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THE HYPERBOLIC TRIANGLE DEFECT
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Abstract, The hyperbolic trigonometry, fully analogous to the common Eu­
clidean trigonometry, is presented and employed to calculate the hyperbolic 
triangle defect in the Poincare ball model of n-dimensional hyperbolic geom­
etry. It is shown that hyperbolic trigonometry allows the hyperbolic triangle 
defect to be expressed in terms of the triangle hyperbolic side lengths by a 
remarkably elegant identity.

1. Introduction

Gyrovector spaces form the setting for hyperbolic geometry and its hyperbolic 
trigonometry just as vector spaces form the setting for Euclidean hyperbolic ge­
ometry and its Euclidean trigonometry. Gyrovector spaces, in turn, are gyrocom- 
mutative gyrogroups that admit scalar multiplication just as vector spaces are com­
mutative groups that admit scalar multiplication.
Accordingly, to set the stage for the introduction of hyperbolic geometry and its 
applications, the definitions of abstract gyrogroups and gyrovector spaces are pre­
sented in Section 2. A concrete example of a family of n-dimensional gyrovector 
spaces (n finite or infinite), called the Mobius gyrovector spaces, is presented in 
Section 3. It is then demonstrated in Section 4 that Mdbius gyrovector spaces form 
the setting for the Poincare ball model of hyperbolic geometry just as vector spaces 
form the setting for the standard model of Euclidean geometry. Having the stage 
set, the hyperbolic geometry of the Poincare ball model of hyperbolic geometry is 
presented in Section 5 including, in particular,

1) the Hyperbolic Law of Cosines and its resulting Hyperbolic Pythagorean 
Theorem that shares visual analogies with its Euclidean counterpart, Fig. 2, 
and

2) the Hyperbolic Law of Sines.

225



226 Abraham A. Ungar

Hyperbolic geometry is applied in Section 6 and Section 7 to uncover the angular 
defect of the hyperbolic right angled triangle and, more generally, of the hyperbolic 
triangle in terms of its hyperbolic side lengths.

2. Gyrogroup And Gyrovector Spaces

Definition 1 (Gyrogroups). A groupoid is a non-empty set with a binary operation. 
The groupoid (G, ffi) is a gyrogroup if its binary operation satisfies the following 
axioms. In G there is at least one element, 0, called a left identity, satisfying

G l) 0®a =  a Left Identity

for all a e G. There is an element 0 6 G satisfying axiom G l) such that for each 
a in G there is an element ©a in G, called a left inverse of a, satisfying

G2) ©a®a =  0 Left Inverse.

Moreover, for any a, b, z  e G there exists a unique element gyr[a, b)z e G such 
that

G3) a®(b®z) =  (a®6)® gyr[a,6]2: Left Gyroassociative Law.

If gyr[a, b} denotes the map gyr[a, 6] : G —» G given by z ^  gyr[a, b)z then 

G4) gyr[a, b] e Aut(G, ffi) Gyroautomorphism

and gyr[a, 6] is called the Thomas gyration, or the gyroautomorphism of G,
generated by a, 6 e G. The operation gyr : G x G —» Aut(G, ffi) is called the 
gyrooperation of G. Finally, the gyroautomorphism gyr [a, 6] generated by any 
a, b e G satisfies

G5) gyr [a, 6] =  gyr [a® 6, 6] Left Loop Property.

In full analogy with groups, gyrogroups are classified into gyrocommutative and 
non-gyrocommutative gyrogroups. The definition of gyrocommutativity in gy­
rogroups follows.

Definition 2 (Gyrocommutative Gyrogroups). The gyrogroup (G, ffi) is gyrocom­
mutative if for all a, b e G
G6) a © b =  gyr [a, b] (b © a) Gyrocommutative Law.

Definition 3 (Inner Product Gyrovector Spaces). A(n inner product) gyrovector 
space (G, ffi, ®) is a gyrocommutative gyrogroup (G, ffi) that admits:

1) Inner product i) which gives rise to a positive definite norm || v||, that is, 
| |v ||2 =  v-v, ||v|| > 0 and ||v|| =  0 if and only if v  =  0, |u-v | < ||u||||v||;
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and ii) which is invariant under gyroautomorphisms, that is, 

gyr[a, b]u- gyr[a, b]v =  u v

for all gyrovectors a, b, u, v  e G.
2) Scalar multiplication, ®, satisfying the following properties. For all real 

numbers r, r\, 6 R. and all gyrovectors v  e G:

VI) l® v =  v
V2) (r, + r 2)®v =  7*j®v©r2®v
V3) (,r 1r2)®v =  r 1® (r2®v)

|r|®v v 
V4) , 1 „ =  —

[|r®v[| || v ||
V5) gyr[a, b] (r®v) =  r® gyr[a, b] v 
V6) gyr[rj®v, r 2®v] =  I

Scalar Distributive Law 
Scalar Associative Law

Scaling Property

Gyroautomorphism Property 
Identity Automorphism.

3) Real vector space structure (||G ||, ©, ®) for the set ||G|| of one-dimensional 
“vectors”

||G|| =  {± ||v ||; v  e  G} C 1

with vector addition © and scalar multiplication ®, such that for all r  e  R. 
and u, v  6 G,

V7) ||r® v|| =  |r|® ||v || Homogeneity Property
V8) ||uffiv|| < ||u ||© ||v|| Gyrotriangle Inequality.

A gyrovector space G =  (G, ffi,®) is a gyrometric space given by the distance 
function

p(u, v) =  ||0uffiv || =  ||v 0 u || (1)

satisfying the gyrotriangle inequality

||© u 0 w || <  ||0 u © v ||© ||0 v ® w || (2)

verified below.
By a gyrogroup identity we have

0 u 0 w  =  (0 u® v)® gyr[u , 0 v ] ( e v 0 w ) .  (3)

Hence, by the gyrotriangle inequality V8) we have

| |0 u 0 w || =  ||(© u 0 v )0  gyr[u, © v](© v0w )|

<  ||© u© v||© || gyrfu, 0 v ](0 v © w )

=  ||© u© v|| © || © v© w ||.
(4)
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Our ambiguous use of © and ®, Definition 3, as operations in the gyrovector space 
(G, ffi, ®) and in the vector space (||G ||, ffi, ®) should raise no confusion, since 
the sets in which these operations operate are always clear from the context. These 
operations in the former are nonassociative-nondistributive gyrovector space oper­
ations, and in the latter are associative-distributive vector space operations. Addi­
tionally, the gyro-addition ffi is gyrocommutative in the former and commutative 
in the latter.
An inner product gyrovector space possesses a weak form of a distributive law,

r® (r1®vffir2®v) =  r® (r1®v)ffir®(r2®v) (5)

called the monodistributive law, which follows from V2) and V3) 
r® (ri® vffir2®v) =  r® {(ri +  r 2)®v}

=  ( r ( r i  +  r2))®v
=  (rr i +  r r 2)®v (6)
=  (rri)® vffi(rri)® v 
=  r® (ri® v)ffir® (ri® v).

3. Mobius Gyrovector Spaces

Definition 4 (Mobius Addition). Let ¥  be a real inner product space, and let B =  
{v c  ¥ :  ||v|| < 1} be the open unit ball of ¥ . Mobius addition ffi in the ball B is 
a binary operation in B given by the equation

(1 +  2u -v +||v ||2)u  +  (1-|| u ||2)v

U0V = ---------TT~o------ mi 11211 ii2------— (7>1 -)- 2u v -)- 111111 - 11 v 11 -
where • and ||-|| are the inner product and norm that the ball B inherits from its 
space ¥ .

To justify calling ffi in Definition 4 a Mobius addition we note that it is a natural 
extension of a special Mobius transformation of the complex disc, as explained 
in [2],
The groupoid (B, ffi) is a gyrocommutative gyrogroup, as demonstrated in [2], giv­
ing rise to a Mobius gyrogroup. Furthermore, it admits scalar multiplication ®, 
turning it into a Mobius gyrovector space (B, ffi, ®).

Definition 5 (Mobius Scalar Multiplication). Let (B, ffi) be a Mobius gyrogroup. 
The Mobius scalar multiplication r® v =  v \  r in B is given by the equation

(1 +  ||v ||)r -  (1 -  ||v ||)r v  
r® v =  ------ n—r77------;----- n—rr̂— n—(i + 1!v||)r +  (i -  ||v ||)r ||v

—1 V=  tanh(r tanh ||v ||) ——-,
(8)
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where r c  3L v c l . v  /  0 and r ®0 =  0.

As an example we present the Mobius half,

where yv =  (1 — ||v||2) 1/2. Then, in accordance with the scalar associative law 
of gyrovector spaces,

( 10)

4. The Poincare Ball Model of Hyperbolic Geometry

Mobius gyrovector spaces form the setting for the Poincare ball model of hyper­
bolic geometry, as demonstrated in [2], just as vector spaces form the setting for 
the standard model of Euclidean geometry. Thus, the unique geodesic passing 
through the points a, b  e B in a Mdbius gyrovector space (B, ®, ®) is given by 
the equation

with the real parameter t  e R. It passes through the point a  at “time” t  =  0 and, 
owing to the left cancellation law of Mdbius addition, it passes through the point 
b  at “time” t  =  1. The cosine of the hyperbolic angle generated by two geodesics 
passing, respectively, through the points a, b  and a, c in the Mobius gyrovector 
space (B, ®, ®), Fig. 1, is given by the equation

in full analogy with its Euclidean counterpart.
Three geodesic segments that form a triangle, and the triangle angles in the Mobius 
gyrovector plane B are shown in Fig. 1.

5. Hyperbolic Trigonometry

Theorem 6 (The Hyperbolic Law of Cosines in Mobius gyrovector spaces). Let 
A ab c  be a triangle in a Mobius gyrovector space (B, ffi, ®) with vertices a, b, c e 
B, and sides and length sides

affi(©affib)®t (11)

cos a  =
©a®b ©affic 

||©affib|| ||©a®c||
( 12)

A  =  ©b®c, a =
B =  ©c®a, b =
C =  ©a®b, c =

a = A
B
C

(13)
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Figure 1, A Mobius triangle A abe in the Mobius gyroveetor plane 
(B,©,©) is shown. Its sides are formed by geodesic segments that 
link its vertices, in full analogy with Euclidean triangles. The cosine of 
its angles are given by an identity that is fully analogous to their Eu­
clidean counterparts. The Mobius gyroveetor plane form the setting for 
the Poincare disc model of hyperbolic geometry, allowing hyperbolic 
geometric properties to be studied analitieally obtaining, for instance, 
the Hyperbolic Pythagorean Theorem in Fig. 2.

and with hyperbolic angles a , 3 and 7 at the vertices a, b and c, Fig. 1. Then

(14)

Proof: The proof of the hyperbolic law of cosines is by straightforward algebra, 
noting the hyperbolic angle definition of in (12). □

We may note that the Mobius addition © in (13) is a gyrogroup operation in the 
Mobius gyroveetor space (B,©,®). In contrast, the Mobius addition © in (14) 
is a group operation in the Mobius group (I,© ), I being the open unit interval
I =  ( - 1 , 1 ). '
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Figure 2, The Hyperbolic Pythagorean Theorem in the Poincare ball 
model of hyperbolic geometry and, equivalently, in the Mobius gy­
ro vector plane (B, ©, @).

The hyperbolic law of cosines (14) is an identity in the Mobius vector space 
(1,8 ,  S ). To solve it for cos 7 we use the notation

Pabc =  a2® &2® c2 
Q ab =  2 a b

R ab  =  (1 +  a‘ ) ( l  +  b")

so that (14) can be written as

implying

Q ab COS 7 
R ab ~  Q ab COS 7

PabcRab

=  Pabc

COS 7 =
(1 +  Pabc) Qab

and, similarly by cyclic permutations,

cos a  =

cos 3 =

PbcaRbc 
(1 +  Pbca)Q bc

P cabRca  

(1 +  Pcab)Q ca

(15)

(16)

(17)

(18)

(19)
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In the special case of which 7 =  tt/ 2, corresponding to a hyperbolic right angled 
triangle, Fig. 3, the hyperbolic law of cosines is of particular interest, giving rise 
to the hyperbolic Pythagorean theorem in the Poincare ball model of hyperbolic 
geometry.

Theorem 7 (The Mobius Hyperbolic Pythagorean Theorem). Let A abc be a tri­
angle in a Mobius gyrovector space (B, ®, ®) with vertices a, b, c e B, and sides 
and length sides

A =  0 b®c, a = || A ||
B  =  ©c®a, 6 =  || B || (20)
C =  ©a®b, c =  ||C ||

and with hyperbolic angles a, 0  and 7 at the vertices a, b  and c. If 7 
Fig. 3, then

tt/2,

(21)

Proof: The hyperbolic Pythagorean identity (21) follows from the hyperbolic law 
of cosines (14) with 7 =  tt/2. □

Two equivalent versions of the Mobius hyperbolic Pythagorean identity (21), which 
involve ordinary rather than Mobius addition, are presented in (27).
We use the notation

7;i ̂

a P =  4r’a =

1 — ||a ||2 
a

1 +  llall2

(22)

for a  e B, where ga_b and «0a are the gamma and the beta factors given by the 
equations

7V and /3v
1

(23)

for any v  e B. We call aM and a P, respectively, the M(inus) and the P(lus) correc­
tions of a.
Taking magnitudes in (22), we have

© ll\!1 7a I© I

WIp =  /3alW

(24)

for a  e B, calling ||a ||M and ||a ||P, respectively, the M(inus) and the P(lus) correc­
tions of ||a||. Clearly, ||a ||M e [0, 00) and ||a ||P e [0,1/2).
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Figure 3, The Mobius Hyperbolic Pythagorean Theorem II. A Mobius 
right angled triangle A abe in the Mobius gyroveetor space (B, ©, @) 
is shown for the special case of the Mobius gyroveetor plane, i) Its 
sides, formed by the geodesic segments A, B and C that link its ver­
tices, satisfy the Mobius hyperbolic Pythagorean identity (21), and ii) 
its acute angles a  and 3 satisfy the hyperbolic trigonometric identities 
(28) and (29). The right angled triangle defect 5 is calculated in (35), 
giving rise to the remarkably elegant result tan(5/2) =  || A|| ||B||.

Inverting (22) and (24) we have,

and

______ 2a-M______
1 +  n/1  +  (2 ||a ||M)2

2aP

1 +  y/1  -  (2 ||a lT F

_____ 2 ||a||M_____
1 +  n/1  +  (2 ||a ||M)2

2|]a||p
1 +  v/l -  (2 | |a H ^ '

(25)

(26)

It follows from the Mobius hyperbolic Pythagorean Identity (21), by straightfor­
ward algebra, that in the notation of Fig. 3 for a hyperbolic right angled triangle
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we have

(27)

The two identities in (27) are equivalent to each other and may be considered as 
an equivalent version of the hyperbolic Pythagorean theorem in the Poincare ball 
model of hyperbolic geometry.
In the special case in which 7 =  tt/ 2, corresponding to a hyperbolic right angled 
triangle A abc, Fig. 3, it follows from (18)—(19) that

cos a  =

cos0  =

|C||P
|A||P

(28)

Furthermore, it follows from (28) and (27) that

II-AJImsin a  =

sin/? =

|C ||M
|B||m
|C ||m

(29)

The latter, in turn, gives the following

Theorem 8 (The Mobius Hyperbolic Law of Sines). Let A abc  be a triangle in a 
Mobius gyrovector space (B, ®, ®) with vertices a, b, c e B, and sides and side 
lengths

A  =  0 b®c, a = || A  ||
B  =  ©c®a, b = ||B|| (30)
C =  ©a®b, c = ||C||

and with hyperbolic angles a, 0  and 7 at the vertices a, b  and c, Fig. 1. Then

sin a  sin 0  sin 7 (31)

6. The Angular Defect of the Hyperbolic Right Angled Triangle

The sum of the angles a  and 0  of the right angled triangle A abc  in Fig. 2 is smaller 
than §■ so that it possesses a positive angular defect S =  §■ — (a +  0). The cosine
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and the sine of the angular defect 5 of triangle A abc are

cos 5 =  cos
7T

-  («  +  /?))

=  sin (a  +  0)

=  sin a  cos 0  +  cos a  sin 0

_  _|_ bP bu

(32)

and

sin 5 =  sin
7T

-  («  +  /?))

= cos (a  +  0)

=  cos a  cos 0  — sin a  sin 0

apbP
c2

P

aM^M
C2

M

(33)

Interestingly, the tangent ta n (5/2) of the half angular defect 5/2 is particularly 
simple and elegant. It follows from (32) and (33),

2ab
t m  s =  <34)

so that the M  and P  corrections disappear, and

(35)

The hyperbolic right angled triangle angular defect 5 in (35) was first calculated 
in [2], using algebraic methods of hyperbolic trigonometry as shown in this arti­
cle. Later, but independently, it was calculated by Hartshorne in [1, Fig. 5] using 
geometric methods. 7

7. The Angular Defect of the Hyperbolic Triangle

Let a, 0  and 7 be the hyperbolic angles of the hyperbolic triangle A abc  in Fig. 1. 
The cosines of these angles are calculated by means of the Hyperbolic Law of 
Cosines. The sines of these angles are related to each other by the Hyperbolic 
Law of Sines, enabling us to calculate cos 5 where 5 =  tt — (a +  0  +  7 ) is the 
triangle defect. The latter, in turn, is employed to calculate ta n (5/2) by means of
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the trigonometric identity tan1 2(<̂>/2) =  (1 — cos</>)/(1 +  eos<̂ >), obtaining 

6
tan — =

2
s/a  +  b +  c +  abc\/—a +  b +  c — abc\/ a — b +  c — abc\/ a +  b — c — abc

2 +  a2b2c2 - a 2 -  ft2 -  c2 '
(36)

In the special case when the triangle is right angled and the lengths of its perpen­
dicular sides are a and b, the triangle side lengths are related by the hyperbolic 
Pythagorean identity (21). Under this condition it can be shown that (36) reduces 
to (35).
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