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3. PERIODIC PERCOLATION PROBLEMS .

3.1. Introduction of nrobability. Site vs bond problems.

Let G be a graph satisfying (2.1)-(2.5) with vertex set U and
edge set € . The most classical percolation model is the one in

which all bonds of G are randomly assigned to one of two classes,

all bonds being assigned independently of each other. This is called
bond-percolation, and the two kinds of bonds are called the passable

or open bonds and the blocked or closed bonds. Instead of partitioning
the bonds one often partitions the sites into two classes. Again all
sites are assigned to one class or the other independently of each
other. One now speaks of site-percolation and uses occupied and

vacant sites to denote the two kinds of sites. The crucial require-
ment in both models is the independence of the bonds or sites, respec-
tively. This makes the states of the bonds or sites into a family of
independent two-valued random variables. Accordingly the above models
are called Bernoulli-percolation models.

Formally one describes the models as follows. One denotes the
possible configurations of the bonds (sites) by +1 and -1 with
+1 standing for passable (occupied) and -1 for blocked (vacant).
The configuration space for the whole system is then

= - = - +
(3.1) Q& g{ 1,+1} or QU %{ 1,41}
A generic point of Q& is denoted by w = {w(e)}e ee and for the

o-field Be in Qo we take o-field generated by the cylinder sets
of Qe i.e. the sets of the form

(3-2) {w: w(e])=€-l,..., w(en)=En} ’e'i E&)E_i:i];

For the probability measure on ﬁe' we choose a product measure
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where Ha is defined by
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(3.4) ue{w(e) = +1} =1 - ue{w(e) = =1} = p(e)

for some 0 < p(e) < 1. One defines By and PU by replacing €&
and e by U and v , respectively, in (3.2) - (3.4).

let we Q . The open cluster W(e) = W(e,w) of an edge e is
the union of all edges and vertices which belong to some path
r = (vo,e1=e,...,ev,vv) on G , with e] = e and all e, passable.
(We lose nothing by taking the r self-avoiding.)
For the site problem and w e Q) we defined the occupied cluster
W(v) = W(v,w) of a vertex v 1in Def. 2.7. We can of course use
this same definition with "occupied" replaced by "open" to define
W(v) in the bond-problem. This is what we used in the introduction,
but for the comparison of bond and site-problems it is convenient
to have W(e) available. Of course for the bond-problem
(3.5) W(v) = U W(e)

e incident
to v

so that there is a close relation between W(e) and W(v). We shall
use

(3.6) #W(e) and  #W(v)

to denote the number of edges in W(e) and the number of vertices in
W(v). The principal questions in percolation theory concern the
distribution of #W, in particular the dependence of this distribution
on the parameters p(e) and p(v) of P and Py . Of special
interest are the percolation probabilities

ee(e): = Pe{#W(e) = o} and
eU(v): = PU{#W(V) = o},

The description in this section nowhere refers to the embedding
of G in RY. It is therefore clear that the distribution of #M
and all related quantities in percolation theory depend only on the
abstract structure of G, i.e., on U and €& and the adjacency
relationship. The embedding merely helps us to visualize the situation
and to give economical proofs.

Before narrowing down the model further we show that a bond-
percolation problem on ¢ 1is equivalent to a site-percolation problem
on @, the covering graph of ¢ (see Def. 2.13). For instance the
distribution of # W(e) for an edge e of the simple quadratic
lattice Gy of Ex. 2.1 (i) will be the same as that of # W(v)



when v 1is the vertex of the graph G of Ex. 2.1 (ii) which corres-
ponds to e (g1 = QO) , and when the probability measures on Gy and
Gy are suitably related. In general, let G be a graph with covering
graph (. Temporarily write a tilde over the entitities introduced
above to denote the corresponding ent1ty for q (e.q. ﬁi R 51) .
Denote by (e) the vertex of Q associated to the edge e of g
(see Def. 2.13). MWe then have the following nroposition.
Proposition 3.1. Let G be a graph with covering graph 5 . Define
the map ¢ : QE—> ﬁt by

(3.7) o(w)(v(e)) =wle) , ece€.

Then ¢ is 1-1 onto éﬁ , and for any e €€, we 2

(3.8) f e Wle,w) if and only if ;(f) e Wiv(e) , d(w)).

Moreover, if ﬁi is defined by

(3.9) Py = L W
vey V
with
(3.10) ﬁ;{&(V) = +1} =y fw(e) = 13 = p(e)

whenever v = v(e) , then for all n

I

(o]

(3.11) 5i{#W(V(e)) n} = Peﬁ#W(e) = n}.

Proof: f e W(e,w) iff there exists a path r = (vo,e1,...,ev,vv)
on G with w(e ) =1 and e, =e, e =f. Foranysuch r Tet

r = (v1,e1, ..,v ) be a path with possible double points with
v1 = v(e ) assoc1ated to r as in Comment 2.5(iii). Then, by (3.7)
o (w )(v ) o(w)(v(e.)) =1 so that f e W(e,w) implies

i

V= vley) = V(f) € W(vya(w)) = H(v(e), ¢(w)) .

v
The other direction of (3.8) is proved in the same way.

Now Tet C be a fixed union of n distinct edges of ¢
containing e and such that for each edge f € C there exists a
path r = (vo,e],...,ev,vv) with possible double points on G with

e, =e,e = f . Then W(e.w) = C occurs iff

1
(3.12) w(f)=1 for all f e C, but w(g) = -1

for all edges g of ( with one endpoint in C , but
g not belonging to C.
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Indeed the first requirement of (3.12) says that each edge in C
belongs to W(e,w) , while the second requirement says that no other
edges f belong to W(e,w) , for any path from e to an edge outside
C has to contain an edge outside C with one endpoint in C. Next
let € be the union of all vertices Vv(f), fe C, and all edges of
é between any two such vertices .C 1is contained in G and contains
exactly the n distinct vertices ;(f) » T e C, including of course

v(e). Moreover w(;(e), w) = C iff

(3.13)  w(w) =1 for all we C, but w(u) = -1 for all
vertices u of @ adjacent to a vertex in c , but not
belonging to c

One easily sees that g has an endpoint in C bq} does not belong

to C iff v(g) is adjacent to some vertex of C , but v(g) ¢ E .

From this it is easy to see that

(3.14) Pe {W(e) = C} = P~ (W(v(e)) = C}
if one takes ﬁﬂ as in (3.9), (3.10) . But

(3.15) {#W(e) = n} U {W(e) = C}
#C=n

i
H]

with the union in the right hand side of (3.15) being over all C
of the type considered above and containing n edges. Similarly
(3.16)  {#W(v(e)) = n} = _U {H(v(e)) = T
. #C=n

and each C in the right hand side of (3.16) is the image of a unique
C in the right hand side of (3.15). The last statement is easily
verified by means of Comment 2.5(iii). (3.11) now follows from
(3.14)-(3.16). L1

Because of Prop. 3.1 we shall restrict ourselves henceforth to
site-percolation. The subscripts U wused in this section therefore
become superfluous and will be dropped from now on. We remark that

we cannot use a similar procedure to translate a site-percolation

problem on every graph G to a bond-percolation problem on another
graph, because G may not be a covering graph of any other graph.

(If ¢ = 3 for some graph ¥ , and ¥ has any vertex with three distinct
edges e,,e,.e, incident to it, then Q(e]), V(ez) and ;(eB) are
the vertices of a "triangle" in . Thus the graph QO of Ex. 2.1
(i) - which has no triangles - is not a covering graph.) On the other
hand, there seems to be no way to go from site-percolation on ¢ to

bond-percolation on ( .
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3.2. Periodic site-percolation.
Let ¢ be a periodic graph, imbedded in Rd , with vertex set
U  {see Def. 2.1). We consider a periodic partition of U into

A sets U],..., Ux , i.e., we assume

A
(3.17) wn w=¢,1i#j, Lt=U b, »
L i=1
and (with E]”"’Ed the coordinate vectors of Rd)
d
(3.18) Ve Ui iff v + j§1 kjgj el

1T<i<hx, kj e 7.

(In typical examples the Ui will only have periods which are mult-
iples of E]""’Ed and one has to change scale to obtain (3.18);
see Ex. 3.2(i) below). We take, as in Sect 3.1

(3.19) Q= %{—1,+1}

and 8 the o-field generated by the cylinder sets in @ . We shall
restrict ourselves to probability measures on ® which are specified
by A parameters as follows: Let

(3.20) P = 0,17

and

(3.21) p=(p(1)s....p(A)) € @
Then take

(3.22) Py = vgu T

where

(3.23)  u,fw(v)=1} = T-u fw(v)=-1} = p(i) if ve b, i<ia .

A probability measure of this form will be called a (\-parameter)
periodic probability measure. Henceforth we shall consider only

periodic probability measures on periodic graphs. E_ will denote
expectation with respect to P_.

Examples.
(i) Let QO be the periodic graph of Ex. 2.1(i), the simple
quadratic lattice. Take X = 2, U] = {(11,12): 1]+12 is even} ,
UZ = {(11,12): i]+12 is odd}. As it stands, this does not satisfy
(3.18). However, we only have to make a change of scale to put the
example in periodic form. We change, the jmbedding so that the vertex

.. . 1 1
originally at (1],12) is now at (7g-, 7%—), and similarly
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"multiply the edges by a factor L (11- jgo and (il- ig) are
p .y g 2 . 2 L] 2 2 E] 2
i i

neighbors iff (2.6) holds. U] now becomes {(7%-, 7§-) :-i]+1'2 is
even} and similarly for Uz .

p(1)

p(2) |p(1)

ofp(1) p(2) (1)

Figure 3.1 Two-parameter site-percolation on Z?.
The p-value next to a vertex gives the

probability of being occupied for that
vertex.

(i1) We describe this example as a bond-problem, because the
transcription to a site-problem on the covering graph is more compli-
cated. In this example we allow three parameters. For (G we take
the triangular lattice of Ex. 2.1(iii). We now consider the parti-
tion of its bonds into the three sets

(3.24) ej = {bonds along the lines under an angle (j-])%;
with the first coordinate axis}, j=1,2,3,

and take each bond in Ej open with probability p(j). The
description “n (3.24) presupposes that ¢ is imbedded in R2 as
in Fig. 2.4

Figure 3.2 The p-value next to an edge gives the
probability of that edge being passable.
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To transcribe this to a periodic site-problem, we have to assign

probability p(j) of being occupied to a vertex of @ corresponding

to an edge e 1in &. . We also have to change scale as in the

description of J 1in Ex. 2.1 (iii) to obtain a periodic problem. ///
Define W(v) = W(v,w) as in Def. 2.7 with "v occupied"

being interpreted as "w(v) = +1", and set

(3.25) 8(p,v) = Pp{#w(v) = o} .

The A parameter periodic site-percolation problem is to determine
the percolative region in PA , 1.e., to determine the set

(3.26) {pe P, 6(p,v) > 0 for some v} .

If p(i) >0 for i<i<Xx then 0o(p,v) >0 for some v iff
8(p,v) >0 for all v by the FKG inequality (see Broadbent and
Hammersley (1957) and Sect. 4.1. below). Therefore the intersection of
the set (3.26) with {p: p(i) >0 for 1 < i <A} 1s independent

of v ; it equals the set

(3.27) pep: p(i) >0 for 1<i<x and
e(p,v) >0 for all v}.

In the next section we formulate our principal result describing the
percolative region, while Sect. 3.4 applies this theorem to give
explicit answers in a number of examples. These answers had all been
conjectured already in Sykes and Essam (1964).

3.3. Crossing probabilities and the principal theorem on

percolative regions.

Let ¢ be a graph imbedded in Rd which satisfies (2.1)-(2.5).

We consider blocks B in Rd of the form

d

(3.28) B =1 [a,,b.] = {x=(x(i),....x(d): a,<x(i)<b.,1<izd)
1

Def. 1. An i-crossing (on ) of B 1is a path (vo,e1,...,ev,vv)
(on ) which satisfies1)

(3.29) (v1,e2,...,ev_],vv_1) is contained in B =
(a],b]) X...X(ad,bd)

N We use standard interval notation for segments of edges. E.g. in
(3.30) (CT’V1] denotes the piece of e, between 2 and vy
excluding 21 but including vy - Similarly for the segment

[vv_1,cv) of e, in (3.31) .
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(3.30) e intersects the face {x(i) = ai} nes=

[a1,b1JX...X[a1_],bi_1]X{a1}x[a1+1,bi+]JX...X[ad,bd]
o
of B in some point 2 such that (gl,v]] CB.

and

(3.31) e, fintersects the face {x(1) = bi} NB of B in

2
some point ¢, such that [Vv-1’Cv) cB.

Comments .

(i) Note that (3.29)-(3.31) require all but the first and
final edge of an i-crossing (vo,e1,...,ev,vv) of B, as well as the
segments (c],v1] and [Vv—1’cv) of the first and final edge to lie
in the interior of B. When d =2 , i.e. B 1is a rectangle in the
plane, then we shall call a 1-crossing (2-crossing) a horizontal
(vertical) crossing of B. In this case the continuous curve made
up from [g1,v]] s €pseaas® and [vv_],cv_]] is a crosscut of
B (in the terminology of Newman (1951), Ch. V.11.). Finally note
that the ini§1a1 and final point Vo and vv of a crossing of B
can lie in B or in Fr (B) or outside B.

(ii) An j-crossing r of B 1is minimal in the sense that no
subpath of the crossing with fewer edges than r is still an
i-crossing. One does, however, have the following obvious monotonicity
property. If [a%,b%] - [ai’bi] but [aj,bj] c [aj,bi] for j#1,
then an i-crossing (v _.e ,...,ev,vv) of B =1[a.,b.] contains

0’71
a subpath (va,ea+],...,e8,v6) which is an i-crossing of B'= H[aj,bj]-

Def. 2. An i-crossing (vo,e],...,ev,vv) of B 1is called an
occupied (vacant) i-crossing if all its vertices are occupied (vacant).
Comments .
(ii1) When we shall use vacant crossings we shall usually be
dealing with a matching pair of graphs (¢ and G*. We shall then
be interested in occupied crossings on ( and vacant crossings on
G* . /117
Now let Pp be a A-parameter periodic probability measure,
as in Sect. 3.2. Especially important for us will be the probability
that there exists an i-crossing of a block with the "lower left"
corner at the origin. Formally we define these as follows.
Def. 3. The crossing probability in the i-th direction of
[O,n1] X ... 0X [O,nd] (on ) s
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(3.32) o(n;i,p) = c(?}i,p,q) =P {3 an occupied i-crossing
on G of [O,n]] X ... X [O,nd]} .

The analogous quantity for vacant crossings on G* will be written
as

(3.33)  o*(n3i.p) = o*(n;i,psG) = o(nsi,T-p,G*) = Pp{ 3 a vacant

i-crossing on G* of [0,n1] X L..0% [O,nd]}

(n here stands for (n],...,nd).)
Comments .

(iv) 1In (3.33) T1-p stands for the A-vector
(1-p(1),1-p(2)5...,1-p(X)) , while (G,g*) is a matching pair, based
on (7,%) say. Recall that 7,6 and G* have the same vertex set
in this case (Comment 2.2 (iv)). Thus Pp as defined by (3.21)-
(3.23) is simultaneously a probability measure on the occupancy
configurations on Gy, ON G* and on 9 . The second equality in
(3.33) is immediate from

(3.34) Pp{v is vacant} = 1-p(i) = PTlp{V is occupied} , v e Ui

(see (3.22), (3.23)).

(v) It is immediate from Def. 3.1, 3.2 and Comment 3.3(ii)
that o(n;i,p) is decreasing in n, but increasing in each nj
with j # 1 . /1]

The remainder of this section gives the formulation of our
principal theorems on the percolative region. These deal only with
graphs imbedded in the plane. (G, G*) will be a matching pair of
periodic graphs imbedded in RZ ,and P_ will be a A-parameter
probability measure. W*(v) = W*(v,w) will denote the vacant cluster
of v on G , i.e.,the union of all edges and vertices of G* which
belong to a vacant path on G* with initial point v. The following
conditions A and B will be used. They are viewed as conditions
on the parameter point Py for fixed ¢, ¢* and B],..., bA .
Condition A relates the probabilities of an occupied crossing on G
with those of a vacant crossing on G* . Condition B 1is a relation
between horizontal crossings (i.e., crossings in the 1-direction)
with vertical crossings (i.e., crossings in the 2-direction).

Condition A. There exists a 0 < ¢ 5_%— » an integer n, anc

0
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vectors]) o= (p1,92),5* = (p?,pg) such that for i =1 or i =2

(3.35) o(n; i,po) 3_%-imp1ies o*(ﬁlgﬁi,po) > 8,
whenever NpsNy 2 Ny s

and also for Jj=1 or j=2

"o

Condition B. There exist numbers & > 0 0 <a., bg <ow, j=1,2,
}

(3.36) c*(ﬁ;j,po) 3-12- implies O(n-?,j,po) > 8
whenever NysNy >

and sequences {n, = (n )}K > iy = (m21,m22 . such that
(3.37) an > o, mlj >o as >0, jo=1,2
and

(3.38)  olngs Tpy) > 6, o((agn,,sayny, )5 2.p,) > 8

*(m - * .
(3.39)  o*(mp31,py) 2 6, o*((bymy, ,bome, )5 2,p4) > 8 .
One more definition and a bit of notation.
Def. 4 We call the line L : x(1) = a or x(2) =a an axis of
symmetry for the partition U],..., ]JX of the vertices of ¢ if
each 1% is invariant under reflection in the 1ine L.

Comment .
(vi) If Pp is given by (3.22), (3.23) and x(1) = a is an
axis of symmetry for ¢ and for U1,..., BA then for v=(v(1),v(2))

(3.40) Pp{v = (v(1),v(2)) is occupied} = PpKZa—v(1),v(2)) is

occupied}

for any pe®, . Similarly if x(2) = a is an axis of symmetry for

G and  Ly,..., Uy 11/
When dealing with A-parameter problems O0(1) will denote

the XA-vector all of whose components equal zero (one). For p e Pys

and real t, tp has components tp(1),...,tp()). Also, for

p',p" € Py

(3.41) p' << p" means p'(i) <p"(i) , i<i<h.

Unfortunately the following two theorems have a forbidding appear-
ance. Nevertheless they allow the determination of the percolative
1) The o; and p? can take negative values.



50

region in several examples, as we demonstrate in the next section.
Theorem 3.1. Let (G,G*) be a matching pair of periodic graphs
imbedded in R2 and Upsenes by 8 periodic partition of the vertices
of G such that one of the coordinate axis is an axis of symmetry for
G» G* and the partition U],..., L, . Let pO e P be such that

A

(3.42) 0 << Py < < T

and such that Condition A or Condition B 1is satisfied. Then
(1) for all vertices v of ¢ (and hence of ¢*)

(3.43) {#W(v) = =} = P {#U*(v) = =} = 0

P
Po Po
but
(3.44) E {#W(v)} = E_ {#W*(Vv)} = o
Po Po
Also, for every square Sy = {(x],xz) XN X <N

(3.45) Pp { 3 an occupied circuit on G surrounding SN and 3
0
a vacant circuit on ¢* surrounding SN} =1
(i1) for any p' < <p,
(3.46) Pp.{#w(v) =w} =0, Pp.{#W*(v) = o} > 0

and
(3.47) Pp.{ 3 exactly one infinite vacant cluster on (*} = 1
and
(3.48) ED.{#W(V)} <o,
(ii1) for any p" > > p,
(3.49) P {#M(v) = =} >0, Poul#lx(v) = =} = 0
and
(3.50) Pp”{ 3 exactly one infinite occupied cluster on (} = 1

and

(3.51) Ep"{#w*(v)} <o,

Theorem 3.2. Llet ¢, g* and Uyoees Uy be as in Theorem 3.1.
Assume there exist constaﬁﬁs 0 < aiil"’dj <w, j=1,2,3, and
for each p € PA with 0 <<p<<1 a function h : (0,1] » (0,1]
and an n0 (h and nO may depend on p) such that for n >n

0
and 0 <x <
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\"4
x

(3.52) o((n,a,n);1,p) >

1 implies c((azn,aBn);Z,p) > h(x) >0

\4
>

(3.53) o((n,b]n);Z,p) > n,b

(3.54) c*((n,c]n);1,p) >

implies o((b, 3 )31,p) > h(x) >0,

implies o*((c,n,cyn);2,p) > h(x) > 0,

v
x

(3.55) o*((n,d;n);2,p) >

\4
x

implies o*((dzn,d3n);1,p) > h(x) >0 .

For Py € P choose

(3.56) t, = inf{t > 0: tp] e P, limpsup o((n,a

A

or Tlimsup o((n,b1n); 2,tp1) > 0}

n—o

provided the set in the right hand side of (3.56) is nonempty. If

0 <<py:=typ << T

3

then condition B holds for Po » and consequently also (3.43) -

(3.51) .
The proof of these theorems will be given in Ch. 7 after the
necessary machinery has been developed.

In all examples of the next section the following corollary

applies. Let G, ¢* and U],..., Uk be as in Theorem 3.1. Set

(3.57) 8§ = {po > P)\ : 0 < < Py < < T and Condition A

or Condition B holds for po}
and

(3.58) ©_

P
+

{p' e PA: P' < <P, for some Py € St .,

1} P . "
{p" e AP > > pg for some Py

Corollary 3.1. Let (Q, G¢*) and U1,..., bA be as in Theorem 3.1.
If.

eS8} .

(3.59) (0,1)Acp_us U,
then the percolative regions for (¢ and G* in (0,1)A are P,

and ®_, respectively (i.e., for D <<p<<1 infinite occupied

clusters on ( (infinite vacant clusters on y*) occcur iff
p e P+(P_) .
It is reasonable to call 8§ the critical surface in the cases

where Cor. 1 applies.
3.4 Critical probabilities. Applications of the principal

theorems.
The FKG inequality implies (see Sect. 4.1) that if ¢ is



connected, and if
(3.60) Pp{v is occupied} > 0 for all vertices of ¢ ,

then 6(p,v) >0 for some v iff o(p,v) >0 for all v. Also
Ep{#W(v)} = o for some v iff this holds for all v (see Sect. 4.1).
For one-parameter problems with

(3.61) Pp{v is occupied} = uv{w(v) =1} =p

for all vertices v of a connected graph G we can therefore define
the critical probabilities

(3.62)  p, = py(G) = sup{p e [0,1] : 8(p,v) = O} ,

(3.63)  p = py(G) = sup{p e [0,1] : Ep{#w(v)} <},

and these numbers are independent of the choice of v. By definition
Ep{#W(v)} > 6(p,v) . =

so that Ep{#w(v)} = o for p> Py - Therefore one always has

(3.64) Pr <Py -

For periodic graphs ¢ imbedded in md we define a third critical
probability which is a slight modification of one introduced by
Seymour and Welsh (1978); see also Russo (1978).

(3.65) pg = sup{p € [0,1] : 1im o((3n,3n,...3n,n,3n,...3n);1,p)

n—>c
=0 » 1 <i<d}.
where the one component equal to n in o ((3n,...,n,...,3n);i,p) in
(3.65) is the i-th component. It will be a consequence of Theorem
5.1 that for any periodic graph ¢ imbedded in RY

(3.66) Pr = Pg
In some cases Corollary 3.1 can be used to show that
pT = pS = pH s
and in a small class of examples one can even calculate the common
value of these critical probabilities. This is demonstrated in the

applications below. Again all these applications are for graphs
imbedded in the plane.

Applications.
(i) Triangulated graphs. Let G be a periodic graph imbedded
in Rz such that one of the coordinate axes is a symmetry axis and
such that all faces of G are triangles. Let PD be the one-




parameter probability measure defined by (3.22) and (3.61). In each
problem of this form

—

This applies for instance in the site-problem on the triangular
lattice of Ex. 2.1(iii) or the centered quadratic lattice of Ex. 2.2
(iii).

It is interesting to observe that one may "decorate" the faces of
G almost arbitrarily without affecting (3.67). That is, if F is
a face of ¢ we may add a number of vertices and edges inside F.
The addition of these vertices and edges does not increase 6(p,v) .
Indeed, any occupied path entering and leaving F has to do so at
two vertices v and v2 on the perimeter of F. But then v1
and v2 are occupied and connected by an edge of G , and hence
the piece of the path in F between vy and v, can be replaced by
the edge between vy and Vo We can make such a change in every
face; the decorations of different faces don't have to have any
relation to each other, and the resulting graph does not have to
be periodic or planar. Nevertheless it will have the same value of
8(p,v) for v e G and hence also Py = %—. If the number of added
vertices in any face is uniformly bounded, then a slight extension of
the above argument shows that also
the decorated graph.

Vanden Berg (1981), Fig. 1, shows an interesting example of a
graph G which has all the properties required above, except for the
periodicity, but with Pr =Py = 1 . This illustrates how crucial
periodicity is.

I I
P; = Pg = 5 remains true for

Proof of (3.67): ¢ 1is a periodic mosaic and since all faces are
already close-packed, we can take ¢* =G . (G, G*) is the matching
pair based on (¢, P); see Ex. 2.2 (iii), ¢ is self-matching and

Condition A holds trivially for Pg = %—. Indeed

P1 {v is occupied} = P] {v is vacant} = %- R
2 2
and since G = g* this gives

(3.68) o*(Mi,3) = o(Mi,1-1.G%) = o(mi,l,g) -

Clearly (3.68) implies (3.35) and (3.36). Thus, by (3.43), (3.46)

and (3.49) percolation occurs under Pp iff po> %—. Also,



EUH(V)} < @ iFF p < 32- . Thus  p, =
follows from (3.66).

(ii) Bond percolation on 12 and further self-matching problems.
In the first application we considered a one-parameter problem with

and (3.67) now

4 = ¥ . Here we consider a two-parameter problem for a matching pair
of periodic graphs (G, 4*) with (* a translate of ( . Assume
that

(3.69) G¥ =G *y

for some vector vy = (y(1),v(2)). In other words, ¢ and @* are
imbedded in RZ such that v(e) 1is a vertex (edge) of ( iff

v+y (e+y) is a vertex (edge) of G* . Assume also that the vertex

set L is partitioned into two periodic classes b1 s b2 which
satisfy
(3.70) b2 = L.I + v,

and that one of the coordinate axes is an axis of symmetry for ¢, (*
and h1, b2 . If p=(p(1),p(2)) satisfies

(3.71) p(1) + p(2) =1 , 0<p(i)<1,

then it is again easy to verify Condition A (see below). Hence
(3.71) gives the critical surface in this situation, and percolation
occurs on ( under Pp with p < <1 iff p(1) + p(2) > 1

The restriction of p to the line p(1)

]

p(2) gives the one-
parameter problem, and we see from (3.71) that the critical probabil-
ities are again given by (3.67) in a one-parameter problem on a (
which satisfies (3.69) ((3.70) will not even be needed for the one-
parameter problem, since (3.72) below automatically holds at

p = (y) o)

) The most classical example of this kind is bond-percolation on
- with

p(1) if e 1is a horizontal edge
P{e 1is passable} =

p(2) if e 1is a vertical edge.

By Prop. 3.1 this is equivalent to site-percolation on the graph g1
of Ex. 2.1 (ii) with

L,o= {(i, +

1 2):1-‘,';261},

Y2

i
-
—~
—
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(See also Ex. 2.5 (ii1).) To see that this fits in the above framework
we take for Wﬁ the mosaic with vertex set h1 U UZ and an edge be-
tween the vertices v = (v(1),v(2)) and w= (w(1),w(2)) iff (2.10)
holds. For 3] we take the faces of Wq (which are tilted squares,
see Fig. 3.3 below) which contain a point (11,12), with integral 11,
12. 3? will consist of those faces which*do not contain a point
(11,12) 1],12. Finally Q] is the graph with vertex
set b] U UZ and v = (v(1),v(2)), w= (w(1),w(2)) adjacent iff
either (2.10) holds or

with intearal

V(1) = w(1) € Z 43, v(2)u(2) € Z, [v(2)-w(2)] = 1
or
V()1 € Z v -] = 1, v(2) = w(2) e Z +5 .
x(2)-axis

yd
-—---- - —=-x(1)-axis OQ<><>
Oi 74 <::> Gy

Figure 3.3
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One easily checks that (Q1,Q?) is the matching pair based on (Wﬁ’gl)
and that
*

= 1 =
Q]‘Q]'*'(é's‘z‘)s Uz_ h'|+(

—r
a—d

s'é')-

N|—

Thus (3.69) and (3.70) hold in this example and (3.71) is the critical
surface. A generalization of this result for a mixed percolation
model in which bona, sites and faces are random is given by Wierman
(1982b).

Another example is G = Q* = J, the triangular lattice I of
Ex. 2.1 (ii1) with

b = {(11,12): 11,12 e Z},

IRPUYER [ PO
UZ— H11+§n2+2).1]n25 Z}Y.

——
—

Again (3.69) and (3.70) hold with vy = (E-,EJ, and the critical sur-
face is given by (3.71).

p(1) p(1) p(1)
p(2) (2) (2)
p(1) p(1)

Figure 3.4 The p-value next to a vertex gives the probability of
being occupied for that vertex.

Verification of Condition A. Since G and Q* have the same vertex
set (Comment 2.2 (iv)).

U U U, 1;=vemeseton*= U o+y = (h]+Y)U (U2+Y)

= UZ U ( h2+y)



57

by (3.69) and (3.70). But Uj-+y and h2-+y are disjoint, and the
same holds for U1 and Uy (see (3.17)). Thus, in addition to
(3.70)

11] = U2+y

Therefore, if v e U], vty e hz and for Po satisfying (3.71)

Pp {v+v is vacant}

1-P
0 p

{v+vy is occupied} = 1 —pO(Z)
0

po(1) = Ppo{v is occupied}.

Similarly for v ¢ Uz, so that for all v

(3.72) P_ {v is occupied} = P_ {v+vy is vacant}, and
Po Po

P {v is vacant} = P_ {v+vy is occupied}.
Po Po

Consequently the distribution of the set of occupied vertices of §
equals the distribution of the set of vacant vertices on G+vy = Q*.
Therefore

(3.73) o*(ﬁlwﬁ1,p0) = PpO{B vacant horizontal crossing on Q* of
[O ,h1 _O]] x [Osnz_pzj}

= Pp {3 occupied horizontal crossing on G of
0

['Y-I ,n-I'Q]'Y'I:] X ['YZ :nz'pz"Yz]

By means of the monotonicity properties of o given in Comment 3.3 (v)
we see that for

(3.74) oy 215 oy < -1

the last member of (3.73) is at 1east1)

Pp {3 occupied horizontal crossing on G of
0

['Y']+r Y] Wan]'p]“yl'{'!— Y'l —1] X ['Y2+L Y2 _Janz'fxz'YZ'FLYZ _I]}
> 0(5;1,p0).

1) | vy | denotes the largest integer <y and [y | the smallest
integer > y.
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Thus, for any p which satisfies (3.74), (3.35) holds with & =
Similarly for (3.36).

(iii) Bond-percolation on the triangular and the hexagonal lattice.
In this application we take G = the triangular lattice and Qd = the
hexagonal lattice, imbedded as in Ex. 2.6 (ii). Thus the vertices of
G are at the points (11,12/5) and (j] +~;—,(j2+%)/§),1’1,1‘2,j],‘]‘2 e Z.
The faces of G are equilateral trianales and its edges are under an
angle 0, n/3 or 21/3 with the first coordinate axis. The faces of
Gy are regular hexagons and its edges are under angles %3 gA-%, %4~%§
with the first coordinate axis. Strictly speaking, this is not a per-
iodic imbedding, but as pointed out in Sect. 2.1 one merely has to change
the vertical scale to make it periodic. In addition we shall describe
this application in terms of bond-percolation. This is simpler than
its equivalent formulation as a site-problem which can be obtained by
going over to the covering graphs, as discussed in Sect. 2.5. Since §
and Qd are a dual pair, their covering graphs form a matching pair.
(See Sect. 2.6, especially Ex. 2.6 (ii).) One can verify this easily
explicitly, but the covering graphs are more complicated than G and
Qd themselves.

1
5

As we shall see below, for the one-parameter bond-problem on these
graphs the critical probabilities are given by

(3.75) pT(Q;bond) = pS(Q;bond) = pH(Q;bond) = 2 sin %% ,

(3.76) pr(Gqsbond) = pg(Gysbond) = py(Gysbond) = 1-2 sin -{Ig X

Before we come to this result we describe first the 3-parameter problem
of Sykes and Essam (1964). The edge set € of G 1is divided into the
three classes

€, = {edges of G making an angle of (1-1)%

with first coordinate axis}, i = 1,2,3.

An edge of €. is passable with probability p(i). Each edge of Gy
intersects exactly one edge of G and vice versa. In the covering
graphs a pair of intersecting edges of G and Qd would correspond to
one common vertex of the covering graphs. In accordance with this fact
we take an edge of Qd as passable iff the edge of ¢ which it inter-
sects is passable. Thus, any configuration of passable and blocked
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edges in G 1is viewed at the same time as a configuration of passable
*

and blocked edges on Qd. The analogues of o and ¢ in the bond

version become

o(n;i,p,G) = Pp{3 crossing in the i-direction of [O,n]]><[0,n2]
on G with all its edges passable},

o*(ﬁﬁi,p,q) = Pp{ 3 crossing in the i-direction of [O,n]]><[0,n2]

on Q* with all its edges blocked}.

To verify condition A with this interpretation of o and o* we
follow Sykes and Essam's ingenious use of the star-triangle transforma-
tion. Instead of considering crossing probabilities on Qd itself, we
consider crossing probabilities on a translate of Gy> namely

(3.77) Boi= Gy- (—;—, L.

2v3

Of course we take the probability of an edge e of ¥ being passable

equal to the probability that the translated edge e +(%3—l—0 of Qd

2V/3
is passable. These probabilities are p(1), p(2) and p(3) for the
edges which make an angle of gy %4-%- and g=+%§- with the first co-

ordinate axis, respectively. The vertex set of ¥ coincides with that
of G and each "up-triangle" of G (i.e., the closure of a triangular
face F of G with vertices at (11,12/§), (i1+1,12J§) and

U1 +%3(124~%)/§) for some 11,12 e ZZ) contains a "star" of three
edges of ¥, one through each vertex on the perimeter of F (see Fig.
3.5).

p(2) p(3)
I}\
£.2P(3) p(2) )
Vs p(1) v,
Figure 3.5 An up-triangle of G with a star of ¥# . —— = edges
of G, --- = edges of H. The p-value next to an edge

gives the probability for that edge to be passable.



60

It turns out that the connectivity properties on (G and # can be made
identical by a suitable matching of certain probabilities in each up-
triangle separately. Note that it is not so much the full configuration
of passable edges in each up-triangle that is important, as the pairs

of vertices which are connected in each up-triangle. Here we make the
convention that two vertices vy and Vo on the perimeter of F are
connected in F on G(¥) if one can go along passable edges of (
(blocked edges of ¥) in F from Vi to v, If one has a sequence
VgsreeoYy of distinct vertices of G (or ¥) such that Vj—] and vj
are connected in the unique up-triangle to which they both belong,
j=1,...,v, then there exists a passable path (wO,e],...,eT,wT) on
(or a path on ¥ with all its edges blocked) with endpoints Wy = Voo
WoE vy and which contains the vertices VooV, but only enters
up-triangles which have one of the v; as vertices. Since the dia-
meter of any up-triangle equals one, this together with (3.77) implies

*
(3.78) o (n-p31,p,G) = Pp{3 a horizontal crossing of

1 1 1 1
[-5sny-p;-5] x [~ ——,n,-p, - ——] on # all of whose
2271 "1 2 2./ 2 "2 2 /3

edges are blocked}

Z.Pp{3 a sequence of vertices VooV such that

v
Vi and v, are connected on ¥, 1 < j < v, and
3 1 1 1
v_e F5ung-opt 5l x F——=+1,n,mp-——-1], 1 < s < v-1,
. 3 1
while v0(1) < -5 VV(1) > ny-py 5t

If the event in the Tast member of (3.78) occurs and
r = (wo,e],...,eT,wT) is the path on ¥ through vgy,...,v = as above,
then r contains a horizontal crossing of

1 1 1 1

[-4n1-py = 51 x [ —==n,m0, - ——]

Y ¥
with all edges blocked. Assume now that Po is such that for an up-
triangle F with vertices VisVosVsg and any subset T of {1,2,3}
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(3.79) Pp {the pairs of vertices connected in F on G are
0

exactly the pairs Vi’vj with i,j e T'}

= Pp {the pairs of vertices connected in F on ¥H are
0
exactly the pairs Vi’vj with 1i,j e T}

Then the right hand side of (3.78) remains unchanged for p = Po if
is replaced by G, because distinct up-triangles have no edges in common,
and have consequently independent edge configurations. (This holds on

H as well as on G.) However, when ¥ is replaced by G the last
member of (3.78) is at least equal to

Pp{a a passable horizontal crossing of

] 1 1 1
SRICSNPIP E Y P I RS
2112 2/3 22 33

> 0((n1—p1+1,n2—1~02),1,p).

Therefore (3.35) holds when o1 <1, 05 > -1 for any Po which satis-
fies (3.79). Similarly for (3.36), and consequently Condition A is im-
plied by (3.79).

We shall now verify that (3.79) holds for all Py € 8, where

(3.80) 8 = {p e P3: 0 << p << 1,p(1)+p(2)+p(3)-p(1)p(2)p(3) = 1}.

The only possibilities for T are ¢, {1,2,3} and the three subsets of
{1,2,3} consisting of exactly one pair. These Tast three subsets and
their probabilities can be obtained from each other by cyclical permuta-
tions of the indices, so that it suffices to consider T = ¢, T = {1,2}
and T = {1,2,3}. For T = ¢, the left and right hand side of (3.79)
are, respectively,

(3.81) (1-p(1))(1-p(2)) (1-p(3))
and
(3.82) p(1)p(2)p(3) +p(1)p(2)(1-p(3)) + p(1)(1-p(2))p(3)

+ (1-p(1))p(2)p(3)

(recall that on ¥ we are looking for paths with blocked edges). It is
simple algebra to check that (3.81) and (3.82) are equal for p € S .
Equation (3.79) for T = {1,2,3} acain voduces to the equality of
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(3.81) and (3.82). Finally, if I = {1,2} and the vertices are number-
ed as in Fig. 3.5, then both sides of (3.79) equal

p(3)(1-p(1))(1-p(2)).

The above shows that in this example Condition A holds whenever
Py € 8- Unfortunately, neither of the coordinate axes is an axis of sym-
metry for the sets &, and €, and therefore Theorem 1 cannot be used
for this 3-parameter problem. To obtain the required amount of symmetry
we have to restrict ourselves to the two-parameter problem with p(2)
= p(3). In this case Theorem 1 applies, and for this problem the criti-
cal surface in Fé is obtained by taking p(2) = p(3) in (3.80). Thus,
if we take

™
(¢]

p(1) if e
P {e is passable} =
P p(2) if ec€ UE,,

then there are infinite passable clusters on the trianglar lattice G
under Pp with 0 < p(1), p(2) <1 iff

(3.83) p(1)+2p(2) - p(1)p(2)% > 1.

When restricted further to the one-parameter problem with p(1) = p(2)

= p(3) we find for the triangular lattice the critical probabilities

given in (3.75) since 2 sin %%— is the unique root in (0,1) of

3p—p3 = 1. This value was conjectured by Sykes and Essam (1964) and

first rigorously confirmed by Wierman (1981). By interchanging the role

of "passable" and "blocked" one finds for the one-parameter problem on

the hexagonal lattice the critical values given in (3.76). Of course,

by obvious isomorphisms these results determine the percolative region

also when we take p(1) = p(2) or p(1) = p(3) instead of p(2) = p(3).
So far we have been unable to prove the full conjecture of Sykes

and Essam (1964) that S is the critical surface for the three-parameter

problem. There are, however, many indications that the conjecture is

correct, in addition to the above verification for the two-parameter

problem. First, one can prove that no percolation can occur on G if

p(1)+p(2) +p(3) - p(1)p(2)p(3) < 1.

Thus, the percolative region is contained in P+ (see (3.58) for nota-
tion), and its intersection with the plane {p(2) = p(3)} 1is the same
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as the intersection of P+ with this plane. Also, if we take p(3) =0,
then the bond-problem on G reduces to the bond-problem on 12 with
probabilities p(1) and p(2) for horizontal and vertical edges to be
passable. This is evident if we imbed the triangular lattice as in Fig.
2.5 in Ex. 2.1 (iii). However, by Application (ii) above we know that
the critical surface for this bond-problem on ZZ is given by (3.71),
which is precisely the restriction of (3.80) to p(3) = 0, (if we ignore
the requirement p(3) > 0). Last, we can modify the three parameter
problem slightly so that the first coordinate axis becomes an axis of
symmetry. To do this we interchange the role of p(2) and p(3) in
every second row of up-triangles. To be precise we leave 31 as before

but replace 82 and 83 by

. A R U
(3.84) &, {e: e an edge between (1],12/3) and (1]*'23(124-§)/3)

or between (11,12/3) and (i]+=%,(i2— %)/?) for some

11,12 e Z}

. o .1,
(3.85) €4 {e: e an edge between (11,12/3) and (11-7,(12+
1

2)/§) for some

.. = .1 .
or between (1],12/3) and (1]-v§x12-

e Z}

151,

Figure 3.6 A modified 3-parameter bond-problem on the
triangular lattice. The p-value next to an
edge gives the probability for that edge to
be passable.
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The assignment of probabilities becomes as indicated in Fig. 3.6. We
can define # as before, but the probabilities of an edge of ¥ being
passable have to be modified in accordance with (3.84) and (3.85). Each
up-triangle will have an assignment of probabilities as in Fig. 3.5 or
with p(2) and p(3) interchanged. However, the remainder of the
argument showing that Condition A holds whenever Pg € & remains un-
changed. Since this new example has the first-coordinate axis as axis
of symmetry for G, as well as for the edge classes 8], 8&, 6é .
Theorem 1 and Cor. 1 applies. Thus, S is the critical surface for
the modified 3-parameter problem.

(iv) Site-percolation on 12. In this example we shall verify
Condition B. It will, however, not lead to an explicit determination
of the percolative region. For our graph G we take the quadratic

lattice QO of Ex. 2.1 (i). We consider the two-parameter site-perco-
lation problem corresponding to

s

1 {(1],12): 1]+12 is even} ,
UZ = {(1],12): i1+12 is odd}

A trivial change of scale by a factor %- in both the horizontal and
vertical direction is required to bring this problem in the periodic
form (3.18), but this will not change the fact that G, Q*, U] and UZ
are unchanged by reflection in a coordinate axis or in the 45° line
x(1) = x(2) (see Fig. 3.1). Thus, both coordinate axes are axes of
symmetry while (3.52)-(3.55) hold trivially when all aj—dj are equal
to one and h(x) = x, because the probability of an occupied horizontal
crossing of [0,n]x[0,m] on G 1is the same as the probability of an
occupied vertical crossing of [0,m]x[0,n]. Similarly for vacant
crossings on Q*. Thus, Theorem 3.2 and Cor. 3.1 apply, and the criti-
cal surface § 1is given in this example by

(3.86) 8 = {py = (Py(1).py(2)): 0 << py << 1, py = ty(p)py
for p; of the form (1,p) or (p,1), with 0 <p <1},

where

(3.87) tn(p;) = inf{t > 0: tp, e®,, lim sup o((n,n);1,tpy) > O} .
01 1 2 1
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Infinite occupied clusters on ( can occur only for p ¢ P+ (see
(3.58) with X = 2), while for pe P

(3.83) Ep{#w(v)} <o,

When restricted to the one-parameter problem p(1) = p(2) Theorem
*
3.2 (together with (3.66)) implies (see Ex. 2.2 (i) for qo)

(3.89)  pp(Gy) = pg(Gy) = Py(Gy) = 1-pr(Ug) = 1-pg(Ug) = T-pylGp).

This result was recently proved by Russo (1981).
It is also interesting to see how & behaves near the edges
p(1) =1 and p(2) =1 of Pz. For p(1) = 1, the occupancy of a path

is determined only by the vertices from LU, on the path. From this it

2
follows that the questions whether ©(p,v) > 0 or Ep{#W(v)} < o re-
duce to the same questions in a one-parameter problem with p = p(2) on
the graph # with vertex set bz and with (11,12) 3 b2 adjacent to
(j],JZ) £ UZ on ¥ Iiff
’1]—J]l =1 and 112-j2| =1

or

1= 3qs ipmdpl = 2
or

[1]—311 =2, 1, =3, .

This graph is drawn in Fig. 3.7, together with QO .

N ’ I
\*’/
AN P \
N , N ,
AN ; \L7
/.\ /
N 4 N ‘ N
N 4 \N| 7
s\ 4N
/ N Vs N
AN 2 >

Figure 3.7 # has vertices at the circles only; its edges
are the solid as well as the dashed segments; QO
has vertices at the circles and at the stars;
its edges are the solid segments only.
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Clearly ¥ 1is isomorphic to Q; (see Ex. 2.2 (i)) and therefore on .
p(1) = 1, infinite occupied clusters occu: if and only if p(2) > pH(qo);
moreover Ep{#w(v)} <o for p(2) < pH(qo). Simple Peierls arguments
(i.e., counting arguments such as in Broadbent and Hammersley (1957),
Theorem 7 and Hammersley (1959), Theorem 1) establish that

0 < py(Gy) < 1.

Thus, for any 0 < p(2) < pH(Q;) and p = (1,p(2)) (3.88) holds. More-
over, as we shall see in the proof of Lemma 5.4, p >> 0 and (3.88) imply
that o((n,n);i,p) > 0. Since (3.88) for any p implies that (3.88)

is also valid for any p' with p'(i) <p(i), i = 1,2 (see Lemma 4.1),
it follows that $ cannot have any accumulation points in
{]}><[o,pH(gS)). Interchanging the role of p(l) and p(2) we see
that 8 has no accumulation points in [O,pH(QO))x {1} either. Fur-
thermore, it will be shown in Ch. 10 (see Ex. 10.2 (i)) that in the in-
terior of PZ 8 Ties strictly above the line p(1)+p(2) = 1. Thus,
§, P and P_ should look more or less as indicated in Fig. 3.8.

Figure 3.8 A

(Py(Ge)aT)s B = (Py(Gy)sPy(Go))

C

(1,P,(Gg))

The points A = (pH(QS),1) and C = (1,pH(Qg)) are the points on the
boundary of P2 in the closure of 8, while S* 1nterseits the diagonal
p(1) = p(2) in B = (py(Gg)s py(Gy)) = (1-py(Gy)sT1-p,(Gg)).

(v) For a last application we consider one-parameter site-percola-
tion on the diced lattice of Ex. 2.1 (v). We shall show that this graph
satisfies (3.52)-(3.55) so that Theorem 3.2 applies. For Py we can
take any number in (0,1). We then find from (3.43)-(3.51) and the
definition (3.56)
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inf{p > 0: 1im sup o((n,a]n);1,p) >0 or
N—>co

1im sup c((n,b1n);2,p) > 0}

n->ce

Py (diced lattice) = P (diced lattice)

= 1—pH (matching graph of diced lattice)

1-pg (matching graph of diced lattice) .

Note that the diced lattice is itself a mosaic, & say. Therefore, the
diced lattice & 1is the first graph of the matching pair (8,3*) based
on (8,0) (Comment 2.2 (vi)). In the imbedding of Ex. 2.1 (v) the
diced lattice is clearly invariant under a rotation over 120°, and this
will also be true for &*, where 8% is obtained by inserting the
"diagonal edges" in each face of ®. From this property it is easy to
derive (3.52)-(3.55) with h(x) = x. We content ourselves with demon-
strating (3.52). Note that any horizontal crossing on & of

B =[0,n] X[O,ln] contains a continuous curve ¢ inside B and con-
necting the left and right edge of B. When B is rotated around the
origin over 120° it goes over into the rectangle B with vertices O,

= (0N = (nh_n ngm_n = (-0 _n
P] M ( 29_2_/:)3 P2 . ( 2 'g'/ga —2'/3 8), P3 . ( ’g1/§, 8)- w gOES
p
1
P 4"\\
2€ v 5
B \\
\ “ \
\\KTJ\‘ \
\ N ~__,/JL‘-_§/
\ ‘\ \
3
Figure 3.9

over into a continuous curve on ¥ inside B and connecting the seg-

ment from 0 to P3 with the segment from P] to P2. In particular

y begins below the first coordinate-axis (x(2) = 0) and ends above
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the horizontal line through P2, x(2) = gvﬁ' %- Also y 1is contained
between the vertical lines through P2, x(1) = %- %/5, and the verti-

cal Tine through 0, x(1) = 0. 1In particular, ¥ contains a vertical
crossing of

-5 B/3-1,11x [0,

n
g- A] s

if A > Tlength of any edge of 8. By the invariance of & and Pp
under the rotation over 120° we therefore have

(3.90) Pp{ 3 occupied vertical crossing of
[-5-g/73- 1.11x (373 - 0]}

3_Pp{3 continuous curve @ in B on & connecting the

segment from 0 to P3 with the segment from P1 to P2

and with all vertices on ¢ occupied}

3VPp{3 occupied horizontal crossing of [O,n]><[0,%]}.

This is essentially (3.52), since by the periodicity of & with periods
(/3,0), (0,3) the left hand side of (3.90) is at most

(3.91) Pp{_E occupied vertical crossing of

[0.n(3+ ‘/3)+2+/3] x [0,3/3- 8- 21 3])

g_Pp{ 3 occupied vertical crossing of [0,n]><[0,%]}

for large n (use Comment 3.3 (v)). For the imbedding of & of Ex.2.1
(v) this would say

(3.92) 0((n,2) 2,p,8) > c((n,4) 1,p,8).

This is actually not the inequality which we can use, because we first
have to change scale in order to make #® periodic with periods (1,0)
and (0,1). This, however, does not change the form of the inequality
(3.92), and hence (3.52) follows for some a;-a, and h(x) = x.



