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3. PERIODIC PERCOLATION PROBLEMS.

3.1. Introduction of probability. Site vs bond problems.

Let Q be a graph satisfying (2.1)-(2.5) with vertex set \s and 

edge set £ . The most classical percolation model is the one in 

which all bonds of Q are randomly assigned to one of two classes, 

all bonds being assigned independently of each other. This is called 

bond-percolation, and the two kinds of bonds are called the passable 

or open bonds and the blocked or closed bonds. Instead of partitioning 

the bonds one often partitions the sites into two classes. Again all 

sites are assigned to one class or the other independently of each 

other. One now speaks of site-percolation and uses occupied and 

vacant sites to denote the two kinds of sites. The crucial require­

ment in both models is the independence of the bonds or sites, respec­

tively. This makes the states of the bonds or sites into a family of 

independent two-valued random variables. Accordingly the above models 

are called Bernoulli-percolation models.

Formally one describes the models as follows. One denotes the 

possible configurations of the bonds (sites) by +1 and -1 with 

+1 standing for passable (occupied) and -1 for blocked (vacant).

The configuration space for the whole system is then

(3.1) Q =n{-l,+l} or Q =n{-l,+l}
£ £ u lj

A generic point of is denoted by w =  {u)(e)>e £ and for the 

a-field in we take a-field generated by the cylinder sets 

of , i.e. the sets of the form

(3.2) {(jo: u)(e.j) = e-j,..., w(en) = en> , e. e £ , = ±1.

For the probability measure on we choose a product measure

(3.3) P£ = n y ,
e e £

where yg is defined by
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(3.4) ye(w(e) = +1} = 1 - ue(u)(e) = -1} = p(e)

for some 0 £  p(e) £l. One defines and by replacing £ 

and e by V and v , respectively, in (3.2) - (3.4).

Let u) e . The open cluster W(e) = W(e,u)) of an edge e is

the union of all edges and vertices which belong to some path 
r = (v0,e1=es...se^sv^) on Q , with e^ = e and all ê  passable.

(We lose nothing by taking the r self-avoiding.)

For the site problem and w e we defined the occupied cluster 

W(v) = W(v,a)) of a vertex v in Def. 2.7. We can of course use 

this same definition with "occupied" replaced by "open" to define 

W(v) in the bond-problem. This is what we used in the introduction, 

but for the comparison of bond and site-problems it is convenient 

to have W(e) available. Of course for the bond-problem

(3.5) W(v) = u W(e)
e incident 

to v

so that there is a close relation between W(e) and W(v). We shall 

use

(3.6) #W(e) and #W(v)

to denote the number of edges in W(e) and the number of vertices in 

W(v). The principal questions in percolation theory concern the 

distribution of #W, in particular the dependence of this distribution 

on the parameters p(e) and p(v) of P£ and P^ . Of special 

interest are the percolation probabilities

0£ (e): = P£ {#W(e) = °°} and

e^v): = Pu(#W(v) = -I.

The description in this section nowhere refers to the embedding 

of Q in 3R̂ . It is therefore clear that the distribution of #W 

and all related quantities in percolation theory depend only on the 

abstract structure of q, i.e., on is and e and the adjacency 

relationship. The embedding merely helps us to visualize the situation 

and to give economical proofs.

Before narrowing down the model further we show that a bond- 

percolation problem on q is equivalent to a site-percolation problem 

on q, the covering graph of Q (see Def. 2.13). For instance the 

distribution of # W(e) for an edge e of the simple quadratic 

lattice qQ of Ex. 2.1 (i) will be the same as that of # W(v)
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when v is the vertex of the graph q^ of Ex, 2.1 (ii) which corres­

ponds to e (Q-j = Qq ) , and when the probability measures on qQ and 

q-, are suitably related. In general, let q be a graph with covering 

graph q. Temporarily write a tilde over the entitities introduced 

above to denote the corresponding entity for q . (e.g. , P~) .
~ ~ 1 / 1 j

Denote by v(e) the vertex of q associated to the edge e of q 

(see Def. 2.13). We then have the following proposition.

Proposition 3.1. Let q be a graph with covering graph q . Define 

the map 0 : by

(3.7) <j>(u))(v(e)) = a)(e) , e e £ .

Then <j> is 1-1 onto , and for any e e £, oj e ,
L £

(3.8) f e W(e,co) if and only if v(f) e W(v(e) , cj>(a))).

Moreover, if

(3.9)

P~
b

is defined by

. X  iu
ve\j v

wi th

(3.10) ii~{u)(v) = +1} = u {00(e) = 1} = p(e)
v

whenever v = v(e) , then for all n <̂ °°

(3.11) Pr{#W(v(e)) = n} = P0{#W(e) = n}.U o
Proof: f e W(e,u)) iff there exists a path r = (vQ,e-| 9... ,e ,v^) 

on q with o)(e.) = 1 and ê  = e, e = f . For any such r let 

r = (v.j ,e^,... ,v^) be a path with possible double points with 
v.. = v(e..) associated to r as in Comment 2.5(iii). Then, by (3.7) 

<j>(o))(v .) = 0(o))(v(ei.)) = 1 so that f e W(e,oj) implies

vv = v(ev) = v(f) e H(v1,0(a>)) = W(v(e), <J>(a>)) .

The other direction of (3.8) is proved in the same way.

Now let C be a fixed union of n distinct edges of q 

containing e and such that for each edge f e C there exists a 

path r = (vQ,e-|,... ,e^,v^) with possible double points on q with

e = e , e = f . Then W(e„w) = C occurs iff
1 v
(3.12) (jo(f) =1 for all f £ C , but o)(g) = -1

for all edges g of q with one endpoint in C , but 

g not belonging to C.
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Indeed the first requirement of (3.12) says that each edge in C 

belongs to W(e,a>) , while the second requirement says that no other 

edges f belong to W(e,u)) , for any path from e to an edge outside 

C has to contain an edge outside C with one endpoint in C. Next 

let C be the union of all vertices v(f), f e C , and all edges of 

q between any two such vertices . C is contained in q and contains 

exactly the n distinct vertices v(f) , f e C , including of course 

v(e). Moreover W(v(e), oj) = C iff

(3.13) o j ( w ) = 1 for all w e C , but uj(u ) = -1 for all 

vertices u of q adjacent to a vertex in C , but not 

belonging to C

One easily sees that g has an endpoint in C but does not belong 

to C iff v(g) is adjacent to some vertex of C , but v(g) t C .

From this it is easy to see that

(3.14) Pe {W(e) = C} = P~ (W(v(e)) = C} 

if one takes P~ as in (3.9), (3.10) . But

(3.15) {#W(e) = n} = u (W(e) = C}
#C=n

with the union in the right hand side of (3.15) being over all C 

of the type considered above and containing n edges. Similarly

(3.16) {#W(v(e)) = n} = (W(v(e)) = C)
# On

and each C in the right hand side of (3.16) is the image of a unique 

C in the right hand side of (3.15). The last statement is easily 

verified by means of Comment 2.5(iii). (3.11) now follows from

(3.14)-(3.16). □

Because of Prop. 3.1 we shall restrict ourselves henceforth to 

site-percolation. The subscripts If used in this section therefore 

become superfluous and will be dropped from now on. We remark that 

we cannot use a similar procedure to translate a site-percolation 

problem on every graph q to a bond-percolation problem on another 

graph, because q may not be a covering graph of any other graph.

(If q = u for some graph u , and U has any vertex with three distinct 

edges e.j,e2,e3 incident to it, then v(e^), v(e2) and v(e3) are 

the vertices of a "triangle" in q. Thus the graph qQ of Ex. 2.1

(i) - which has no triangles - is not a covering graph.) On the other 

hand, there seems to be no way to go from site-percolation on q to 

bond-percolation on q .
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3.2. Periodic site-percolation.

Let q be a periodic graph, imbedded in IR̂  , with vertex set

lx (see Def. 2.1). We consider a periodic partition of V into

X sets l x - l x .  , i.e., we assume1 A A
(3.17) lx- n lx. = $ , i j , 1/ = U lx. ,

J i=l .
and (with the coordinate vectors of ]Rd)

1 a d
(3.18) v e lx. iff v + E k.E. e lx ,

1 j=l J J

1 < i < 1 , k. e 2.
J

(In typical examples the lx. will only have periods which are mult­

iples of and one has to change scale to obtain (3.18);

see Ex. 3.2(i) below). We take, as in Sect 3.1

(3.19) Q = n-c-i ,+l >

and a the a-field generated by the cylinder sets in ft . We shall 

restrict ourselves to probability measures on a which are specified 

by A parameters as follows: Let

(3.20) = [0,1]A 

and

(3.21) P = (p(l),...,p(A)) e ^

Then take

(3.22) P = n V ,
K velx

where
(3.23) uv(w(v)=l} = l-yv{w(v) = - U  = p(i) if v e \s., i<_i<X .

A probability measure of this form will be called a (A-parameter) 

periodic probability measure. Henceforth we shall consider only

periodic probability measures on periodic graphs. Ep will denote

expectation with respect to Pp.

Examples.

(i) Let Qq be the periodic graph of Ex. 2.1 (i), the simple 

quadratic lattice. Take A = 2, lx̂ = {(i^i^): î  +i^ is even} ,

IX2 = {(11si2): ^ l+^2 1S odc*̂ ' ^s n t stands, this does not satisfy
(3.18). However, we only have to make a change of scale to put the

example in periodic form. We change.the imbedding so that the vertex 

originally at (i-j,i2) 1S now at (~y » )5 and similarly
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1 * i ip j -i j p
"multiply the edges by a factor ~  . ( y  , y )  and ( y  , y )  are

h  ip
neighbors iff (2.6) holds. ^  now becomes { ( y  , y  ) : i.j+i2 is 

even} and similarly for ^ 2 .

p I T T -

P(2) p O)

0 P(1) p (2) p O)

p
Figure 3.1 Two-parameter site-percolation on HI .

The p-value next to a vertex gives the 
probability of being occupied for that 
vertex.

(ii) We describe this example as a bond-problem, because the 

transcription to a site-problem on the covering graph is more compli­

cated. In this example we allow three parameters. For Q we take 

the triangular lattice of Ex. 2.1(iii). We now consider the parti­

tion of its bonds into the three sets
2 tt

(3.24) = (bonds along the lines under an angle (j-l)y

with the first coordinate axis}, j=l,2,3,

and take each bond in £. open with probability p(j). The
J 2

description in (3.24) presupposes that Q is imbedded in 1R as

in Fig. 2.4

Figure 3.2 The p-value next to an edge gives the
probability of that edge being passable.
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To transcribe this to a periodic site-problem, we have to assign 

probability p(j) of being occupied to a vertex of Q corresponding 

to an edge e in £. . We also have to change scale as in the
J

description of 3: in Ex. 2.1 (iii) to obtain a periodic problem. ///

Define W(v) = W(v,u)) as in Def. 2.7 with "v occupied" 

being interpreted as "u)(v) = +1", and set

(3.25) 9(p,v) = P (#W(v) = °o} .

The X parameter periodic site-percolation problem is to determine 

the percolative region in P^ , i.e., to determine the set

(3.26) {p e P, : 0(p,v) > 0 for some v} .

If p(i) > 0 for i £ i £ X  then 0(p,v) > 0 for some v iff 

0(p,v) > 0 for all v by the FKG inequality (see Broadbent and 

Hammersley (1957) and Sect. 4.1. below). Therefore the intersection of 

the set (3.26) with {p: p(i) > 0 for 1 £  i £  X) is independent 

of v ; it equals the set

(3.27) (p e P : p(i) > 0 for 1 < i < X and

0(p,v) > 0 for all v}.

In the next section we formulate our principal result describing the 

percolative region, while Sect. 3.4 applies this theorem to give 

explicit answers in a number of examples. These answers had all been 

conjectured already in Sykes and Essam (1964).

3.3. Crossing probabilities and the principal theorem on 

percolative regions.

Let Q be a graph imbedded in TpP which satisfies (2.1)-(2.5).

We consider blocks B in IR̂  of the form 

d
(3.28) B = n [a. ,b.] = {x=(x(i),... ,x(d): a .£x(i )£b. ,l£i£d}-| 1 1 1 1

Def. 1. An i-crossing (on q) of B is a path (vn ,e1,...,e_,v J— i  \ U  | V  V
(on q) which satisfies

(3.29) (v.j ,e2,... ,ê _.j ,v̂ _.|) is contained in B =

(a] ,b]) x...x(ad ,bd)

^  We use standard interval notation for segments of edges. E.g. in
(3.30) (c-pV-j] denotes the piece of e-j between ^  and v̂

excluding but including v-j . Similarly for the segment 

[ V r ^ v) of ev in (3-31) ■
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(3.30)

and

(3.31)

[ a ^ ]  

of B

intersects the face {x(i) = a..} n B =

X.. . * [ 3 . ^  . b . ^ M a . M a . ^  ,b1+1] x . . .x[ad.bd]
o

in some point C-j such that (c^v^] ^ B .

e, intersects the face {x(i) = b.} n B of B in v i
o

some point such that [ v ^  ) c B .

Comments .

(i) Note that (3.29)-(3-31) require all but the first and 

final edge of an i-crossing (vQ,e.j,... ,e ,v^) of B, as well as the 

segments (c-|>v̂ ] and [v^ -|»£v ) °f the first and final edge to lie 

in the interior of B. When d = 2 , i.e. B is a rectangle in the 

plane, then we shall call a 1-crossing (2-crossing) a horizontal 

(vertical) crossing of B. In this case the continuous curve made

up from [CtjV.] , e9,...,e , and [v , ,c is a crosscut of

B (in the terminology of Newman (1951), Ch. V.ll.). Finally note 

that the initial and final point vn and v of a crossing of B 

can lie in B or in Fr (B) or outside B.

(ii) An i-crossing r of B is minimal in the sense that no 

subpath of the crossing with fewer edges than r is still an

i-crossing. One does, however, have the following obvious monotonicity

property. If [a! ,b!] c [a. ,b.] but [a . ,b.] c: [a' ,bl] for j t i ,
i i  I I  J J  J J

then an i-crossing (Vq ^^ ,... ,e^,v^) of B = n[a.,b.] contains

a subpath (v ,e , 1,... ,eQ,vJ which is an i-crossing of B'= n[a^,bl].
a a + 1  p  3 J  J

Def. 2. An i-crossing (v^je^,...,e^,v^) of B is called an 

occupied (vacant) i-crossing if all its vertices are occupied (vacant).

Comments .

(iii) When we shall use vacant crossings we shall usually be 

dealing with a matching pair of graphs q and q*. We shall then 

be interested in occupied crossings on q and vacant crossings on

Q* • ///
Now let Pp be a X-parameter periodic probability measure,

as in Sect. 3.2. Especially important for us will be the probability 

that there exists an i-crossing of a block with the "lower left" 

corner at the origin. Formally we define these as follows.

Def. 3. The crossing probability in the i-th direction of 

[O.np x ... x [o,nd] (on g) is
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(3.32) a(n;i,p) = a('n;i,p,q) = P^{ 3 an occupied i-crossing

on Q of [0,n1] x ... x [0,nd]} .

The analogous quantity for vacant crossings on q* will be written 

as

(3.33) a*(n;i,p) = o*(n;i,p,q) = a(n;i ,T-pSQ*) = Pp{ 3 a vacant

i-crossing on Q* of [0,n-|] x ... x [0,nd]}

(n here stands for (n.|,... ,nd).)

Comments .

(iv) In (3.33) 1-p stands for the A-vector

(1-p(l),1-p(2),...,1-p(A)) , while (q,q*) is a matching pair, based 

on (%,%) say. Recall that q and q* have the same vertex set 

in this case (Comment 2.2 (iv)). Thus P^ as defined by (3.21)- 

(3.23) is simultaneously a probability measure on the occupancy 

configurations on Q-j , on Q* and on ^  . The second equality in

(3.33) is immediate from

(3.34) Pp(v is vacant} = l-p(i) = Py p{v is occupied} , v e Ik . 

(see (3.22), (3.23)).

(v) It is immediate from Def. 3.1, 3.2 and Comment 3.3(ii)

that a(n;i,p) is decreasing in n. but increasing in each n̂  

with j f i . I l l
The remainder of this section gives the formulation of our

principal theorems on the percolative region. These deal only with

graphs imbedded in the plane, (q , q*) will be a matching pair of
2

periodic graphs imbedded in 1R , and Pp will be a A-parameter 

probability measure. W*(v) = W*(v,a0 will denote the vacant cluster 

of v on Q , i.e.,the union of all edges and vertices of Q* which 

belong to a vacant path on Q* with initial point v. The following 

conditions A and B will be used. They are viewed as conditions 

on the parameter point pQ for fixed q , q* and l^,..., .

Condition A relates the probabilities of an occupied crossing on Q 

with those of a vacant crossing on q* . Condition B is a relation 

between horizontal crossings (i.e., crossings in the 1-direction) 

with vertical crossings (i.e., crossings in the 2-direction). 

Condition A . There exists a 0 < 6 £ y  ,an integer nQ and
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vectors^ p = (p-|,p2),p* = (p|,p£) such that for i = 1 or i = 2

_  I * ___
(3.35) a(n; i ,pQ) implies a (n-p;i,pQ) > 6 ,

whenever n-j sn2 >_ ,

and also for j=l or j=2

(3.36) a*(ruj ,pQ) > ~  implies a(n-p*;j ,pQ) > 6

whenever n̂  fn2 >_ nQ .

Condition B. There exist numbers 6 > 0, 0 < a^ s b . < °°, j = 1,2 , 

and sequences {n£ = (n^ .n^)}^ > such that

(3.37) 

and

(3.38)

(3.39)

-*■ CO m 0 . -> °° as i  -* oo , j = 192

a(n4; 1»P0) i  <S » a^ a1n£1 >a2nn2 '>’ 2>Pq ) -  6

c*(m^j 1»Pg) _̂ 6 j c*( ( ) »  2 »Pg) ^  d .

One more definition and a bit of notation.

Def. 4 We call the line L : x(l) = a or x(2) = a an axis of 
symmetry for the partition Is ^ of the vertices of Q if

each k is invariant under reflection in the line L.i
Comment .

(vi) If Pp is given by (3.22), (3.23) and x(l) = a is an 

axis of symmetry for Q and for 11 then for v = (v(l),v(2))

(3.40) Ppfv = (v(l),v(2)) is occupied} = Pp{(2a-v(l) ,v(2)) is 

occupied}

for any p . Similarly if x(2) = a is an axis of symmetry for 

Q and 1/ . ///

When dealing with A-parameter problems (T(l) will denote 

the A-vector all of whose components equal zero (one). For p e P^, 

and real t, tp hak components tp(l),...,tp(X). Also, for 

P'.P"

(3.41) p* < < p" means p '(i) < p"(i) , i < i < \ .

Unfortunately the following two theorems have a forbidding appear- 

ance. Nevertheless they allow the determination of the percolative 

^  The p. and p* can take negative values.
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region in several examples, as we demonstrate in the next section.

Theorem 3.1. Let (q,G*) be a matchinq pair of periodic qraphs 
2

imbedded in 1R and ,..., a periodic partition of the vertices 

of q such that one of the coordinate axis is an axis of symmetry for 

q > Q* and the partition t-j,..., \sy Let p^ e be such that

(3.42) 0 < < pQ < < T

and such that Condition A or Condition B is satisfied. Then

(i) for all vertices v of q (and hence of q*)

(3.43) P (#W(v) = oo} = p (#W*(V) = oo} = o
p0 p0 

but

(3.44) E (#W(v)} = E (#W*(v)} = 0= •
p0 P0

Also, for every square = {(x-pX^) : |x̂ | <N, |xg| £  N}

(3.45) Pp { 3 an occupied circuit on q surrounding and 3

a vacant circuit on q* surrounding = 1 .

(i i) for any p 1 < < pQ

(3.46) P i (#W(v ) = oo} = 0 , Ppi (#W*(v) = »} > 0

and

(3.47) Pp,{ 3 exactly one infinite vacant cluster on q*} = 1 

and

(3.48) Ed ,{#W(v )} < °° .

(iii) for any p" > > pQ

(3.49) Pp„{#W(v) = oo} > o , Pp„{#W*(v) = oo} = o 

and

(3.50) Pp„{ 3 exactly one infinite occupied cluster on q} = 1 

and
(3.51) Epll{#W*(v)} < oo .

Theorem 3,2. Let q, q* and ,..., Lx be as in Theorem 3.1.

Assume there exist constants 0 < a.,...,d. < °° , j = 1,2,3 , and_ 3 _ J
for each p e P with 0 < < p < < 1 a function h : (0,1] •> (0,1]

A
and an nQ (h and n^ may depend on p) such that for n 1  nQ 

and 0 < x < 1
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(3.52) a((n,a1 n);1 ,p) >_ x imp! ies a((a2n,a3n);2,p) > h(x) > 0

(3.53) a((n,b1 n) ;2,p) >_ x imp!ies a((b2n,b3n);1,p) ^ h(x) > 0 ,

(3.54) a*((n,c1 n) ;1 ,p) >_ x imp!ies u*((c2n,c3n);2,p) > h(x) > 0 ,

and

(3.55) tJ*( (n.d^ n) ;2,p) _> x implies a*((d2n,d3n);1,p) :> h(x) > 0 .

For Pl e P, choose
A

(3.56) tg = i nf{t 0: tp1 E PA ’ limpsup a((n,a^n);1,tp^) > 0

or limsup a((n,b.jn); 2,tpJ > 0}
n-» o o

provided the set in the right hand side of (3.56) is nonempty. If

0 < < p0 : = toPl < < T  ,

then condition B holds for Pg , and consequently also (3.43) - 

(3.51) .

The proof of these theorems will be given in Ch. 7 after the 

necessary machinery has been developed.

In all examples of the next section the following corollary 

applies. Let q, q* and t ,..., be as in Theorem 3.1. Set

(3.57) S = {Pq e : 0 < < Pg < < 1 and Condition A 

or Condition B holds for Pg} 

and

(3.58) P_ = (p1 e PA : P ' < < Pg for some oQ- e S> ,

P+ = (p" e p r  P" > > Pg for some OCL e S} .

Corollary 3.1. Let (q> q*) and Ts 19... 3 be as in Theorem 3.1

II-

(3.59) ( O . l / c P  U S U I 3,
- -r ^

then the percolative regions for q and q* _m (0,1) are P+ 
and P_ , respectively (i.e., for 0 < < p < < 1 infinite occupied 

clusters on q (infinite vacant clusters on q*) occur iff 

p e P+(P_) .
It is reasonable to call s the critical surface in the cases 

where Cor. 1 applies.

3.4 Critical probabilities. Applications of the principal 

theorems.

The FKG inequality implies (see Sect. 4.1) that if q is
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connected, and if

(3.60) P {v is occupied} > 0 for all vertices of Q ,

then e(p,v) > 0 for some v iff 6(p,v) > 0 for all v. Also 

Ep{#W(v)} = “ for some v iff this holds for all v (see Sect. 4.1). 

For one-parameter problems with

(3.61) Pp(v is occupied} = yv(u>(v) = 1} = p

for all vertices v of a connected graph q we can therefore define 

the critical probabilities

(3.62) pH = pH(q) = sup{p e [0,1] : 6(p,v) = 0} ,

(3.63) PT = PT(Q) = sup{p e [0,1] : Ep{#W(v)} < <»} ,

and these numbers are independent of the choice of v. By definition 

Ep{#W(v)} >_ e(p,v) . °°

so that Ep{#W(v)} = °° for P > P̂ j • Therefore one always has

(3.64) PT < PH .

For periodic graphs q imbedded in 1R̂  we define a third critical 

probability which is a slight modification of one introduced by 

Seymour and Welsh (1978); see also Russo (1978).

(3.65) p~ := sup{p e [0,1] : lim a((3n,3n,..,3n,n,3n,...3n);i,p)
n - * »

= 0  , 1 < i < d} .

where the one component equal to n in a ((3n,...,n,.. . ,3n) ;i ,p) in
(3.65) is the i-th component. It will be a consequence of Theorem 

5.1 that for any periodic graph q imbedded in IRd

(3.66) Pr = P$ •

In some cases Corollary 3.1 can be used to show that 

PT = PS = PH ’
and in a small class of examples one can even calculate the common 

value of these critical probabilities. This is demonstrated in the 

applications below. Again all these applications are for graphs 

imbedded in the plane.

Applications .

(i) Triangulated graphs. Let q be a periodic graph imbedded 
2in 1R such that one of the coordinate axes is a symmetry axis and 

such that all faces of q are triangles. Let Pp be the one-
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parameter probability measure defined by (3.22) and (3.61). In each 

problem of this form

(3.67) Pj ~ p<j ~ P^ - 2

This applies for instance in the site-problem on the triangular 

lattice of Ex. 2.1(iii) or the centered quadratic lattice of Ex. 2.2 

(iii).

It is interesting to observe that one may "decorate" the faces of 

q almost arbitrarily without affecting (3.67). That is, if F is 

a face of Q we may add a number of vertices and edges inside F.

The addition of these vertices and edges does not increase 0(p,v) . 

Indeed, any occupied path entering and leaving F has to do so at 

two vertices v̂  and v^ on the perimeter of F. But then v̂  

and v^ are occupied and connected by an edge of q , and hence 

the piece of the path in F between v̂  and v^ can be replaced by 

the edge between v̂  and v2 . We can make such a change in every 

face; the decorations of different faces don't have to have any 

relation to each other, and the resulting graph does not have to 

be periodic or planar. Nevertheless it will have the same value of 

e(p,v) for v e q and hence also p^ = j  . If the number of added 

vertices in any face is uniformly bounded, then a slight extension of 

the above argument shows that also pT = p$ = ~  remains true for 

the decorated graph.

Van den Berg (1981), Fig. 1, shows an interesting example of a 

graph q which has all the properties required above, except for the 

periodicity, but with p^ = p^ = 1 . This illustrates how crucial 

periodicity is.

Proof of (3.67): q is a periodic mosaic and since all faces are 

already close-packed, we can take q* = q . (q, q*) is the matching 

pair based on (cj, 0); see Ex. 2.2 (iii). q is self-matching and 

Condition A holds trivially for Pq = ^  • Indeed

Pi (v is occupied} = P̂  (v is vacant} = ~  ,

2 2 
and since q = q* this gives

(3.68) a*(n;i,j) = a(n;i ,1-j,q*) = a(n;i,-,q) .

Clearly (3.68) implies (3.35) and (3.36). Thus, by (3.43), (3.46) 

and (3.4 9) percolation occurs under P^ iff p > |- . Also,
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E (#W(v)} < 00 iff p < \ . Thus pu = p = and (3.67) nowP L n I l
follows from (3.66).

2
(ii) Bond percolation on TL and further self-matching problems. 

In the first application we considered a one-parameter problem with 

q = (4* . Here we consider a two-parameter problem for a matching pair 

of periodic graphs (q, q*) with q* a translate of q . Assume 

that

(3.69) q* = q + Y

for some vector y = (y(l),y(2)). In other words, q and q* are 

imbedded in 1R such that v(e) is a vertex (edge) of q iff

v + y (e + y) is a vertex (edge) of q* . Assume also that the vertex 

set T is partitioned into two periodic classes ^  which

sati sfy

(3.70) t2 = L1 + y ,

and that one of the coordinate axes is an axis of symmetry for q, q* 

and b y  kg . If p = (p(l),p(2)) satisfies

(3.71) p(l) + p(2) = 1 , 0 < p(i) < 1 ,

then it is again easy to verify Condition A (see below). Hence

(3.71) gives the critical surface in this situation, and percolation 

occurs on q under with p < < 1 iff p(l) + p(2) > 1 .

The restriction of p to the line p(l) = p(2) gives the one- 

parameter problem, and we see from (3.71) that the critical probabil­

ities are again given by (3.67) in a one-parameter problem on a q 

which satisfies (3.69) ((3.70) will not even be needed for the one- 

parameter problem, since (3.72) below automatically holds at
,1 In x 

P (2 >2) •)•

TL2
The most classical example of this kind is bond-percolation on 

with

P{e is passable} = <
p o )

P(2)

if e is a horizontal edge 

if e is a vertical edge.

By Prop. 3.1 this is equivalent to site-percolation on the graph q^ 

of Ex. 2.1 (ii) with

N  = ^ 5  + V  : 5  ’Y  e 2 } »

U2 = + ^  : V y  '
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(See also Ex. 2.5 (ii).) To see that this fits in the above framework 

we take for the mosaic with vertex set lr̂ U and an edge be­

tween the vertices v = (v(l),v(2)) and w = (w(l),w(2)) iff (2.10) 

holds. For ^  we take the faces of ?/̂  (which are tilted squares, 

see Fig. 3.3 below) which contain a point (i-|,i2), with integral i-j, 

i*2 . 3* will consist of those faces which do not contain a point

(i 1 *i2) inte9ra  ̂ i 2 • Finely ^  1S the graph with vertex
set U l a n d  v = (v(l),v(2)), w = (w(l),w(2)) adjacent iff 

either (2.10) holds or

v(l) = w(1) e TL +1 , v (2) ,w(2) e TL , | v(2)-w(2) | = 1 

or

vO).w( l )  e TL , | v ( l ) -w( l ) |  = 1. v(2) = w(2) e TL + [  .

Figure 3.3
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One easily checks that (Q-j ,Q*) is the matching pair based on (^,3j) 

and that

Q* = q i + (? ’! }’ v2 = u1 + (l,l).

Thus (3.69) and (3.70) hold in this example and (3.71) is the critical 

surface. A generalization of this result for a mixed percolation 

model in which bond, sites and faces are random is given by Wierman 

(1982b).

Another example is Q = Q* = S', the triangular lattice S' of 

Ex. 2.1 (iii) with

1̂1 — {(i-jsi^)" i i > i 2 ^

\  = ^ ii + i ,i2 + ^ : V ' z  e

Again (3.69) and (3.70) hold with y = (g-, ̂ -), and the critical sur- 

face is given by (3.71).

P(1) p O )  p (D

Figure 3.4 The p-value next to a vertex gives the probability of 
being occupied for that vertex.

Verification of Condition A . Since Q and Q* have the same vertex 

set (Comment 2.2 (iv)).

1*1 U ijg = ^ = vertex set of Q* = ls + y = ( l^+y) U ( i^ + y)

^2 u ( L2 +
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by (3.69) and (3.70). But ^  + y and + Y are disjoint, and the

same holds for 

(3.70)

and 1*2 (see (3.17)). Thus, in addition to

^  = Ii2 + y

Therefore, if v e ^  , v + y e and for Pq satisfying (3.71)

P {v + y is vacant} = 1 - P {v + y is occupied} = 1 - pn(2) 
P0 Pq u

= pn(l) = P {v is occupied}. 
u p0

Similarly for v e so that for all v

(3.72) P {v is occupied} = P {v + y is vacant}, and p0 p0
P {v is vacant} = P {v + y is occupied}. 
p0 p0

Consequently the distribution of the set of occupied vertices of Q*
equals the distribution of the set of vacant vertices on Q + y = Q . 
Therefore

* _  —  *(3.73) a (n-p;l,pn ) = P {3 vacant horizontal crossing on Q of
u Pq

[0,n-|-p-|] x [0,n2-p2]}

= P {3 occupied horizontal crossing on Q p0
C “T i ’n-|-P-|"Y-|] x [~Y2 ,n2~p2~^2^

of

By means of the monotonicity properties of a given in Comment 3.3 (v) 

we see that for

(3.74) P] > 1 , P2 1  -1

the last member of (3.73) is at least^

P {3 occupied horizontal crossinq on Q of p0
[ - V T  ̂ 1  ̂5n]"P]"Ti+ r Y-j ll x ["Y2+ L t 2 J sn2"P2“Y2+ L Y 2 _]]}

> a(rr,l,pQ).

^  L Y J denotes the largest integer <_ y and f y "~| the smallest 
integer ■>.
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Thus, for any p which satisfies (3.74), (3.35) holds with 6 =

Similarly for (3.36).

(iii) Bond-percolation on the triangular and the hexagonal lattice. 

In this application we take Q = the triangular lattice and Qd = the 

hexagonal lattice, imbedded as in Ex. 2.6 (i i). Thus the vertices of 

Q are at the points (i-|,i2i/3) and (J-j + (J2 + ,i-| ̂ 2 9̂ 1 £
The faces of Q are equilateral triangles and its edges are under an 

angle 0, tt/3 or 2ir/3 with the first coordinate axis. The faces of 

Qd are regular hexagons and its edges are under angles j ,  |-+^, |-+^y 

with the first coordinate axis. Strictly speaking, this is not a per­

iodic imbedding, but as pointed out in Sect. 2.1 one merely has to change 

the vertical scale to make it periodic. In addition we shall describe 

this application in terms of bond-percolation. This is simpler than 

its equivalent formulation as a site-problem which can be obtained by 

going over to the covering graphs, as discussed in Sect. 2.5. Since Q 

and Qd are a dual pair, their covering graphs form a matching pair.

(See Sect. 2.6, especially Ex. 2.6 (ii).) One can verify this easily 

explicitly, but the covering graphs are more complicated than Q and 

Qd themselves.

As we shall see below, for the one-parameter bond-problem on these 

graphs the critical probabilities are given by

(3.75) pT (Q;bond) = ps(Q;bond) = pH(Q;bond) = 2 sin yg- ,

( 3 . 7 6 )  pT ( Q d ; b o n d )  = P s ( Q d ; b o n d )  = P H ( Q d ; b o n d )  = 1 - 2  s i n  .

Before we come to this result we describe first the 3-parameter problem 

of Sykes and Essam (1964). The edge set C of Q is divided into the 

three classes

e . = {edges of Q making an angle of (i-l)~-

with first coordinate axis}, i = 1,2,3.

An edge of 6^ is passable with probability p(i). Each edge of Qd 

intersects exactly one edge of Q and vice versa. In the covering 

graphs a pair of intersecting edges of Q and Qd would correspond to 

one common vertex of the covering graphs. In accordance with this fact 

we take an edge of Qd as passable iff the edge of Q which it inter­

sects is passable. Thus, any configuration of passable and blocked
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edges in Q is viewed at the same time as a configuration of passable
■k

and blocked edges on Q^. The analogues of a and a in the bond 

version become

a(n ;i ,p,Q) = Pp{ 3 crossing in the i-direction of [0,n-|] x [o,n2]

on Q with all its edges passable},

*
a (n;i,p,Q) = Pp{ 3 crossing in the i-direction of [0 ,n-| ] x [0 ,n2]

*
on Q with all its edges blocked}.

★
To verify condition A with this interpretation of a and a we 

follow Sykes and Essam's ingenious use of the star-triangle transforma­

tion. Instead of considering crossing probabilities on itself, we 

consider crossing probabilities on a translate of Q^, namely

(3.77)
2/3

Of course we take the probability of an edge e of ft being passable

equal to the probability that the translated edge e + ) 0f
L 2/3

is passable. These probabilities are p(l), p(2) and p(3) for the
TT TT TT 7T xTr

edges which make an angle of ^ anc* 2"+_3~ co~
ordinate axis, respectively. The vertex set of ft coincides with that 

of Q and each "up-triangle" of Q (i.e., the closure of a triangular 

face F of Q with vertices at (i^,i2/3), (i-|+l,i2/3) and 

(il + "2",(i2 + l')v̂ ) for some ^lsi2 e ^  contains a "star" of three 
edges of ft, one through each vertex on the perimeter of F (see Fig. 

3.5).

Figure 3.5 An up-triangle of Q with a star of ft . — - = edges 
of Q, —  = edges of ft. The p-value next to an edge 
gives the probability for that edge to be passable.
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It turns out that the connectivity properties on Q and W can be made 

identical by a suitable matching of certain probabilities in each up- 

triangle separately. Note that it is not so much the full configuration 

of passable edges in each up-triangle that is important, as the pairs 

of vertices which are connected in each up-triangle. Here we make the 

convention that two vertices v-| and v^ on the perimeter of F are 

connected in F on Q(M) if one can go along passable edges of Q 

(blocked edges of M) in T from v̂  to v^. If one has a sequence 

Vq ,...,v^ of distinct vertices of Q (or Ji) such that Vj_-j and v̂  

are connected in the unique up-triangle to which they both belong, 

j = 1,... ,v, then there exists a passable path (Wq ,e^,... ,e ,w^) on Q 

(or a path on W with all its edges blocked) with endpoints Wq = Vq ,

w = v and which contains the vertices vn ,...,v but only enters
T V  U  V
up-triangles which have one of the v̂  as vertices. Since the dia­

meter of any up-triangle equals one, this together with (3.77) implies

(3.78) a*(F-p;l ,p,Q) = Pp{3 a horizontal crossing of

[-i5n1-p1-i] x [---- , n 9-p9 - -— -] on U all of whose
l  \ \ £ 2/3 L ^ 2/3

edges are blocked}

£ Pp{3 a sequence of vertices Vq ,...,v^ such that 

v. , and v. are connected on 1 < j < v, and0 • <j
v e [-|-5n1-p1 +1] x [-— L +  1 ,n9-p9— 1], 1 < s £ v-1, 
s 2 \ \ 2 2/3 1 1 2/3

while v0(l) < - vv (l) > n-j-p-j+1} .

If the event in the last member of (3.78) occurs and 

r = (Wg,e^,... ,ê _ ,w t) is the path on & through Vq ,...,v^ as above, 

then r contains a horizontal crossing of

[- o -Pi ~ o 1 x t- _5np-p9 - _]
<L \ \ <L 2/3 L L 2/3

with all edges blocked. Assume now that Pq is such that for an up- 

triangle F with vertices v-|’v2 ,v3 anc* an^ subset r of {1,2,3}
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(3.79) P {the pairs of vertices connected in F on Q are p0
exactly the pairs v-j >vj with i ,j e D  

= P {the pairs of vertices connected in F on & arePO
exactly the pairs v. ,v̂. with i,j e F}

Then the right hand side of (3.78) remains unchanged for P = Pq if ** 
is replaced by Q, because distinct up-triangles have no edges in common, 

and have consequently independent edge configurations. (This holds on 

U as well as on Q.) However, when & is replaced by Q the last 

member of (3.78) is at least equal to

Pp{3 a passable horizontal crossing of

r 1
[- 2 ’V pl ' 2} [ -

2/3
n 2—P2 on Q} 

2/3

> a((n1-p1+l>n2-l-P2),1 ,p).

Therefore (3.35) holds when p-j <.1, p2 :> -1 for any Pg which satis­

fies (3.79). Similarly for (3.36), and consequently Condition A is im­

plied by (3.79).

We shall now verify that (3.79) holds for all Pg e S, where 

(3.80) S = {p e P3: 0 «  p «  l ,p( l )+p(2)+p(3)-p(l )p(2)p(3)  = 1}.

The only possibilities for r are cj), {1,2,3} and the three subsets of 

{1,2,3} consisting of exactly one pair. These last three subsets and 

their probabilities can be obtained from each other by cyclical permuta­

tions of the indices, so that it suffices to consider r = <f>, r = {1,2} 

and T = {1,2,3}. For r = <f>, the left and right hand side of (3.79) 

are, respectively,

(3.81) ( l - p ( l ) ) ( l - p (2 ) ) ( l - p (3 ) )
and

(3.82) p(l)p(2)p(3) + p( l )p(2) ( l -p(3) )  + p( l ) ( l -p(2) )p(3)
+ (1 -p(1))p(2)p(3)

(recall that on W we are looking for paths with blocked edges). It is 

simple algebra to check that (3.81) and (3.82) are equal for p e § . 

Equation (3.79) for r = (1,2,3^ aaain ^duces to the equality of
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(3.81) and (3.82). Finally, if r = {1,2} and the vertices are number­

ed as in Fig. 3.5, then both sides of (3.79) equal

p(3)(l-p(l))(l-p(2)).

The above shows that in this example Condition A holds whenever 

Pq e S. Unfortunately, neither of the coordinate axes is an axis of sym­

metry for the sets and and therefore Theorem 1 cannot be used 

for this 3-parameter problem. To obtain the required amount of symmetry 

we have to restrict ourselves to the two-parameter problem with p(2)

= p(3). In this case Theorem 1 applies, and for this problem the criti­

cal surface in P2 is obtained by taking p(2) = p(3) in (3.80). Thus, 

if we take

Pp{e is passable} =
p(1) if e e

p(2) if e £ e2 u e3 ,

then there are infinite passable clusters on the trianglar lattice Q 

under Pp with 0 < p(l), p(2) < 1 iff

(3.83) p(l) + 2p(2) - p(l)p(2)2 > 1.

When restricted further to the one-parameter problem with p(l) = p(2)

= p(3) we find for the triangular lattice the critical probabilities 

given in (3.75) since 2 sin jq  is the unique root in (0,1) of 

3p-p3 = 1. This value was conjectured by Sykes and Essam (1964) and 

first rigorously confirmed by Wierman (1981). By interchanging the role 

of "passable" and "blocked" one finds for the one-parameter problem on 

the hexagonal lattice the critical values given in (3.76). Of course, 

by obvious isomorphisms these results determine the percolative region 

also when we take p(l) = p(2) or p(l) = p(3) instead of p(2) = p(3).

So far we have been unable to prove the full conjecture of Sykes 

and Essam (1964) that & is the critical surface for the three-parameter 

problem. There are, however, many indications that the conjecture is 

correct, in addition to the above verification for the two-parameter 

problem. First, one can prove that no percolation can occur on Q if

p(l) + p(2) + p(3)-p(l)p(2)p(3) < 1.

Thus, the percolative region is contained in P + (see (3.58) for nota­

tion), and its intersection with the plane (p(2) = p(3)} is the same
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as the intersection of p with this plane. Also, if we take p(3) = 0,
+ 2 then the bond-problem on Q reduces to the bond-problem on TL with

probabilities p(l) and p(2) for horizontal and vertical edges to be

passable. This is evident if we imbed the triangular lattice as in Fig.

2.5 in Ex. 2.1 (iii). However, by Application (ii) above we know that

the critical surface for this bond-problem on TL is given by (3.71),

which is precisely the restriction of (3.80) to p(3) = 0, (if we ignore

the requirement p(3) > 0). Last, we can modify the three parameter

problem slightly so that the first coordinate axis becomes an axis of

symmetry. To do this we interchange the role of p(2) and p(3) in

every second row of up-triangles. To be precise we leave G -| as before

but replace £3 and £3 by

(3.84) £^ = {e: e an ed9e between (i ] s i 2^ ^  and ^  1 + ^  2 +

or between (i-j,^^) and (i -| + “ l)^3) for some

i-j ,i2 e z  }

(3.85) £3 {e: e an edge between 

or between (i -| >i 2^3)

and (i-| - p(ig+^-)/3) 

and (i i ' \ ’^ 2~ for some

i 1. i 2 e 2  }

Figure 3.6 A modified 3-parameter bond-problem on the 
triangular lattice. The p-value next to an 
edge gives the probability for that edge to 
be passable.



64

The assignment of probabilities becomes as indicated in Fig. 3.6. We 

can define # as before, but the probabilities of an edge of W being 

passable have to be modified in accordance with (3.84) and (3.85). Each 

up-triangle will have an assignment of probabilities as in Fig. 3.5 or 

with p(2) and p(3) interchanged. However, the remainder of the 

argument showing that Condition A holds whenever Pq e S remains un­

changed. Since this new example has the first-coordinate axis as axis 

of symmetry for Q, as well as for the edge classes >

Theorem 1 and Cor. 1 applies. Thus, S is the critical surface for 

the modified 3-parameter problem.

(iv) Site-percolation on 7L . In this example we shall verify 

Condition B. It will, however, not lead to an explicit determination 

of the percolative region. For our graph Q we take the quadratic 

lattice Qq of Ex. 2.1 (i). We consider the two-parameter site-perco­

lation problem corresponding to

v -| = {(i 1,i2) ’• i-j+i2 is even} » 

u 2 = {(i-, »i2): i-|+i2 is odd} •

A trivial change of scale by a factor j  in both the horizontal and 

vertical direction is required to bring this problem in the periodic 

form (3.18), but this will not change the fact that Q, Q , I a n d  \ŝ  

are unchanged by reflection in a coordinate axis or in the 45° line 

x(l) = x(2) (see Fig. 3.1). Thus, both coordinate axes are axes of 

symmetry while (3.52)-(3.55) hold trivially when all a.-d■ are equal
v) J

to one and h(x) = x, because the probability of an occupied horizontal

crossing of [0,n]x[0,m] on Q is the same as the probability of an

occupied vertical crossing of [0,m]x[o,n]. Similarly for vacant 
*

crossings on Q . Thus, Theorem 3.2 and Cor. 3.1 apply, and the criti­

cal surface S is given in this example by

(3.86) S = {pQ = (Pg(l) sPq (2 )): 0 «  pQ «  1, pQ = tQ(p1)p1

for p-j of the form (l,p) or (p,l), with 0 < p £  1} ,

where

(3.87) tq (p-j) = inf{t £  0: tp-j e P lim sup a( (n ,n) ;1 ,tp^) > 0} .
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Infinite occupied clusters on Q can occur only for p e P (see 

(3.58) with A = 2), while for p e P_

(3.88) E {#VJ(v)} < - .

When restricted to the one-parameter problem p(l) = p(2) Theorem 

3.2 (together with (3.66)) implies (see Ex. 2.2 (i) for Qq )

(3.89) Pj (Qq ) ~ P 5 ( Qq ̂ _ Ph^O ̂ = ~ ^-Ps^0^ - ^~Ph^0^‘

This result was recently proved by Russo (1981).

It is also interesting to see how § behaves near the edges 

p(l) = 1 and p(2) = 1 of P^. For p(l) = 1, the occupancy of a path 

is determined only by the vertices from t on the path. From this it 

follows that the questions whether 0(p,v) > 0 or Ep{#W(v)} < °° re­

duce to the same questions in a one-parameter problem with p = p(2) on 

the graph # with vertex set t and with (i-pi^) e ^  adjacent to

(j-| ,J2) L b2 on ^ iff

| i-j-j-j | = 1 and | i2~j2 | = 1 

or

i 1 - Ji» | i 2~^2 I _  ̂
or

| i 1 “ j 1 | - 2, i 2 - j 2 ■

This graph is drawn in Fig. 3.7, together with Qq .
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Figure 3.7 has vertices at the circles only; its edges 
are the solid as well as the dashed segments; Q 
has vertices at the circles and at the stars; 
its edges are the solid segments only.
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•k
Clearly W is isomorphic to Qq (see Ex. 2.2 (i)) and therefore on 

p(l) = 1, infinite occupied clusters occur if and only if p(2) > p^(Qq ); 

moreover E (#W(v)} < 00 for p(2) < Ph (Qq )- Simple Peierls arguments 
(i.e., counting arguments such as in Broadbent and Hammersley (1957), 

Theorem 7 and Hammersley (1959), Theorem 1) establish that

0 < pH^Cp < 1 *
ic

Thus, for any 0 < p(2) < pH(Q0 ) and p = (l,p(2)) (3.88) holds. More­

over, as we shall see in the proof of Lemma 5.4, p »  0 and (3.88) imply 

that a((n,n) ;i ,p) ■+■ 0. Since (3.88) for any p implies that (3.88) 

is also valid for any p ' with p 1(i) £ p(i), i = 1,2 (see Lemma 4.1), 

it follows that S cannot have any accumulation points in 

{1} x [0,pu(tin)). Interchanging the role of p(1) and p(2) we see 

that S has no accumulation points in [0,pH(QQ)) x {1} either. Fur­

thermore, it will be shown in Ch. 10 (see Ex. 10.2 (i)) that in the in­

terior of § lies strictly above the line p(l) + p(2) = 1. Thus,

S, P+ and P should look more or less as indicated in Fig. 3.8.

A

Figure 3.8 A = (P^(Qq )91)» B = (P^(Qq )9P^(Qq ))s 

C = (19p h (Qq ))

The points A = (p h (Qq )91) and C = (1,p h (Qq )) are the points on the 

boundary of ^  in the closure of S, while S intersects the diagonal

p(l) = p(2) in B = (PH(Q0)> Ph (Q0)) = O - P h ^ ^ - P h ^ ) ) -
(v) For a last application we consider one-parameter site-percola­

tion on the diced lattice of Ex. 2.1 (v). We shall show that this graph 

satisfies (3.52)-(3.55) so that Theorem 3.2 applies. For p-j we can 

take any number in (0,1). We then find from (3.43)-(3.51) and the 

definition (3.56)
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pn = inf{p ^  0: Tim sup a((n ,a,n) ;1 ,p) > 0 or
u n-x» 1

lim sup a((n,b-|n) ;2,p) > 0}
n - x x j

= pH (diced lattice) = pT (diced lattice)

= 1-p^ (matching graph of diced lattice)

= 1-p-p (matching graph of diced lattice) .

Note that the diced lattice is itself a mosaic, & say. Therefore, the

diced lattice & is the first graph of the matching pair (&,&*) based

on (&,0) (Comment 2.2 (vi)). In the imbedding of Ex. 2.1 (v) the

diced lattice is clearly invariant under a rotation over 120°, and this
* *

will also be true for & , where & is obtained by inserting the

"diagonal edges" in each face of $. From this property it is easy to 

derive (3.52)-(3.55) with h(x) = x. We content ourselves with demon­

strating (3.52). Note that any horizontal crossing on & of 

B = [0,n]x[0,^n] contains a continuous curve ij; inside B and con­

necting the left and right edge of B. When B is rotated around the 

origin over 120° it goes over into the rectangle B with vertices 0,

P1 := P2 := ( - j j - jF 'J .  j p S - J ) .  P3 := ( - ^ 3 , - ^ ) .  ip goes

Figure 3.9

over into a continuous curve on & inside B and connecting the seg­

ment from 0 to Pg with the segment from P-| to P^. In particular 

ip begins below the first coordinate-axis (x(2) = 0) and ends above
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the horizontal line through x(2) = —/3 - . Also ip is contained

between the vertical lines through P^, x(l) = - and the verti­

cal line through 0, x(l) = 0. In particular, if; contains a vertical 

crossing of

E/3 _ -j j ] x [A,^V3 - A] ,

if A >_ length of any edge of By the invariance of & and 

under the rotation over 120° we therefore have

(3.90) Pp{ 3 occupied vertical crossing of

[ £ - | / 3 - 1 , 1 ] x [ A , ^ - A ] }

£ P p { 3  continuous curve if; in B on & connecting the

segment from 0 to Pg with the segment from P-| to P  ̂

and with all vertices on if; occupied}

£ P p { 3  occupied horizontal crossing of [0,n] x [0,^]}.

This is essentially (3.52), since by the periodicity of & with periods 

(/3,0), (0,3) the left hand side of (3.90) is at most

(3.91) Pp{ 3 occupied vertical crossing of

[0,n(l+^) + 2 + /3]x[0,^3-|-2A - 3]}

£ Pp{ 3 occupied vertical crossing of [0,n] x [0,̂ -]}

for large n (use Comment 3.3 (v)). For the imbedding of $ of Ex.2.1 

(v) this would say

(3.92) a((n,£);2,p,fl )  > a ((n ,£) ;1 ,p ,&).
This is actually not the inequality which we can use, because we first 

have to change scale in order to make & periodic with periods (1,0) 

and (0,1). This, however, does not change the form of the inequality

(3.92) , and hence (3.52) follows for some a-|-a3 and h(x) = x.


