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Abstract. Let T  be an arithmetic proportional elliptic configuration on a bi­
elliptic surface A with complex multiplication by an imaginary quadratic 
number field Q (V —d). The present note establishes that if T  has s singular 
points and

4s — 5 < h < 4s
irreducible smooth elliptic components, then d =  3 and T  is Aut(i4v/^g)- 
equivalent to Hirzebruch’s example with a unique singular point and
4 irreducible components.

In [31, it was announced “as a working hypothesis or a philosophy” that. . .  “up to 
birational equivalence and compactifications, all complex algebraic surfaces are 
ball q u o t ie n ts This was proven it for the abelian surfaces. In order to formulate 
it precisely, one needs the following

Definition 1 (Holzapfel [51). A reduced effective divisor T  on an abelian surface 
A is called an intersecting elliptic configuration if all the irreducible components 
T{ o fT  are smooth elliptic ounces with s7 := card(7) n T smg) > 1, and all the 
non-void intersections T . n r ,  0, i j  are transversal.

Definition 2 (Holzapfel [5]). An intersecting elliptic configuration T  =  T\ H—  • + 
Th on an abelian surface S  is proportional if

<5i H------- h sh =  4s

fo r s := card(Tsmg), Si := card(7) H T smg).

Theorem 1 (Holzapfel [51). An abelian surface A is the minimal model o f the 
toroidal compactification ( B / r )7 o f a neat ball quotient B /T  if and only if A  =  
E  x E  is bi-elliptic and there exists a proportional elliptic configuration T  C A.
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This proportionality relation on an abelian surface is extended in [61 to the ellip­
tic fibrations, including the honest elliptic surfaces, the Enriques surfaces and the 
A'3-surfaces with a fixed point free involution. The case of general type is straight­
forward and the treatment of the hyperelliptic sutfaces is reduces to the one for the 
abelian surfaces.
The rest of the present work focuses on the study of the arithmetic proportional 
elliptic configurations on bi-elliptic surfaces with complex multiplication.
Let us denote by

E a,d := {aP. fiP : P  e  E C A ^  = E ^  x E ^ ,  E ^  = C / O ^
the elliptic curves through the origin, whose universal covers are generated by the 
complex vectors (ot.fi) G C2. Put E a^  +  (P i.P f)  for the elliptic curves through 
(Pi. P2) g A ^  =  P^/z^ x whose universal covers are disjoint from the
ones of E a^ .
Here are some examples of arithmetic proportional elliptic configurations.

Proposition 1 (Hirzebruch [1]). The arithmetic elliptic configuration
1 / —3

= e T0 + Eo,i + ETi + £<,1 C A ^ .  C = ----- 2-----

is proportional. It has a unique singular point (Qq. Qq) where

Qo '= 0 (mod .

Proposition 2 (Holzapfel [2]). The arithmetic elliptic configuration

= -^1,1 + % , i  + e TC- "h -^1,0 + (-^1,0 + (Qo- -Po)) + (-^1,0 + (Qo- — -Po)) 

on A ^ %  is proportional. It has 3 singular points, namely, (Qq, Qq), (Pq, Pq) and 

( - P 0. - P q) with Qq := 0 (mod Pq := ^  (mod

Proposition 3 (Holzapfel [4]). The arithmetic elliptic configuration

= E l,0JrE 0,lJrE l,- l+ iJrE - l - i , l Jr(E l , - l Jr(Q2-.Qo)) + (E -i,l + (Q2-.Qo)) 

on A yzii is proportional. It has 3 singular points (Qq.Q q), (Q2 , Qo) and (Qq. Q 2) 

with Qq := 0 (mod O y ^ j ,  Q2 := (mod 0 ,/z r ) -

The uniqueness of these examples within the arithmetic proportional elliptic con­
figurations with at most 3 singular points is established by the following

Proposition 4 ([71). If T  C A ^ d  = E ^  x P y z #  P ^  =  C / O ^  is 
an arithmetic proportional elliptic configuration with at most 3 singular points 
then either T  is A u i ( A e q u i v a l e n t  to or o r E  = P(/zy UP to a
complex conjugation and an automorphism o f A  ̂ zy-
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In order to get some impression of the proof of Proposition 4, let us cite a lemma 
of Holzapfel, which is a basic tool for recognizing the proportionality of an inter­
secting elliptic configuration

Lemma 1 (Holzapfel [21). If fa  = E aijj3l +  {Ri.  6\ )  and fa  =  E a2^  +  (R2, S 2) 
are smooth arithmetic elliptic cun’es on a bi-elliptic surface A = E ^ —  x 
E ^ ^ ,  E ^ d  =  C/OyZ^, then the intersection number

equals the norm of the determinant o f the matrix, fanned by the coordinates o f the 
generators o f the universal covers o f T\ and T2.

The aforementioned lemma requires the study of some elementary arithmetic in 
the integers ring Oy/z^ of an imaginary quadratic number field Q (V —d). (The 
notation O reflects the fact that the integers ring of an algebraic number field 
is always a maximal order.) The invertible elements of O v—  are called units and 
their multiplicative group is denoted by The article [7] establishes that
the difference a — b of units a.b e  is a unit if and only if d =  3 and the
ratio |  is a primitive sixth root of unity. Similarly, if a. b e  then the norm

N ^ s/ri^ ( a — b) =  2 if and only if d =  1 and |  is a primitive fourth root of 
unity. The difference of elements of norm 2 is shown to be never of norm 2. If
a, b e  0[yzd anci — &) =  3 then d =  3 and |  is a primitive third root
of unity. Immediate considerations reveal that Oy/Zd has elements of norm 2 only 
when d =  1, 2 or 7. The article [7] provides complete lists of the elements of norm 
2 in the integers ring of an imaginary quadratic number field. In a similar vein 
are described the elements of O ^id  ° f norrn 3, which are shown to occur only for 
d = 2, 3 or 11.
Proposition 4 is a starting point for the results of the present note.
A priori, a proportional elliptic configuration with s singular points has

4 < h < 4s

irreducible components. Indeed, Si > 1 guarantees that 4s =  si +  • • • +  Sh > h. 
On the other hand, Si < s requires 4s =  s i +  • • • +  Sh < sh, whereas 4 < h. 
The present note focuses on the arithmetic proportional elliptic configurations with 
comparatively large number of irreducible components.
Bearing in mind that Hirzebruch’s example from Proposition 1 has h =  4s and 
Holzapfel’s examples from Propositions 2 and 3 have h =  4s — 6 , we study the 
arithmetic proportional elliptic configurations with 4s — 5 < h < 4s irreducible 
components.
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Propositions. L e tA ^ ^g  =  x E^zq, E^ziq =  C /  O be a bi-elliptic sur­
face with complex multiplication by an imaginary quadratic number field Q(s /—d), 
(f £ N -  N2, and T  c  A v —  be an arithmetic proportional elliptic configuration 
with s singular points and

h > 4s — 5
irreducible components. Then T  is A u t(A j-equivalent to Hirzebruch’s exam­

ple from Proposition 1.

We split the proof in several lemmas. Let us start with the following immediate 
consequence of Lemma 1

Corollary 1. Suppose that T\, T2 and T3 are arithmetic smooth elliptic cun’es on 
a hi-elliptic surface A ^ ^  =  -Ky/—̂ x E^rz^, -Ey—j =  C /O v/—j. Then

T1 .T3 =  0 and T2 .T3 =  0 T1 .T2 =  0 .

Proof: If Tt =  E a .^ . +  [Rj, Sj)  then

T1 .T, =  « « ^ 3 > d e t ( “ J ^ ) = 0

and

T2.T, =  < ' /= 3 )d e t g 22 “ 3) = 0

imply that the vector is simultaneously co-linear to (aq. /3i) and (ct2 . jdf).
Consequently, (cti. fdf) and (ct2 . jdf) are parallel to each other and

d e t g  “ 3) = 0 .

□

Lemma 2. TfT  C  ̂ =  E^-^j x /.v an arithmetic proportional elliptic
configuration with s singular points and h = 4s irreducible components then T  is 
A111 (A ) - e q u i v a l e n t  to Hirzebruch’s example from Proposition 1.

Proof: Let T  c  A v —  be an arithmetic proportional elliptic configuration with 
s singular points and 4s irreducible components. Making use of Proposition 4, 
one can assume that s > 4. The proportionality relation si +  • • • +  S4S =  4s 
can hold only with Si =  1, for all 1 < i < 4s. In other words, any irreducible 
component T{ of T  passes through a unique singular point of T. Recall also that 
the multiplicities of all the singular points pj e  T smg are to be m,- > 2. 
After an eventual permutation of the singular points p i , . . .  ,ps, s > 4, and the 
irreducible components T \ . . . . .  4s > s of T, one can assume that T in T smg =
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T2 H T sing =  {pi} and T3 n T sing =  {p2}. Then TX.T3 = 0 and T2.T3 = 0 imply
T\.T 2 =  0 by Corollary 1, which is an absurd while T i H T 2 =  {p i }. □

Lemma 3. There is no arithmetic proportional elliptic configuration T  C =

E s/=d  x with s singular points and h =  4s — 1 irreducible components.

Proof: Let us suppose that T  c  A v—  is an arithmetic proportional elliptic con­
figuration with s singular points and 4s — 1 irreducible components. Accord­
ing to Proposition 4, one can assume that s > 4. The proportionality relation
s i  H-------b 54S_ i =  4s requires s± =  2 , s2 =  • • • =  S4S_i =  1 , up to a permutation
of the irreducible components. Since 4s — 2 > s under the assumption s > 4, there 
exist pk G T sing and T% f  Tj  with T% n T sing =  Tj n T sing =  {pk} and i > 1, 
j  > 1. For any other a > 1 with Ta n T smg =  {pb}. b fc, the vanishing of the 
intersection numbers T{.Ta =  0, Tj.Ta =  0 suffices for 747) =  0, which contra­
dicts Ti H Tj = -fpfc}- If Ta H T smg =  {pk} for all a > 1 then T  = Ti +  E a>  l Ta
has at most 3 singular points, contrary to the assumption s > 4. □

Lemma 4. There is no arithmetic proportional elliptic configuration T  C A ^  -  

£ 'V/Zd x s sinRular points and h = 4s — 2 irreducible components.

Proof: Let us assume that T  c  A is an arithmetic proportional elliptic config­
uration with s singular points and 4s — 2 irreducible components. The proportion­
ality relation si +  • • • +  S4S_2 =  4s for Si := card (Ti H T sing) G N occurs either 
when s i =  3, s 2 =  • • • =  5 4s_ 2 =  1 or s i =  s 2 =  2, s 3 =  • • • =  s4s_ 2 =  1, up 
to a permutation of T \ . . . .  .T 4S_2. In the presence of Proposition 4, assume that 
s > 4.
If Ti  n T smg =  {p1 . p2-.P3 } then up to a permutation of T2. . . .  .T 4s_ 2 one has 
T2 H T sing =  {p4}. If there exists i > 2 with '!) n T sing =  {p4} then Ti .T2 =  0 
and T’i J )  =  0 force Tb-T) =  0, contrary to T'o""'!) =  {p,\}. Otherwise, TiHTsmg =  
{pi+2} for 2 < i < s - 2 a n d T ?- n r sing C {pi .p2.p3} for s —1 < j  < 4 s—2. Then 
T4.T2 =  0 and TS^ 4.T2 =  0 imply Ti.Ts_i =  0, while TiHTs_i =  Ts_ in T sing f  
0 .

Suppose that Ti n T smg =  {p \ . p2} and there exists 3 < j  < 4  with pj £ T 4 + 
T2. Then T3 n T smg =  T4 n T sing =  {pj} after an eventual permutation of 
T3. T4, . . . .  T4s—2. A s a result, Corollary 1 infers from T4.T3 =  0 and T1 .T4 =  0 
that T3 .T4 =  0, which is not the case of T3 H T4 =  {p? } under study.
Forj?3 ,p 4 G Ti +  T2 there follows T2 n T smg =  {p3.p4}. Since the multiplicity 
of p3 with respect to T  is at least 2, there exists T3 c  T  with T3 n T smg =  {p3}. 
Applying Corollary 1 to T4.T2 =  0 and T\.T3 =  0 one concludes that T2.T3 =  0, 
contrary to T2 n T3 =  {^3}. □

Lemma 5. There is no arithmetic proportional elliptic configuration T  C A ^  -  
x with s singular points and h =  4s — 3 irreducible components.
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Proof: Let T  c  A be an arithmetic proportional elliptic configuration with s 
singular points and 4s — 3 irreducible components. In this case, the proportionality 
relation reads as s± +  • • • +  54 5-3  =  4s and holds for

a )  S i  =  4 , S2 =  • • • =  54 s _ 3  =  1

b) S i  =  3, s 2 =  2, S3 =  • • • =  s4s_ 3 =  1, or
c) s i =  S2 =  S3 =  2 , S4 =  • • • =  S4S_3 =  1 , up to a permutation of

r r i  r j i
2 l- • • • • J-4s-3-

According to Proposition 4, there is no loss of generality in assuming s > 4. Recall 
that the multiplicities of all the singular points pi of T  are rrii > 2.

In the case a) let T\ n T smg =  {p i , . . .  ,p4}. If s > 5 then up to permutations of 
T2, . . . .  T4S_3 and p.5, . . .  ,ps, one can assume that T2 n T smg =  T3 n T smg =  {p.5}. 
Then T1 .T2 =  0 and T1 .T3 =  0 force T2 .T3 =  0 by Corollary 1, contrary to 
T2 H T3 — {p.5}, For s — 4, up to permutations of T2 , . . . ,  T43 and p \ . . . .  ,p4, one
has Ti+i H T sing =  {pt } for 1 < i < 4 and T6 n T sing =  {pi}. Then T2 .T3 = 0
and Tq.T% =  0 imply T2 .Tq =  0 by Corollary 1, while T2 (1 Tq = {pi}.
Similarly, in the case b) with s > 4, either T\ n T smg D T2 H T smg and there is a 
single singular point P3 of multiplicity 1 with respect to T\ +  T2 or there exist at 
least 2 singular points of multiplicity 1 with respect to T\ +  T2. In the first case 
there is T3 c  T  with T3 n T sing =  {p3} and at least two irreducible components, 
say Z4 , Z5 C T, with Z4 n T smg =  T§ H T smg =  {P4 }. This case is rejected by 
the fact that Corollary 1 forces Z4 .T5 =  0 from T3 .Z4 =  0, T3 .T5 =  0, while 
T4 D T 5 = {p4}. If 5 > 6 or 5 =  5 and (Tx +  T2) n T sing =  {pi , . . .  ,p4} then 
there exists p ?- ^ (T4 +  T2) n T smg with T3 n T smg =  T4 n T smg =  {p?-}, up to a 
permutation of T3 , . . . ,  Z4S_3 . Then Corollary 1 infers T3 .T4 =  0 from T1 .T3 =  0 
and T1 .T4 =  0, which is an absurd. For 5 =  5 and T\ n T smg =  {p1 .p 2 -p.3l* 
T2 n T smg =  {p,|. p.5} there is a permutation of T3 . . . . .  T1 7 , such that T3 n T smg =  
T4 H T smg =  {p?}, 1 < j  < 5. If pj G T\ then T2 .T3 =  0 and T2 .T4 =  0 requires 
T3 .T4 =  0, which is an absurd. Similarly, for p f e  T2 there follow T1 .T3 =  0 and 
T1 .T4 =  0, whereas T3 .T4 =  0, contrary to T3 n T4 =  |p ?}, For 5 =  4 there is a 
permutation of T3 . . . . .  T13 such that T3 flT smg =  T4 flT smg =  {p?}. If j  > 1 then 
there is 1 < i < 2 such that Jj.T j =  0 and 7T7j =  0. Then by Corollary 1 there 
follows T3 .T4 =  0, contrary to T3 n T4 =  | p ?}, If j =  1 then up to permutations 
of the irreducible components T13 and the points p2i P3 , P4 of multiplicity
1 with respect to T\ +  T2, one can assume that T5 n T smg =  {P2}- Then T3 .T5 =  0 
and T3 .T4 =  0, which is an absurd.

In the case c) with 5 >  4, let us assume that T\ n  T smg =  { p i , p 2 } .  Then there 
exist T4 .T 5 c  T  with T4 H T smg =  {P3} and T5 H T smg =  {P4}. If for some 
3 < j  < 4 there holds p ? ^ T\ + T 2 then Tq n T smg =  {p? }, up to a permutation 
of Tq, . . . .  T4s_3 . A s a result, T \.T j+i =  0 and T\.T q =  0 require T j+i .Tq =  0 by
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Corollary 1, while T?+i DTq =  {pj}. In the case of p%,p4 e  T\  +  T2 there follows 
T2 H T smg =  {p:>t. p;\}, so that Corollary 1 requires T2.T4 =  0 out of T 1 .T2 =  0, 
T1 .T4 =  0. That contradicts T2 n T4 =  {ps}. □

Lemma 6. There is no arithmetic proportional elliptic configuration T  C -
x with s singular points and h =  4s — 4 irreducible components.

Proof: Let us assume that T  c  A is an arithmetic proportional elliptic config­
uration with s singular points and 4s — 4 irreducible components. Without loss of 
generality, assume that s > 4. The proportionality relation 51 +  • • • +  ,s-,|,s_ =  4s 
splits the considerations into the following subcases:

a ) s i =  5 , 52 =  • • ♦ =

T--1IIICO

b ) s i =  4 , 52 =  2 , 5.3

T--1IIICOllll

c ) s i =  5 2 = 3 , 53 =

T--1IIICOll
d ) s i =  3 , 52 =  53 = 2 , 54 =  • • • =  5 4 S_ 4  =  1

e ) s i =  * * • = : 54 == 2 ,

T--1IIICOllll10CO

In the case a), one has Ti n T smg =  (p 1 . . . .  ,p.5} and T j+ 1 n T smg =  {p?}, 
V 1 < j  < 5. As far as h =  4s — 4 > 4.4 — 4 =  1 2 , there exists 1 < jo < 5 with 
T j n T smg =  {p ]0} up to a permutation of T2 , . . . ,  T4S_4 . Then for any i jo, 
1 < i < 5, the vanishing of the intersection numbers T)+i.T ?-0+i =  0, Ti+i.Tj =  0 
forces T jo+1.T7 =  0 by Corollary 1, while Tjo+i n t 7 -  {pj0}.
In the case b), suppose that T3 n T smg =  T4 n T smg =  [p; } and T5 n T sing =  {pj} 
for some 1 < i j  < s. Then by Corollary 1, T3 .T5 =  0 and Z4 .T5 =  0 suffice 
for T3 .T4 =  0, while T3 n T4 =  [p7}. As far as h > 12, there always exist at least 
two irreducible components among T3 , . . . .  T4s_4, which pass through one and a 
same singular point. That reduces the considerations to Ti n T smg =  {p j} for some 
1 <  j  < s and V 3 < i < 4s — 4. As a result, the multiplicities of all pk with 
k j  have to be at least 2 with respect to T\  +  T2. However, 54 =  4, 52 =  2 allow 
at most two pk of multiplicity at least 2 with respect to T\  +  T2 and, therefore, at 
least one prn of multiplicity 1 with respect to T.
Similarly, in the case c), the assumption Ti n T smg =  {p j } for some 1 <  j  < s and 
V 3 < i < 4 s  — 4 requires all pf. pj  to be of multiplicity at least 2 in T\  +  T2 . 
That happens exactly when 5 =  4, T in T smg =  T2 n T smg =  {p1-.p2 -.p3 }- In order 
to have a fourth singular point, one has to require Ti n T smg =  {^4}, V 3 < i < 12. 
Now Corollary 1 infers from T1 .T3 =  0 and T2 .T3 =  0 the vanishing of the 
intersection number T1 .T2 =  0, regardless of T\  n T2 =  {pi-P2 -P3 }- 
In the case d), if there exist Z4 , T5 . Tq c  T  with T4 n T smg =  T5 n T sing =  {p; } 
and To H T smg =  {pj},  Pi p j , then T4 .T6 =  0 and T^.Tq =  0 lead to T4 .Z5 =  0, 
which is an absurd. Since (45 — 4) — 3 > 5 for 5 > 4, there always exist T4 , T5 C T  
with T4 H T sing =  T5 H T smg. Up to a permutation of p \ , . . . ,  ps, that reduces the
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considerations to Ti n T sing =  {p,\} for V 4 < i < 4s — 4. If p4 ^ T\ n T smg then 
5 =  4 a n d 7 in T sins =  {p4.p 2 .p 3}, T2 H Tsing = {Pl . p2}, T3 =  {p3 ,p4}.
Now T1 .T4 =  0, T2 .T4 =  0 lead to T X.T2 =  0, while Tx r \ T2 = T2 r\ T sing = 
{P1 .P2}- If P4 e T i H  T smg then T4 n T atn9 =  {p1 .p 2 .p 4} and p3 e T 2 n  T smg, 
p3 e  T3n T sillg. Therefore 5 =  4 and T2n T sing =  {p i,p3}, T3n T sing =  {p2.p 3}. 
By Corollary 1, T2 .T4 =  0 and T3 .T4 =  0 imply that T2 .T3 =  0, contrary to 
T2 H T3 =  {p3 }.
In the case e) with Ti n T smg =  {p 1 . p2}, first assume that p3 ^ T2 +  T3 +  
T4. Then there exist T5 .T 6 c  T  with T5 H T sing =  T6 n T sing =  {p3}. Now 
Corollary refParallel infers T$.Tq =  0 from T1 .T5 =  0, T\.T§ =  0, which is an 
absurd in the presence of T$ H Tq =  {p3}. From now on, let us suppose that 
P3 e  T2 +  T3 +  T4 and without loss of generality, p ? e  T2 +  T3 +  T4, V 4 < j  < 5 . 
In particular, that specifies s < 6 . On the other hand, if for some 3 < j <  5 the 
point pj is of multiplicity at least 2 with respect to T5 +  • • • +  T4s_4, then up to 
a permutation of T5 +  • • • +  T4s_4 , there holds T5 H T sing =  Tq (1 T smg =  (p ?}. 
Then T1 .T5 =  0 and T±.Tq =  0 force T$.Tq =  0 by Corollary 1, contrary to 
T$HTq =  {pj }. For the rest of the argument, one can anticipate that the multiplicity 
of pj  with respect to T2 +  T3 + T 4 is at least 1 and the multiplicity of p ? with respect 
to T5 +  • • • +  T4s_4 is at most 1 for all 3 < j  < s. As far as s — 2 < 4 < 8 < 
(4s — 4) — 4, one can assume that T5 H T smg =  T6 n T smg =  {pi}. If there exists 
1 < i < 45 — 4 with pi ^ Ti H T smg then T$.Ti =  0 and Tq.T{ =  0 implies 
1\ .Tfi =  0 by Corollary 1, which is an absurd in the presence of T5 H Tq =  {pi}. 
Otherwise, pi e Ti D T sing, V 1 < i < 45 — 4. In particular, T . n T sing = {pi}< 
V 5 < j  < 4 5  — 4. As a result, all pk with 2 < k < s are of multiplicity at least 2 
with respect to Ti H—  • +  T4. That happens either for To H T sing =  {p 1 . p2} or for 
T2(lTsmg =  |p 2, p3}. In both cases, up to a transposition of T3, T4, one can assume 
that T3 n T sing =  {P3 ,P4 >. If T2 n T sing =  {p i,p2} then T4 H T sing =  {p3 .p 4} 
and T1 .T3 =  0, T1 .T4 =  0 imply that T3 .T4 =  0, contrary to T3 n T4 =  {p3 ,p4}. 
If 7 2 H T smg =  {P2 .P3 } then T2 .T5 =  0 and 'J \T \  =  0 forces ToT\ =  0, while 
T2 n T 3 = {p3}. □

Lemma 7. There is no arithmetic proportional elliptic configuration T  C -

E s/=d  x s  s inR u la r  points and h =  45  — 5 irreducible components.

Proof: Suppose that there exists an arithmetic proportional elliptic configuration 
T  c  A^zid s singular points and 45 — 5 irreducible components. The propor­
tionality relation 54 +  • • • +  5 4s_5 =  45  splits the considerations in the following 
subcases:

a) 5i =  6, 52 =  • • • =  54s_5 =  1
b) 51 =  5, 52 =  2, 53 =  • • • =  54s_5 =  1
c) 51 =  4, 52 =  3, 53 =  • • • =  5 4s_5 =  1
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d) S1 =  4, 52 =  5.3 =  2, 54 =  • • • =  S4 s _ 5  =  1
e) Si =  52 =  3, 53 =  2 , 54 =  • • • =  54s_5 =  1
f) Si =  3, S2 =  S3 =  S4 =  2, S5 =  • • • =  S4s_5 =  1

g )  Si =  • • • =  S5 =  2, S6 =  • • • =  S4s_5 =  1.
Without loss of generality, assume that s > 4, whereas (4s — 5) — 5 > s. In all the 
cases that provides the presence of e  T smg with T is -e n T 3111® =  T4S_ 5 n T smg =  
{pi}, up to a permutation of the irreducible components of T  with a single singular 
point.
Suppose that there exists Tf, c  T  with Tf. fl T smg =  {p/} for some pj  ^  pi. 
Then Tfc.T4s_6 =  0 and Tfc.T4s_5 =  0 suffice for T4s_ 6 .T4s_5 =  0, according to 
Corollary 1. That contradicts T4s_6 n T smg =  T4s_5 n T smg =  {pi}. From now 
on, we assume the coincidence of all Tj  n T smg =  {p^} of cardinality 1.
If there is an irreducible component Tf, c  T  with card(Tfc n T smg) > 2 and 
P i £ Tf, then Tfc.T4.g_6 =  0 and Tfc.T4s_5 =  0. Now Corollary 1 implies that 
T4s_6 .T4s_5 =  0, which contradicts T4s_6 H T4s_5 =  {p^}.
The rest of the speculations suppose that pi e  Tj  n T smg, V 1 < j  < 4s — 5.
In the case a), the singular points pj 7  ̂ pi of T\  are of multiplicity 1, which is an 
absurd.
In the case b), suppose that T\  n T smg =  {p7. p n , . . . .  p ]4} for some jf. i. Then 
P i and at most one pj1 can have multiplicity > 2, so that T  is not an arithmetic 
proportional elliptic configuration.
In the case c), let T\  n T smg =  At most three of these points,
say pi , pjs and pjt belong to T2 H T sing, so that there remains at least one point of 
T sing of multiplicity 1.
In the case d), let Tx n T sing =  {p7. p n . p ]2. p ]3\. Then T2 n T sing =  {p7.p:n } 
and T3 n T smg =  {pi,pj0}, up to a permutation of pj1 ,pj0, . In either case there
remains a point p ?3 of multiplicity 1 with respect to T.
In the case e), let us put T3 n T smg =  {p7. p t }. Then up to a transposition of T\
and T2, one has T\  n T smg =  {pi,Pj,Pk] with pi,pu G T2 n T smg. Then the fourth 
singular point of T  cannot be of multiplicity > 1.
In the case f), the elliptic configuration Ti +  T2 +  T3 has to contain at most two 
different singular points except p^  That requires s < 3, while we work under the 
assumption s > 4.
In the case g), one has Tj  n T smg =  {p7. p ?} for 1 < j  < 5, pj ^  pi , and 
Tfc H T smg =  {pi}, V 6 < fc < 4s — 5. In order to have multiplicities at least 2, one 
can have at most 2 different singular points of T, except pi. However, then s < 3, 
contrary to s > 4 . □

That concludes the proof of Proposition 5.
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