FKG inequality this implies

(8.12) 0(p) > Pp{ 3 occupied path on Q from zQ to some y

on AS(Zg,M) . Pp {there does not exist a vacant circuit

on q* surrounding 0 and containing at least M vertices}.

It is not hard to prove (see Smythe and Wierman (1978), formula (3.34);
a better estimate is in Lemma 8.4 below) that the first factor in the
right hand side of (8.12) is at least C-^/M for any p p^ . To
estimate the second factor, observe that any circuit on q* surrounding
zn and containing £ > M vertices must intersect the first coordi- u —  1
nate axis in one of the vertices (j,0) ((j + j 9 0)) , 1 <. j 1 & , 
if Q = Qq or Q*(q1 or Q*) . If Q = Qq or q* and there exists 
a vacant circuit on q* through (j,0) which contains £ vertices, 
then W*(j,0) , the vacant component of (j,0) on q* contains at 

least £ vertices. Consequently
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(8.13) 0(p) _> PQ{ 3 occupied path on Q from zQ to some y

on AS(z ,M)} { 1 - 5  l  P {#W*(j,0) > £}} 
u £=M j=l p

= P { 3 occupied path on Q from z~ to some
r  oo U

y on AS(zn,M)}{l - J *, P {#W*(zJ > £}} 
u S,=M " u ~

(8.13) remains valid when Q = Q-j or Q* . The difficult part is 
now to find a good upper bound for

Pp{#W*(z0) >

when p > pH , but p close to p^ . For this we use Theorem 5.1, 
applied to G* . By Theorem 3.1 (iii) , for p > pH

Ep{#W*(zQ)} < co

and thus, by Theorem 5.1 (with the role of occupied and vacant 
interchanged)

-C £
(8.14) Pp{#W*(zQ) > a} £  C1 e 2

and the problem is reduced to getting a grip on . Lemma 5.3

shows that we can take
2 _Q

(8.15) C] = (|-) (50e) , e 2 = 2 'A ,

where

(8.16) A = J -  \
49 N

as soon as N is so large that

1 i pi
(8.17) t*((N,N); i, p, Q) < «= | (50e) , i = 1,2 .

Actually (5.42) still contains the quantity

(8.18) t*((N,N); 1, p, Q) + t*((N,N); 2, p, Q)

but one easily sees from (5.46) that our upper bound (8.14) is 
increasing in the quantity (8.18), and we may therefore substitute 
2k for the quantity (8.18), as long as (8.17) holds. On the graphs
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which we consider here the horizontal and vertical directions are 
equivalent so that it suffices to choose N such that (8.17) holds 
for i = 1 . For any such N (8.14)-(8.16) yield

(8.19) Pp{#W*(z0) > A} < C1 exp - .

To find an N for which (8.17) holds we reexamine the proof of 
Theorem 3.1. Specifically we shall go back to Russo's formula in the 
form (7.44). We write E* = E*(N) for the event

(8.20) E* = { 3 vacant horizontal crossing on q* of
[0,N] x [0,3N]}

and Ng for the number of pivotal sites on
and in the sequel, we view (q,q*)

7n for E*. (Here 
as a matching pair, based on

(7T(,3) as described in Sect. 2.2. The planar modifications qQ£ and

*p£ were defined in Sect. 2.3.)
Note that we are dealing with crossings on q*£ rather than

q* in (8.20). The planar modifications of the graphs are useful 

whenever we want to use the RSW theorem (Theorem 6.1) as we shall 
have to do repeatedly here. For the present graphs we always choose 
the central vertices in q* 0 and qf 0 at points of the form1 1  U ,pJ6 ' jP&

+ + r  5 ki ■ and ln ^i,p£ at P°ints (k-|>k2̂  > ki
The edges incident to the central vertices are straight line segments 

as illustrated in Fig. 8.1. Of course qn = qn, and q* p£ is
obtained by translating q^ p£

i = V
by * ^ne s1"mPlifications

Figure 8.1 Illustration of qQ p£ and q̂  p£ . Each
*

black circle represents a vertex. In q.I , P iO
the origin is marked by *; it is not a vertex of 
*
1̂ ,px. •
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obtained by this construction is that for each of the graphs q0 and 
Q-j an edge of qp£ or of q*£ intersects each vertical line 
x(l) = n or horizontal line x(2) = n 5 n e Z  , in a vertex of 
qp£ or q*£ , respectively. It is not hard to check the proof of 

Lemma 2.1b and to verify that for the special graphs Qq >Q-|>Qq and 
q* the existence of a vacant horizontal crossing on q* of 
[0,N] x [0,3N] implies the existence of a vacant horizontal crossing 

on q*£ of [0,N] x [0,3N] ^  . (One just inserts central sites of 
q* wherever necessary; these are vacant by our convention (7.3)).pJ6
Therefore

(8.21) x*((N,N); 1 »PsQ) = t ((N,N); 1,q,q*)
< t ((N,N); 1,q,Q*£)= Pp{E*(N)} (q = 1-p) .

We now apply Russo's formula (4.22) as we did in (7.42)-(7.44). Q* ,U X/
E* are substituted for q and E , respectively. We also have to 

replace p by q = Pp{v is vacant} . The quantity a in (7.43) 
is to be replaced by

^inf (P (v is vacant} - P (v is vacant}) = p - pu 5 
PH P H

and if we take p(t) = tp^ + (l-t)p then we find exactly as in (7.44)

(8.22) x*((N»N); l,p,q) < Pp(E*(N)}

< exp - (p-pH) jJ Ep(t)^NoIE*>dt > P > PH •

In the present setup a vacant horizontal crossing on q*^ of 
[0,N] x [0,3N] is a vacant path r* =(v*Q5e*s...9e*,v*) on q*£ 

with the properties (8.23)-(8.25) :

(8.23) (v*1,e*s...,e*_r v*_1) c int (J) 5

where J is the perimeter of [0,N] x [0,3N] viewed as a Jordan 

curve.

(8.24) e| intersects J only in the point v* which belongs 

to {0} x [0,3N] .

^ T h i s  fact is not at all crucial; it merely allows us to do away 
with A on most places in the proof. Also we do not have to construct 
J laboriously as in Lemmas 7.1 and 7.4.



205

(8.25) e* intersects J only in the point v* which 

belongs to {N} x [0,3N].

Note that v| c: int(J) and (8.24) together imply e^\{vg} c: int(J). 
Similarly (8.23) and (8.25) imply e* \  {v*} c int(J) . By Prop. 2.3, 

whenever E* occurs, then there exists a unique vacant horizontal 
crossing r* of [0,N] * [0,3N] for which the component of 
int(J)\ r* below r* (i.e., with the lower edge of J = [0,N] x {0} 

in its boundary) is minimal. We shall denote this lowest vacant 

horizontal crossing by R* . As in (7.46)

E* = U(R* = r*} ,

where the union is over all paths r* = (vg, e^,...,e , v*) on
Q* which satisfy (8.23)-(8.25) . Also, when {R* = r*} occurs,p)6
and v* is a vertex of 7)\ on r* n int(J) , then v* is pivotal

o
for E* whenever it has an occupied connection to C:= (0,N) x {3N} 

above r* . Analogously to Lemma 7.4 we mean by this that there
exists a path s = (vQ,e1,...,ep,vp) on V such that

(8.26) there exists an edge e of V between v*
° +

such that e c J (r*)

(8.27) vp e c ,

(8.28) (v0,e1,...,ep \  {vp}) c J+(r*) , 

and

(8.29) all vertices of s are occupied,

where J+(r*) is the component of int(J) \  r* with C = [0,N] x {3N> 
in its boundary (compare (7.47)-(7.49)).

Still following the proof of Lemma 7.4 we now set

(8.30) N*(r*) = N*(r*,N) = # of vertices v* of 7T[ on
o

r* n int(J) which have an occupied connection to C 

above r*.

Exactly as in (7.54) we then have

Ep(t)tN0|E*) Ep„IN*(''*n  •

where the minimum is over all paths r* on satisfying (8.23)-
(8.25). Together with (8.22) this yields
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(8.31) t*((N,N);1,p ,q ) £  exp - (p-p„) min E (N*(r*,N)) ,
n r* PH

and we finally must estimate how fast

(8.32) min En (N*(r*,N))
r* PH

grows with N.
The argument so far has been largely a repetition of the proof 

of Lemma 7.4 with q*^ and "vacant" taking the place of Qp^ and 

"occupied". One could continue to imitate the proof of Lemma 7.4. 
For this we would first show that there exists 6̂  > 0 such that

(8.33) a((k£,ji); l,pH(Q), Qpi) > 6k > 0 , Jl > 1 ,

and

{ 3 occupied circuit on q surrounding 0pic

and inside the annulus [-2£,2£] x [-2£,2£]\(-£,£) 
x (-£,£) > 6^ , N > 1 .

(8-34) PPu(^

((8.33) and (8.34) will be needed in any case and will be demonstrated 

below; see Lemma 8.1). (8.33) and (8.34) are just (7.18) and (7.20)

for the present graphs; they show that we may take =(£,£) in 
(7.18) and (7.20) . However, for Lemma 7.4 we wanted disjoint annuli 

so that we rather take = (2^,2^) . The analogues of (7.62), 

(7.70) and (7.72) then yield

(8.35) min E (N*(r*,N)} > 6'(# of k with N.< i N) > 6" log N 
r* PH “ K c

for some 6', 6" > 0  . When this estimate is substituted in (8.31)

one obtains

t*((N,N); l,p,Q) < N'6"(p'pH) ,

so that (8.17) holds when N exp C(p-pH)~̂  for some constant 
C. Next, by (8.19) this would give

y i p (#w*(vn) > £} < \
*=M p 0 - - 2

M >_ exp{(2+e) C (p-pH)-1}

whenever



207

for fixed e > 0 and p close to pu . Finally, (8.13) with an
-1 Mestimate of order M for the first factor in the right hand side 

would show

e(p) > exp - {2+e)C((p-pH)_1} , P + PH

Obviously this is much weaker than the left hand inequality in (8.4).
The reason for this is the poor lower bound (8.35) for (8.32).
Retracing the above steps we see that we will obtain the first 
inequality of (8.4) when we improve (8.35) to

(2+e)/g.
min E {N*(r*,N)} > CN 1 .
r* PH

The principal step of our proof is therefore to obtain this improvement 
on Lemma 7.4. It is established in Lemma 8.3.

Lemma 8.1. For Q = Qq > Q-j > Qq > or and integral k there exists

a <5. > 0 such that - k ---------

(8.36) a((ka.6a); 1. PH(Q).Qp 4 ) =

a((6JUkl); 2, Ph (q ).Q & ) >. \

and

(8.37) Pn 3 occupied circuit on Q 0 surrounding the origin in
Pj_|\Q/ P*

[-12a, 12a] x [-12a,12a]\ (-6a,6a) x (-6a,6a)} ^  6^ ,a > l .

Remarks .

(i) This lemma proves (8.33) and (8.34) with l  replaced by

6£ . Using monotonicity properties such as in Comment 3.3 (v) we could 
obtain (8.33) and (8.34) for all £ , but this will not be needed.

(ii) For Q = Q.q or Q* this lemma was proved by Russo (1981) 
by means of Theorem 5.4. For Q = Q-j or Q| the lemma was proved
by Seymour and Welsh (1978), but formulated for bond percolation. Their 

argument for Q1 runs roughly as follows in our notation: By a simple

variant of Prop. 2.2

(8.38) cr((£,£); UpfQ-, n0) + P { 3  vacant vertical crossing onI , pjc P

»i,pa of [y > x [|.*-|]} 1 1



208

(compare (7.14). Now use the fact that G* . is just G, . shifted 1 1  i»pJo i ,px,
by , -p and the fact that the horizontal and vertical direction
play identical roles on to obtain

Pp{ 3 vacant vertical crossing of [|-, x [1, £-1] on

Q? no^ = Pi 3 occupied vertical crossing of * 9 P JO I _P
[0,£-l] x [0,£-l] on Qljp£} = a( U-l ,£-1) ;1,1 -p,Q1 ) .

Together with (8.38) this gives for p = 1

cr((5/,£); 1» 2>"» Q-j pĵ ) cr((£-1 ,£-1); 1, —, )̂ 1

so that for each N

a((m,m); 1, Q-j) \  for m = £-1 or m = l  .

This is essentially (8.36) for k = 6 , since Ph (Q-j) = \  (see 
Application 3.4 (ii)). From this one can easily obtain Lemma 8.1 

by means of the RSW theorem.
Our proof below is essentially as in Russo (1981), and works 

simultaneously for all the Q under consideration. The only 
difference is that we use Theorem 5.1 instead of Theorem 5.4.
Proof of Lemma 8.1. Theorem 5.1 implies

(8.39) t ((£,&); i,Ph(q )» Q) > k = k (2) for i=l and i=2,

for otherwise by (5.11)

E (#W) < °° •
PH

But this is impossible since pH >_ pT and by (5.17)

E (#W) = - ,
PT

while E {#W} increases with p (Lemma 4.1). Thus (8.39) holds.
P

However, for the graphs Q considered in this lemma the horizontal 
and vertical direction play identical roles so that

(8.40) o((&i,&2)»1» P> Q) - cr( (&2ŝ i) > P» Q) •

In particular

ct( (A, 3 i ) \ 1, Ph »Q) = a((3S.,Z); 2, pH> Q) =

t ((&s&)» Is Ph ,Q) “ '̂ ((̂ '5̂ ')s 2s P|_J s Q) K
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We also saw above (see the argument before (8.21)) that the existence 
of an occupied horizontal (vertical) crossing of a rectangle 

[0 , 1̂ ] x [0,^2 ] on Q implies the existence of such a crossing on 

^ l s ll l nte9rai) ■ Thus

a((£,3£);l9pH(Q),Qp£) > a((£, 3£);1,pH(Q),Q) > k ,

a((3£,£);2,pH(Q),Qp£) > a((3£,£);2,pH(Q),Q) > k .

(8.36) and (8.37) now follow from Theorem 6.1 and (the proof of)

Corol lary 6.1. Q

We need some preparation for Lemma 8.2. Let a and G each be 
a vertex of Qp^ or of Q*^, and £, N integers 0 such that

(8.41) S(a,3.2x') <= s(0 ,N)

(see (8.10) for S and (8.11) for AS). Let r = (Vg.e^,... .e^.v^) 
and s = (wn,f,....f ,w ) be two paths on Q with the followingU I O CJ p 36
properties:

(8.42) vQ = a, vv e AS(0,N),

(8.43) (vQ,e1....vv-] »ev\{vv)) = e\{vvl c S(0,N),

(8.44) wQ = a, wa e AS(0,N),

(8.45) (Wq . ^ ....wa-l,fa \ {wa^ = sV wa} C ^(0,N),

(8.46) r n s = {a} .

If (8.42)-(8.46) hold then r and s are two paths in S(0,N) from 
a to AS(0,N) which intersect only in a. (This can only happen if 
a is a vertex of Q „.) The reverse of r followed by s is a simple 
curve which divides S(0,N) into two components, each of which is 
bounded by this simple curve and one of the arcs of AS(0,N) between 
wQ and v^ (see Fig. 8.2). Denote these components in arbitrary order 

S' = S'(0,r,s) and S" = S"(0,r,s).

Def. 8.1. For any subset R of S(0,N) and vertex v. on r we say 
that v.j is connected to s in R if v̂  = a or if there exists a 

path t = (u0,g-j,... ,gT,uT) on Qp£ which satisfies
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Figure 8.2 The outer square is S(0,N); the inner square is 
S(a,3.2^). S' is the hatched region.

(8.47) (9i\ {u0}’u1’" ' ,ut-1

(8.48) uQ = vi and ut =

and

(8.49) V - ' V i

>gT\ { u T) )  = t \ { u Q5UT} c: R,

on s for some 1 £ j £ a ,

are occupied.

Next we set

(8.50) Y(vi,a,£,r,s)

and

1 if is connected to s in 

S'(e,r,s) n s U ^ ^ ) ,

0 otherwi se,

(8.51) 1(1) = min E (CA  Y Y(v.,a,£,r,s)
’ vlErnS(a,3.2A) 1

v.j a vertex of 7J\

o>(v) = e(v), v e P'(0,r,s)},

///

where the min in (8.51) is over all a, 0, N, r, s which satisfy
(8.41)-(8.46) and over all choices of +1 or -1 for e(v) with v
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a vertex of Q 0 in S". Note that the sum (8.51) is simply the num-
£

ber of vertices of % or r inside S(a,3.2 ) which are connected 
to s in S' n $(3,3.2^). This sum depends only on occupancies of 

vertices in S', and hence is independent of (u)(v): v e S"}. Thus, 
the conditioning in the expectation in the right hand side of (8.51) 
does not influence the expectation. It is nevertheless useful for the 
proof of the next lemma to introduce this conditioning.

We shall also need an analogue of Z when r is replaced by a 
path on (instead of on Qp^). In other words
r = (vg,e|,...,e*,v*) will now be a path on which satisfies

(8.52) v* = a, v* e AS(0,N) 

and

(8.53) (vg,e*....v*-l’e* \ {v*}) = r*\{v*} <=§(0,N).

s = Ŵ0 5̂ l5' * ’ 5̂ a,wa^ W1^  a9ain be a path on Qp  ̂which satisfies
(8.44) and (8.45). Analogously to (8.46) we require

(8.54) r* H s = {a} ,

which can happen only if a is a vertex of Q and Q*, i.e., a ver­
tex of 771. Def. 8.1 can be copied without change for vertices vt on 

r* instead of vertices v̂  on r. Finally Y*(v*,a,£jr*,s) is 
defined as in (8.50) by replacing v̂  and r by v* and r*. Similar­
ly Z*(£) is defined by replacing Y(v.j ,a,£,r,s) by Y*(v|,a,£,r*,s) 
and S"(0,r,s) by S"(0,r*,s) in (8.51).

Lemma 8.2. There exist constants 0 < C^, ^  ® , such that for

Q = Qq s Q-| * Qq QJl Q*
ct J£,

(8.55) Z(l) > C122 1 , l > 0,

and
a £

(8.56) Z*U) 1 C]22 1 , l > 0 .

Proof: We restrict ourselves to (8.55) since the proof of (8.56) is
practically the same. Throughout we fix Q as one of the four graphs 

Qq » 5-j > Qq or Q| . If Q = Q|, then Q* = Qi, i =0,1.
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The idea of the proof is very similar to the last part of the 
proof of Lemma 7.4 (but s* is now replaced by s). Let r and s 
be as in (8.42)-(8.46). Again we start with considering disjoint 

annuli centered at [_aj := (L a(l) J»L a(2) J) (a = (a(l),a(2))
= Vq = Wq ). In view of (8.37) suitable annuli to take now are

Vk := S( L a J,6.22k)\s(La J . e ^ ' 1).

As in the argument for (7.72) we estimate the probability of some v..
being connected in to s by the probability of there existing

an occupied circuit surrounding |_aj in Assume now that there
is a vertex v. of r in V, which is connected by a path

\  K
t = (uQ,g-j,... ,gT ,uT) in fi S'(09r9s) to s. In Lemma 7.4 we only
used the estimate that V. contains at least the one vertex vi, of

r connected to s, in this situation. Here we shall be less casual 
with our estimation. Let u 9 the final point of t9 equal w. onL J
Consider the path sk consisting of t followed by
(w. 9f .+19...,f 9w ) (a tail piece of s). Just as sj j 1 a a

s.

itself, s. is

Figure 8.3 r and s are drawn as solid curves, t is 
dashed, s^ is the composition of t and
the boldly drawn part of s.

a path on S(09N) from a point of r to AS(0,N), and sk intersects

r only in the initial point v. of ŝ . Therefore sk can take
k

over the role of s. If some v̂  is connected to s^ in S'(09r9s)
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then is connected to s itself in S'. We can therefore obtain 
new points connected to s, by looking for points which are connected 
to ŝ . This is done by considering the annuli

S(Lv. J , 6.22m) \ § ( L v i J . 6.22"1- 1) 
nk \

centered at I v. J  := (L vi 0) J »L v-i (2) J ) .  This procedure can 
h  ’k \

be repeated and we obtain something resembling a branching process in 
which the first generation consists of the v- . Each vertex v which

in some generation has been found to be connected to s by a path s 
"produces" a next generation of vertices connected to s, namely the 

ones connected to s inside suitable annuli centered at L v J • Closer 
scrutiny would show that we are dealing with a supercritical branching 
process with mean number of offspring per individual equal to m > 1, 

say. Estimating Z(£) would then amount to estimating the total num­
ber of individuals in the branching process after e£ generations, for 
some e > 0. This number would have an expectation

me£ = 2£(e log m/log 2)

This is precisely the kind of estimate claimed in (8.55). Rather than 

follow the above outline in detail we shall prove the recursion relation

(8.57) Z(£) > (1 +6^0)ZU-3), £ > 4 ,

with 62q as in (8.36). This corresponds roughly to decomposing the 
branching process into the separate branching processes generated by 

the individuals of the first generation of the original branching 
process. The (e£)-th generation of the former branching process is the 
sum of the (e£-l)-th generation for the latter branching process.

Now for the detailed proof of (8.57). Fix a, 0, N, £, r and s 

such that (8.41)-(8.46) hold. Obviously (8.41)-(8.46) continue to hold 
when £ is replaced by £-3 in (8.41), and also

Y(vi,a,£,r,s) > Y(vi,a,£-3,r,s) for v̂  e S(a,3.2£“3).

Consequently
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(8.58) E { l  n o Y(v. ,a,Jl,r,s) |u(v) = e(v),v e S"}
PH vierns(a,3.2J1' J) 1

> E  { l  . , Y(vi,a,J.-3,r,s)|n)(v) = e(v),v e S"}
PH v^erHS(a,3.2^ J) 1

> Z(JL-3).

Next define the closed annulus

(8.59) V := S(!_ a J s3(2S,‘1 + 2*'3))\ S( |_ a j ,3(2Jl‘1 - Zl ~3))

<= S(a,3.2A) <= 1(0,N),

where as above a = (a (1) ,a(2)), [_ a J = (L a0 ) J »L a(2) J )• We shall 
apply Prop. 2.3 with S taken equal to V. For J we take the peri­
meter of S'(0,r,s) and for the arcs B-j, A, B2, C making up J we 

take

B-j = reverse of r, A = {a} (a single point), B^ = s and

(8.60) q = arc of AS(0,N) from wq to vv in the boundary of

S'(0,r,s).

We shall be concerned with the collection of paths t = (uQ»g-|»... >g #u ) 
on Qp^ which satisfy

(8.61) t c y  ,

(8.62) (9-jW ’U^..->uT_1 ,gT\{uT>) = t\{uQ ,uT} cs*(0,r,s),

(8.63) Uq is some vertex v̂  on r with 0 < i < v ,

and

(8.64) u is some vertex w. on s with 0 < j < a .
 ̂ J

Let G(r,s) be the event

G(r,s) = { 3 occupied path t on Q which satisfies
(8.61)-(8.64)} .
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The properties (8.62)-(8-64) are the properties (2.23)-(2.25) in the 
present set up. Therefore Prop. 2.3 can be applied, and on the event 
G(r,s) there exists a unique occupied path t satisfying (8.61)
-(8.64) for which

J"(t) = component of int(J)\t with {a} in its boundary

= component of S'(0,r,s)\t with {a} in its boundary

is minimal. We shall denote this path with minimal J”(t) by T when­
ever it exists. Then Prop. 2.3 implies

(8.65) G(r,s) = U {T = t} ,

where the union is over all t satisfying (8.61)-(8.64) (compare 
(7.46)). Also, as in (7.72), any occupied circuit c on Qp  ̂ and in 
V, surrounding |_ a J , contains an occupied path t satisfying (8.61) 
-(8.64). (This time apply Lemma A.2 with J-| = J, J2 = c and note that, 
by virtue of (8.59) and i  >_ 4

c c y e §(0,N), a = vQ = wQ t V;

consequently any vertex v. of r on c must have 0 < i < v and 
any vertex w. of s one must have 0 < j < a and hence the require-

J
ments 0 < i < v in (8.63) and 0 < j < a in (8.64) are automati­
cally fulfilled.) It follows that

(8.66) P {G(r,s)> :> P { 3 occupied circuit on Q in V
P P P*

and surrounding |_a_|} •

As in the proof of Cor. 6.1 from Theorem 6.1 one can find an occupied 

circuit in V surrounding La J as soon as there exist occupied
vertical crossings on Q 0 of the two rectangles (one correspondingpx,
to the plus signs and one to the minus signs)

[[ a(l) J ± 3.2*'1 - 3.2^~3, [_ a(1) J ,± 3.2^_1 + 3.2i_3] x 

[|_ a(2) j - 3(2Jl'1 + 2Z'3),La(2) J + 3(2Jl'1 + 2£"3)] ,

as well as occupied horizontal crossings on of the two rectangles
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[ L a(1) J - 3(2Jl'1 + 2^"3), [_a(l) J + 3(2£_1 + 2S'"3)] x 

[[_ a(2) J ±3.2£_1 - 3.2£'3, [_ a(2) J +3.231'1 + 3.2£'3].

By the FKG inequality and (8.36) the right hand side of (8.66) is there- 
4 , %fore at least 630 , when p = ph (Q). In other words 

(8.67) Pp„(Q)

Now let t = (ug,g-| 5... ,gT ,uT) be a fixed path satisfying (8.61)- 
(8.64) (no reference to the occupancies of the u. is made at the 
moment). Then t is a crosscut of J and divides int(J) = S' (0,r,s) 
into two components. The one which contains {a} in its boundary we 
denoted above as J"(t), while the one with C in its boundary is 
denoted as usual by J+(t) (see Fig. 8.4). It is important to give

Figure 8.4 V is the annulus between the dashed lines. The 
small squares centered at a and b are
S(a,3.2^ and S(b,3.2^"^). r and s are
drawn solidily; t is indicated b y -----------.
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another equivalent description of J (t). Let un = v. and denoteu
by rn the subpath (v. ,e. ...... e ,v ) of r. Let u = w. and

u Iq-m  v v T J0
denote by Sq the following path, consisting of t and the piece of

s from w . on:
J0

S0 = (u0 ,9l.... 9x ,Ut = wj0 >fj0+l’wj0+l” -” fa ’wa)-

Finally, we write b for Ug = . Then the paths r^ and Sq

Q p satisfy the following analogues of (8.42)-(8.46)pJ6

v, = b, v e AS(0,N),
:0 v

on

(vio ’eio+V - ’ev \ {vv » =ro \ {vv}C:S(0 ’N) 

uQ = b, wq e AS(0,N),

(uo,9i ......V ut v'j0,fj0+1...... V i
= SQ\  {wa} <= S(0 ,N) (use t c V cs(e,N)),

rQ n Sq = {b} .

In addition, since b = u. e V (8.41) implies 

(8.68) S(b,3.2il'3) cs ( a,3.2l) <=S(e,N).

Therefore rg, Sq and b can take over the roles of r, s and a, 

respectively. In particular the simple curve consisting of the reverse
o

of rg followed by Sg divides S(0,N) into two components 
S'(0,Vg,Sg) and S"(0,rg,Sg), where we now choose S'(0,rQ,SQ) to be 
that component with the arc C between wa and v^ in its boundary. 
(This arc is also in the boundary of S'(0,r,s); see (8.60).) Also

(8.69) E { 5! o * Y(v, ,b,£-3,rn ,sn) |w(v) = e(v), v e
PH vierons(b,3.2s' d) 1 u u

vieS?t
S'^Q.rQ.SQ)} > Z(£-3).
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We claim that S'^rgjSg) Is the same as J+(t). This follows
immediately from the fact that these two Jordan domains have the same
boundary. Indeed, the boundary of J (t) consists of t, the piece
of s between its intersection with t, i.e., w. , and its endpoint

°0
w0 (these two pieces make up
from u to the intersectionv
make up the boundary of S'(0,r 

claim that

Sq ), the arc C and the piece of r 
u. of r and t. These same curves
’o

q ,Sq ). It immediately follows from this

(8.70) S'(0sro ,so) = J+(t) <= int(J) = S'(0,r,s)

and

(8.71) S"(0,r,s) U T ( t )  ^ S n{Q9rQ9sQ) .

Let us now assume that in addition to (8.61 )-(8.64) t satisfies

(8.72) u-|,... ,ut_-j are occupied .

Then t satisfies (8.47)-(8.49) with i = iQ and

R = V n S' (0,r,s) c: §(a,3.2S') n S'(0,r,s)

(see (8.62) and (8.59)). Thus v. is connected to s in
. 0

S'(0,r,s) H S(a,3.2 ) and Y(v. ,a,£,r,s) = 1. However, more is true.
n0

We claim that if t satisfies (8.61 )-(8.64) and (8.72) and v̂  e r is 
connected to Sg in S'(0,rQ,Sg) H S(b,3.2^ ^), then v̂  is also 
connected to s in S'(0,r,s) HS(a,3.25'). In formulas

(8.73) Y(v1,b,£-3,rQ ,s0) = 1 implies Y(vi,a,£,r,s) = 1.

To prove (8.73) assume that v̂  e r, and that tg = (Xg,h^ ,x2,...,h ,x )

is a path on Qp£ satisfying

(8. 74) t o \ {xO ’ Xp} C 0 s (b>3-2)1" 3)

(8.75)

(8.76)

Xg = v- and xp = some vertex of Sg other than Ug,

<1 ,...,xp_i are occupied.

Observe first that (8.68) and (8.70) imply
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(8.77) S'(0,ro,so) n S(b,3.2*"3) «= S'(e,r,s) n S(a,3.2A).

Thus, is a^so contained in the right hand side of (8.77),
and if its final point xp equals a vertex of s with 1 £ j £ a 
(i.e., other than Wq ) then is connected in S'(0,r,s) n S(a,2^)
to s, i.e., Y { v .,a,£,r,s) = 1. The next case to check is when xp
is a vertex of sQ other than Wj,...twa or uQ. Then xp must be 
one of the vertices u-,,...,u . Moreover, u = w. for some

0 < jg < a (see (8.64)). Let xp = u^ » 1 £ kg <_t and define

tl := (xo5,V * ' ‘,hp,xp = uk059k0+ r ,,,,9T,UT^ tl consists of tg 
followed by a tail piece of t. All vertices of t-j other than its 

initial and final point are occupied, on account of (8.72) and (8.76). 
Moreover

t-,\ {x0 ,uT> <= S'(0,r,s) n s { a , 3 . 2 l )

by virtue of (8.74), (8.77), (8.62), (8.61) and (8.59). Thus, again

Y(v.j ,a,£,r,s) = 1. The last case to check for (8.73) is when v̂  = b
= v. = un. But in this case we already saw, just before (8.73) that 

10 u
Y(v. ,a,£,r,s) = 1, so that (8.73) has been verified.

The proof of (8.57) is now merely a matter of assembling some of 

the above results. If there exists a path t = (ug,g-|,.• • ,gT ,uT) on 
QpJl ^ i c h  satisfies (8.61 )-(8.64) and (8.72) then b = Uq e V. Then, 
by definition of V,

|a(i )-b(i) | > 3(2£'1-2Jl'3)-l

and S(a,3.2S’’3) and S(b,3.2*'~3) are disjoint. Thus, by (8.73)

(8.78) 7 . Y(v. ,a,£,r,s)
v ^ r n s u ^ ^ 16) 1

y n oY(v*,a,£,r,s) + y . o Y(v. ,a,£,r,s)
vierns(a,3.2y' J) 1 vierns(b,3.2)t J) 1

V̂ e5?i V.e»i

I no Y (v • ,a,£,r ,s) + T p q Y(v. ,b,£-3,rn.,Sp).
v,erns(a,3.2S' 3) 1 v,erns{b,3.2l 3) 1 0 v

v . ^  vi£̂
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Now , as we saw before, the left hand side of (8.78) is independent of 

the w(v) with v e S"(0,r,s). Therefore, by virtue of (8.58)

(8.79) E ( a ) { I q Y(v.,a,H,r,s)|aj(v) = e(v),v e S"(0,r,s)} 
PH(Ĉ } v.ernsta,3.2£) 1 

1 v.eVl

= E
P„(5)

{ 1
v.erflS(a ,3. 
1

„ Y(v. ,a,8,,r,s)} 
2*) 1

> Z(A-3) + Z Pn ,g n{T = t} . 
t pHw;

PH ^  vierns(u0,3.2S' d) 1 0 0 0
\i.m

= t} ,

where the sum is over those path t which satisfy (8.61)-(8.64), u^ 
is the initial point of t and rg, Sq are defined in terms of r, s 
and t as above. However, by Prop. 2.3 the event {T = t} depends 
only on the occupancies of the vertices in T"(t) (0,rg,Sg) (see
(8.71)). Therefore

1 aq\{ I Q-3 »sn) |T
PH ^ Vierns(u0 ,3.2a 3) 1 0 0 0

= t}

v.eM

>min E (Q»{ I V(v.x,l-3,rn,sn)|
e(-) PH ^ Vierns(u0 ,3.2£ 3) 1 0 0 0

v̂ e#!

u(v) = e(v), v e S"(0,ro ,so)}

> Z(£-3).

Substitution of this estimate into (8.79) and using (8.65) and (8.67) 
yields

E /fi1{ l „ Y(v. ,a,8.,r,s)|o)(v) = e(v),v e S"(0»r,s)}
pHWJ v - e r O s U ^ ^ )  1

> ZU-3)(i+P (Q){G(r,s)}) > (l+6jo)Z(A-3).



221
(8.57) now follows by minimizing over a,0,N,r,s and e(-)- 

To obtain (8.55) from (8.57) we merely have to show that 
Z(£) > 0 for each £ 0. This is easy to see, though, since by
Def. 8.1 always Y(a,a,£,r,s) = 1. If a is a central vertex of Q - 
and hence lies inside a face F of % but is not a vertex of 77i (see 
Sect. 2.3) - then a is not to be counted as one of the v̂  in the 
sum in (8.51). However, in this case r and s both have vertices 
on the perimeter of F, and these vertices belong to Q (and hence 77i). 
In particular there will be a vertex v of 77\ on r and a vertex 
w of 7J\ on s on the perimeter of F, such that an open arc of the 
perimeter of F from v to w lies inside S'(0,r,s) H S(a,3.2^). 
(See Fig. 8.5 for an illustration which applies when Q = Q* , Q̂  or 
Q* ; a cannot be a central vertex when Q = Qq .)

Figure 8.5 The center is the vertex a; it is a central
vertex in the square, which is a face F of 

The hatched region belongs to S'(e,N).
The edges from a to v-| and from v. to
v..+i belong to r. The edge from a to w-j

is the first edge of s. In this illustration 
the open edge between vi+1 and w-, belongs to

This open arc contains at most two vertices of Q and hence the ver­

tices on this open arc are all occupied with a probability at least

This completes the proof. □
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We remind the reader that N*(r*) = N*(r*,N) was defined in 

(8.30).
Lemma 8.3. There exist a constant 0 < C^3 < °° such that for Q equal 
to Q0 , Qr  Qq or Q* and any path r* = (v*,e*,...,e*,v*) on_ q *£ 
which satisfies (8.23)-(8.25) one has

(8.80) EpH(Q)N*(r*’N) — C13NOtl >

(8.81) x*(N,N);i,p,Q) < exp-C13(p-pH(Q))N L  p > PH> i = 1,2

and

(8.82) x((N,N);i,p,Q) < exp-C13(pH(Q)-p)N 1, p < pH> i = 1,2.

Proof: Again fix Q. Let J be the perimeter of [0,N]x[0,3N]
viewed as a Jordan curve, and set

A = [0,N]x{0> = bottom edge of J,

C = [0,N]x{3N} = top edge of J.

Also fix a path r* = (vg,e|,...,e*,v*) on Q*£ which satisfies 
(8.23)-(8.25). It will turn out to be convenient to estimate the left 
hand side of (8.80) somewhat indirectly, by means of the expected 
number of occupied connections above r* to the interior of

C1 := [0,N]x {4N}

(rather than to C itself). To be more specific, let be the peri­
meter of [0,N] x [0,4N]. Then A is also the bottom edge of J-j and 
C-j is the top edge of J-j. The path r* is also a horizontal cross­

ing of J-j, and we define J^(r*) and jj(r*) as the components of 
int(J-j)\r* with A and C-| in their boundary, respectively. We say 

that a vertex v* on r* H int(J) = r* fl i nt(J ) has an occupied
o

connection to C-j above r* if there exists a path 

s = (Vg»ei,...>ep’vp) on $p£ which satisfies (8.26)-(8.29) with J 
and C replaced by and C-j. Analogously to (8.30) we write 
N?(r*,N) for the number of vertices v* of % on r* H int(J-,) 
which have an occupied connection above v* to C-, . If v* has an

I o
occupied connection s = (vn ,e,,...,e ,v ) above r* to C-, , then s
must intersect C, necessarily in one of the v̂  (see Fig. 8.6). If

iA is the smallest index i with v. e C, then (vn ,e,,... ,e. ,v. ) 
u 1Q u 1 ^0 ’o
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(an initial piece of s) is an occupied connection above r* from v*
o

to C. Thus any vertex counted in N|(r*,N) must also be counted in 

N*(r*,N) so that

(8.83) N*(r*,N) > N*(r*,N)-

The first step in estimating the expectation of is again an 
imitation of Lemma 7.4. Let £ be the unique integer for which

(8.84) 3.2* < | < 3.2£+1 

and let
X = [1,3.2^+1] X F .

We denote by F*(r*) the event that there exists an occupied path 

s = (w05fr .--9fa >wa) on W1'th the following properties:

(8.85) Wq is a vertex of 7% on r* H int(J) H x

(8.86) w0 e ci H x c  ̂

(fl \ {V ,wl’fZ....V l lfa\ {Wa})

= s\{w0 ,wa} C jj(r*) ft X .

(8.87)
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Of course Wq has an occupied connecton to above r*, whenever 
such an s exists. Furthermore, if we denote the perimeter of the 
Jordan domain jt(r*) by J«, then such an s is a crosscut of

J.,(r*) = int(J9) and divides this domain into two components, J9(s)
R L R ^and J2(s) say. J2(s) (J2(s)) is the component with a piece of the

left edge of J-j, {0}x[0,4N], (the right edge of J^, {N}x[0,4N] )
in its boundary. By Prop. 2.3, if F*(r*) occurs, then there is a
unique occupied connection s with the properties (8.85)-(8.87) with
minimal J2(s). We shall call this the "left-most occupied connection"
and denote it by S whenever it exists. As in (7.60) any occupied
vertical crossing t on Q 0 of [1,3.2^+1]x [0,4N] contains anpX/ o

occupied connection from some point of r* to C-j inside X. Thus

(8.88) P {S exists} = P {F*(r*) occurs}
PH PH

>_P (3 occupied vertical crossing on Q of

[1,3.2a+l] x [0,4N]}

> a((3.2£,3.2^+4);2,pH>QpJl) > 6g6 .

For the one but last inequality we used (8.84) and Comment 3.3 (v), 
while the last inequality comes from (8.36).

Now let s be a fixed path satisfying (8.85)-(8.87). This brings 
us to the setup for Lemma 8.2. Take a = w^, 0 = (-3N,0) and 
r^ = the piece of r* from Wq to the right edge {N}x[0,4N] of 

(i.e., if wQ = vf, then r] = (wQ = vt,e?+ 1 .,e*,v*)).
Then (8.42)-(8.46) with r replaced by r-j, s replaced by s and N 

replaced by 4N are clearly satisfied, since

S(0,4N) = [-7N,N]x[-4N,4N] => [0,N]x[0,4N]

and the top right corners of the two rectangles coincide. (8.41) is 

replaced by
S(a,3.2Jl) <= S(0,4N),

which holds by virtue of (8.84) and the fact that a = Wq lies in

r* n X C [0,3.2£+l] X [0,3N].

We now take for S'(0,r^,s) the component of S(0,4N) \  r̂  U s)

= [-7N,N] x [-4N,4N]\r-j U s which is in the "upper right corner" of
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Figure 8.7. r consists of the dashed curve followed by rn. 

S'(0,r.|,s) = J2(s) 1S the hatched region.

S(0,4N), i.e., the component which is bounded by r-j U s and the arc 

of AS(0,4N) from wQ to vv which goes through the upper right 
corner (N,4N) of S(0,4N) (see Fig. 8.7). The latter arc is also an

D
arc of and one easily sees that S'(0sr-j5s) is precisely J2(s). 
S"(0,r-|9s) will be the other component of S(0s4N)\r-| U s. Then 

(8.56) implies

(8.89) E {# of vertices of 7)\ on r-.Fl S(a,3.2^) connected to
PH 1

s in S'(05r19s) fl $(3,3.2^) |oj(v ) = e(v), 

v e S"(05r-j ,s)} >_ C122

for any choice of e(v) = ±1, v e S" .

We can derive the required estimate (8.80) easily from (8.89) by 
an argument already used in Lemma 7.4. Firstly

(8.90) E {N*(r*,N)} > En (N*(r*,N)}
PH PH 1

fS exists}min E {N*(r*,N)|S = s}
PH s PH

> 6Qfi min En {N*(r*,N)|S = s} (by (8.88)).
yb s PH
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The sum and minimum in (8.90) are over all s satisfying (8.85)-(8.87). 
Secondly, any vertex v on r, H S(a,3.2^) which is connected to s

n '
in S'(0#r, ,s) H S(a,3.2 ) (in the sense of Def. 8.1) has an occupied

I o
connection above r* to C-|. The argument for this is practically 
identical to the argument following (7.66)-(7.69) in Lemma 7.4. Conse­

quently

N|(r*,N) >_ # of vertices of 771 on r-j H S(a,3.2S/) which is 

connected to s in S'(0,r-|,s) H S(a,3.2^).

Lastly, by Prop. 2.3 the event S = s depends only on the occupancies 

of the vertices in

J^(s) <= T2\J2<5) <=S(0,4N)\ S'(0,^,5) = S"(0,rr s).

Consequently

E {N*(r*,N)|S = s} >.min E {# of vertices of 77t on 
PH 1 e PH

r-j n S(a,3.2£) connected to s' in S'(0,r^,s) n S(a,3.2S')| 

o)(v) = e(v), v e S"(0,r-j ,s)} .

This, together with (8.90), (8.89) and (8.84), gives

al
EpH{N*(r*,N)} > 6g6C12(^) ,

whence (8.80).
(8.81) is immediate from (8.80) and (8.31) (and the symmetry 

between horizontal and vertical for the graphs under consideration). 
Finally (8.82) is nothing but (8.81) with Q* and "vacant" replaced by 

Q and "occupied". (Recall that

Pp {v vacant} = 1-p = 1-Pp {v occupied}

and

(8.91) Ph (Q) = i-ph (Q*)

for the graphs of this chapter, by virtue of Applications ii) and iv) 

in Sect. 3.4.) [3
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Another application of Lemma 8.2 will be needed for Theorems 8.1

and 8.2. It provides us with a lower bound for P (B(N)), where
PH

(8.92) B(N) := { 3 occupied path on Q in S(zQ,N) which
connects Zq with a point on AS(zQ9N)} .

Here Zq is as before, i.e., Zq = the origin if Q is 

and zQ = ( j ,Q) if Q is Q-j or Q* * .
or G* 9

Lemma 8.4. 

(8.93)

There exists a constant 0 < < °°

Pn {B(N)} > C./*1 1 .
PH ^

such that

Remark.

It is easy to use the argument at the end of the proof below and 

(8.36) to obtain

Pn {B(N}} > C14N_1 .

Such an estimate already appears in Smythe and Wierman (1978), formula
(3.34). However, to obtain the lower bounds in (8.5) and (8.6) it is
crucial to have an estimate like (8.93) which decreases only as a power
of N which is strictly larger than the minus first power. Lemma 8.5
below will give an upper bound for P {B(N)} which decreases like a

PH
negative power of N. It is not known whether there exists an a for
which NaP {B(N)} has a nonzero (but finite) limit as N °° . If such 

PH
an a exists it must lie strictly between zero and one by (8.93) and

(8.101). This is closely related to questions about the behavior of
P {#W N} for large N, or the cluster exponent x of Stauffer (1979). 
PH

*
Proof of Lemma 8.4. For simplicity take Q equal to Qq , Qq or Q1 
so that Qn0 has edges along the lines x(i) = k, i = 1,2, k e Z .pjo
Since the left hand side of (8.93) has the same value on Q-j as on 
these choices for Q suffice.

Fix l  as the unique integer with

(8.94) 2Z+2 < N < .

Consider the collection of occupied vertical crossings on Q 0 of
n g P 36

[ - 2 , 2 ] x [0,N], i.e., the collection of occupied paths
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(8.96) Wq e [-2^,2^] x {0} and 

wg e [-2£,2£] x {N} .

Denote by F the event that there exists at least one such occupied 
crossing. Then, by (8.36) and Comment 3.3 (v)

2.11). Prop. 2.3 tells us that whenever F occurs there is a unique 
left-most occupied crossing s of J , i.e., an occupied path s with 
minimal J~(s) among all occupied paths satisfying (8.95) and (8.96).
We denote this left-most crossing by S whenever it exists.

Now-let s = (wg»f-[ • • ’fa ’wa) be 3 fixed path on Qp  ̂ satisfy­
ing (8.95) and (8.96). We shall apply Lemma 8.2 with the following 
choices: 0 = the origin, a = wQ , r = the path along the first coordin­
ate axis, x(2) = 0, from Wq to the point (N,0) on the right edge 

of S(0,N). N and l  satisfy (8.94), so that (8.41) holds since 
a = Wq = (w q (1),0) with -2^ <_Wq (1) £ 2^ (by (8.96)). We view r 
as a path on Qp^ . (8.42)-(8.46) are trivially fulfilled for r and
s. For S'(0,r,s) we take the 'Upper right corner" of S(0,N)\ r U s, 
i.e., the component of S(0,N)\ r U s which contains the corner vertex 
(N,N) in its boundary (see Fig. 8.8). S"(0,N) is the other component
of S(0,N)\r U s. It is clear that Fr(J"(s)) intersects Fr(S'(0,N)) 
only in the path s, which is common to both these boundaries. More­
over, the point (N,N) of Fr(S') lies in ext(J”(s)). Consequently 
Fr(S') c  closure of ext(J~(s)). Therefore J~(s) either lies entirely 
in S' or entirely in S". Since A c Fr(J”(s)) can be connected by 

a horizontal line segment to the left edge (-N)x [-N ,+N] of S(0,N) 
without entering S' it follows that

(8.97) PpH(F} = a((2£+1 ,N);2,pH,Qp£) > 632 .

Let J be the perimeter of [-2^,2^] x [0,N] and A =  {-Z^LxfO.N] 
its left edge, C = its right edge. For any crossing s
satisfying (8.95) and (8.96) J±(s) are defined as before (see Def.

(8.98) J“(S) c S"(0,r,s).
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Figure 8.8 r is the boldly drawn path. J is the dashed 
rectangle. The large square is S(0,N).

We shall write B for the upper edge, [-N,N]x {N}9 of S(0,N). We 
shall say that a vertex v of ^  in S(0,N) has an occupied connec­
tion to B if there exists an occupied path t = ( u Q , g ^ . ,g ,u ) 
on Qp^ which satisfies

(9i\{V >ui....V i ,9p V uP}) = 4 V v V  <=^ 0>N)>

un = v and u e B.0 p

Assume now that {S = s} occurs so that s is occupied. Exactly as 
in the argument following (7.66)-(7.69) one now sees that any vertex v 
of W\ on r which is connected to s in S'(0,r,s) flS(a,3.2^) (in
the sense of Def. 8.1) automatically has an occupied connection to B. 

Therefore

(8.99) E {# of vertices of ^  on r which have an occupied
PH

connection to B|S = s}

E { l  o Y(v, .a.A.r.s) |S
PH v.crns(a,3.2il)

1

s} .

Proposition 2.3 shows that the event {S = s} depends only on the 
occupancies of vertices in T(s) c=S’"(0,r,s) (see (8.98)). Conse­
quently the right hand side of (8.99) is at least
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min E { T Q Y(v.,a9£,r9s)|w(v) = e(v),v e S"(e,r9s)} 
e PH v.ernsia93.2*) 1 

1 vie^
oti — 3ot -» a-,

> Z(£) > C122 1 > C122 1 N 1

(see (8.55) and (8.94)). Finally, since r c  [-N,+N]x{0},

(8.100) E {# of vertices of % on [-N,N]x{0} which have an 
PH

occupied connection to B}

> l P_ {S = s}E {# of vertices of ^  on r which are
"  s PH PH

connected to s in S'(e9r9s) D S(w q ,3.2a)|S = s}

-3a-, a-,
> C1?2 'N l P {S = s}

u  s PH

-3a-, a-, -3a-, a-,
> C122 'Pp^F} > 632C122 ]N .

In (8.100) the sum is over all s which satisfy (8.95) and (8.96), and
the last inequality relies on (8.97). (8.93) follows from (8.100)
since any vertex v of ^ on [-N,N]x{0} which has an occupied
connection to B also is connected by an occupied path on Qp^ to a
vertex on AS(v,N), because B lies in the complement of S(v,N).
From Lemma 2.1a we see that any such v is then also connected by an
occupied path on Q to a point on AS(v,N-l). The probability of this
event is P {B(N-l)}, the same for all v of ^  on [-N,N]x{0}. 

pu
There are at most (2N+1) such vertices v on [-N,N]x{0}9 so that
the left hand side of (8.100) is at most equal to (2N+1)P {B(N-l)}.

PH
(8.93) follows. □

We turn to the upper bound for P {B(N)>. The method for this
PH

estimation is due to Russo (1978) and Seymour ana welsh (1978).

Lemma 8.5. There exist constants 0 < C ^ 9 a2 < « such that

(8.101) Pn {B(N)> < C1RN “2 .PH

Proof: Consider the disjoint annuli
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(8.102) \lt  := S(0,3.2^)\ S(0,3.2^~^) for

log l(N-2)
l - 1.2,...,A0 L 2 log 2 J '

These are all contained in S(Zq ,N-1). If any one of them contains a

vacant circuit c* on surrounding the origin, then there cannot
exist an occupied path on Q from zQ to a point on AS(zQ,N). Indeed 
such an occupied path would start at zQ in the interior of c* and end 
in the exterior of c*, and hence would have to intersect c*. But if 
a path on Q intersects a path on Q*£ , then the two paths must have
a vertex of Q in common (cf. Comment 2.3 (v)). In our case there
would have to be a vertex on c* (hence vacant) which would also be a 

vertex on an occupied path from Zq to AS(z q ,N), which is impossible.
It follows from the above that

(8.103) Pp(B(N)} £ Pplthere is no vacant circuit on

surrounding the origin in any V^, 1 £ £ £ £q }

S.Q
= n P (there is no vacant circuit on Q*

£=1 P PS-

surrounding the origin in V^} .

O n O
But (8.37) applied to Q* (and with l replaced by 2 ) states

PPh(Q*){3 occupied circuit on 

in V£} > 6^ , i > 1.
p£ surrounding the origin

It we interchange "occupied" and "vacant" and take (8.91) into account, 
this means

(8.104) Pp ^Qj{there is no vacant circuit on surrounding

4
the origin in V^} £ 1-6^ , a > 1.

Substituting this estimate into the right hand side of (8.103) yields

PpH(Q)(B(" » i (,-5S»t0 •

from which (8.101) is immediate. □
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Proof of (8.4). The left hand inequality will be seen to follow quick­
ly from (8.13), (8.93), (8.19) and (8.81). Indeed, by virtue of (8.81), 
(8.17) holds for

N = C16(p-pH(<J)) ^  .

(We continue to denote by Ck various finite but strictly positive 
constants which depends on Q only.) (8.19) now shows that

2/ou
(8.105) Pp{#W*(zQ) > Si} < Ciexp-C17(p-pH(Q)) ,p > pH(Q).

Since
00 , 00 —

(8.106) l  l e ' * 1  = - 4r( I e_xA) = 7 (M + —
£=M ax £=M 1-e x l-e“x

one easily sees from this that

as soon as 

(8.107)

I &P {#W*(zn) > £} < l
-M H u L£=M

-3/ou
M > C18(p-pH(Q)) 1

Thus, by (8.13), and the definition (8.92) of B(M)

0(p) 1 \  Pp{B(M)}, P > PH

for any M which satisfies (8.107). Finally, since B(M) is an in­

creasing event we obtain from Lemma 4.1 and (8.93)

0(P) > ^ Pp{B(M)} PpH(Q){B(M)}

■, -3/ou 06-, -1
> F C14{C18(P”PH(Q)) } 9 p > pH(Q) •

This gives the left hand inequality in (8.4).
The right hand inequality in (8.4) is much easier to prove. Indeed, 

if #W(Zq ) = °° then Zq is connected by occupied paths to AS(Zq ,N) 

for all N. Consequently, for each N

0(p) 1 Pp{B(N)> .

However, B(N) is an increasing event which depends only on the
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occupancies of vertices in S(Zg,N), and for our graphs there are at 

most 2(2N+1)2 vertices of Q in S(zg,N). Thus for p̂  < p2 (4.2) 
applied to f = I g ^  gives

(8.108)
P? 2(2N+1i

Pn (B(N)} < (/) Pn {B(N)} .
M2 hi

If we use (8.108) with p-| = Pg < Pg = P Then we obtain from (8.101)

|(P) < (£-) 
PH

p 2(2N+1)2 p 2(2N+1)2 -a
p ' n rn'*,N1 < (jL \ r__n 1Pn {B(N)} < (-H  

PH PH '15' 5 P > P r

This holds for all N, and the right hand inequality of (8.4) now fol­

lows by choosing

- 1 / 2
N = L (log ^ )  J  ~ (PH)1/Z(P-PH)-1/Z. P > PH • □

Proof of the left hand inequalities in (8.5) and (8.6). Whenever B(N) 
occurs, then W(z q) contains an occupied path from Zq to A$(z q ,N), 
and any such path contains at least N vertices of Q. Therefore

Ep{#W;#W < °°} ^ NPp{B(N) occurs and 3 vacant circuit on

Q*£ surrounding 0 in +3> ’

Here and are as in (8.102) and we again use the fact that any 
vacant circuit on Q*^ which surrounds z^ must contain all of 
W(Zq ) in its interior (cf. proof of Lemma 8.5). But B(M) depends 
only on the vertices in S(zg,N) C S(0,N+1) in the graphs Q under 

consideration. Moreover S(0,N+1) is disjoint from V0 for

N > 5. It follows that for N > 5

Ep{#W;#W < oo} > NPp{B(N)}

. Pp{ 3 vacant circuit on Q*^ surrounding 0 in +3>.

Now we first take p p^ . Then we obtain from the fact that B(N) 
is an increasing event and (4.1), (8.93)

CL 1 — 1
(8.109) Ep{#W*,#W < »} > N C14N

. Pp{ 3 vacant circuit on Q*£ surrounding 0 in +3> .
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Next we use Lemma 4.1 with f the indicator function of the event 
that there exists a vacant circuit on Q*^ surrounding 0 in +g .

This event depends only on the occupancies of the vertices of in

\l0 ~ . Actually, it depends only on the vertices of ft? (or Q*) in

V£ +2 , since the other vertices of are all vacant by our con-
0 2 

vention (7.3). There are at most C-jgN vertices of Q* in +g .

Therefore by the version of (4.2) for decreasing f, and (8.104)

P {3 vacant circuit on Q* surrounding 0 in V0 ~}P a  p 36 * O
C U

i  19
£ ( 1ThL) P { 3 vacant circuit on Q* surrounding 0

| - p ^ |  P|_j p36

r n L19,N

in \ +3}

fi4 > P > P H ■

From this and (8.109) we obtain

a -1 C19n2
Ep{#W;#W < °°} > NCU N 1 (J^-) fij, p > pR

The left hand inequality in (8.6) follows by taking

l-PH.-l/2
n = L (log -fti1) J ~ d-PH)1/2(P-PH)-|/", p > p h •r  1/2

To obtain the left hand inequality of (8.5) we take p £ p̂ . Then 

Pp{#W(zQ) < «} = l-e(p) = 1.

(This is true even at p = pH by Sect. 3.3 or by (8.4).) We therefore 

have the simple bound

Ep{#W} > NPp{B(N)}

2(2N+1)2
> N(-E-) P„ {B(N)} (see (8.108))

H H
„ 2(2N+1)* cu-1 

1 N(-&-) 0, „N
PH '14
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This time we take

Proof of right hand inequalities in (8.5) and (8.6). The right hand 

inequality in (8.5) comes from (8.105) with Q and Q* interchanged 
and "occupied" and "vacant" interchanged. With these changes (8.105) 
turns into

2/ou
(8.110) Pp W zo) > *■} 1 C1exp-C1?(pH(Q)-p) l  , p < pH(Q)

(recall (8.91)). The right hand inequality in (8.5) is now obtained
by summing over l .

For the right hand inequality in (8.6) we need one more observa-
p

tion. Since S(z q ,N) contains no more than 2(2N+1) vertices of Q, 

#W(z q) > 2(2N+1)^ implies that W(Zq ) must contain vertices outside 

S(Zq ,N). This can only happen if Zq is connected by an occupied path 
to the exterior of S(Zq ,N), and hence B(N) occurs. If in addition 
#W(Zq ) < then - as we saw in the derivation of (8.12) - there must 

exist a vacant circuit on Q* surrounding Zq and containing at least 
N vertices of Q*. Therefore

(8.111) Pp{2(2N+l)2 < #W(zQ) < < Pp{B(N) and there exists a

By the estimate used for the second factor in the right hand side of 
(8.12) we obtain by means of (8.105), (8.106)

(8.112) Pp{2(2N+l)2 < #W(zQ) < oo}

vacant circuit on Q* surrounding Zq and containing 

at least N vertices) .

CO

< l  IP «W*(z0) > 1}

oo 2/a
^ ^  exp-C^y(p_p̂ j(Q)) a » p > ph(Q)

-2 /a ,
< c20(p-ph (q )) '{N+(p-pH(Q))

-2/a^
}

2/a,
•exp-C17(p-pH(Q)) 'NN
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Since
En{#W(zn);#W(zn) < -} < 2 + 16 £ (N+1)P (2(2N+1)2

P u u ”  N=0 P
< #W(zQ) < °°}

the right hand inequality in (8.6) follows easily. Q

The above proofs of (8.4)-(8.6) constitute the proof of Theorem 8.1. 

Proof of Theorem 8.2. We begin with the proof of (8.7). For P £ P^ 

we have the simple estimate
1

Pp{n < #W(zQ) < 00} < Pp{B(l(Itl)2 -l)} (by (8.111))

£ P (B(i(^-)^2 - i)} (since B is an increasing event)
PH

< C 19n “2 (by (8.101)) .

For p > P|_j we estimate (8.7) more or less in the same way, as long as 
p is close to p^, and by means of (8.112) for p-pH large. To be 

specific, take
1 1/2m = -g min(n ,n ).

Then, for large n 2(2m+l)2 < n so that by (8.111), (8.108) and

( 8 . 101)

(8.113) Pp{n < #W(zQ) < 00} < Pp{2(2m+l) < #W(zQ) < <*>}

„ 2(2m+l)2
< P (B(m)} < (-E-) Pn (B(m)}
- P PH PH

- c'5<t ’

2(2m+lr  -ar
m 9 P -> Pj_| •

For

the factor

0 < P“PH £ n
-a-j/8

(i)
PH

2(2m+lY _ i — ot-j /  8
£exp{2(2m+l) 1 og(l+p“ n )}

is bounded, so that (8.7) holds with y5 = min(a2/2,a-j0^/16) for such 
p. On the remaining interval _ /R

P-PH 1 n
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we use (8.112) with 

This gives

Pp{n < #W(zQ) < =»} < Pp{2(2N+l)2 < #W(zQ) <

< C21N3/2exp-C1?N1/2 = 0(n Ys), 

for any choice of y^ > 0.
The above proves (8.7) in all cases. (8.8) and the last inequal­

ity in (8.9) are immediate from (8.7). Finally, the left hand inequal­
ity in (8.9) follows from the observation - made already in the proof 
of the left hand inequalities in (8.5) and (8.6) - that #W(z q) n 
on the event B(n). Thus, by Lemma 8.4

p «W(zn) > n } > P  {B(n)> > Cu nai 1 . □PH u pH i*


