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Abstract, The eenter-of-mass system for many bodies in M3 admits a natu­
ral action of the rotation group 50(3). According to the orbit types for the 
50(3) action, the center-of-mass system M  is stratified into strata. A quan­
tum Hamiltonian system and a classical Lagrangian system are defined on 
L 2(M)  and on T(M),  respectively. These systems are also stratified accord­
ing to the stratification of M,  and then reduced by the rotational symmetry, 
respectively.

1. Introduction

Consider a smooth manifold M  on which acts a compact Lie group G. According 
to the orbit types of the group action, the manifold is stratified into different strata. 
Mechanics will be set up on each stratum and then reduced by symmetry. We apply 
this idea, taking M  and G as the center-of-mass system for N  bodies and the ro­
tation group 50 (3 ), respectively. The center-of-mass system M  will be stratified 
into M  = M  U M i  U M q, where M  and M \  are the set of non-singular config­
urations or non-linear molecules, and the set of collinear configurations or linear 
molecules, respectively, and M q is a singleton which denotes the simultaneous col­
lision configuration. We have no need to discuss mechanics on M q. A quantum 
Hamiltonian system is defined on L 2(M),  and stratified into those on L 2(M)  and 
L 2( M i ), which are reduced to quantum systems on vector bundles over M / S O ( 3) 
and M\/SO(%),  respectively. A classical Lagrangian system is defined on T(M ),  
and stratified into those on T (M )  and T(M\) ,  which are reduced to classical sys­
tems on vector bundles over M / S O ( 3) and M \ j SO(3), respectively.
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2. The Center-of-mass System

Let Xj, j  =  1 , . . . ,  N,  be position vectors of particles in R3 and nij the masses of 
particles. The center-of-mass system is defined to be

Let

N

M  =  {x =  ( x i , . . . ,  x n ) ; Xj e  R3, m j x j =  0}.
i=i

Fx =  span{cci,.. . , x N}. 
Then M  is broken up into four parts,

3

M  =  [J  M k, M k  :=  { x  6 M ; d im Fx
k=o

The rotation group 5 0 (3 ) acts on M  in the natural manner,

x ^  gx = (gx i , .. . , g x N).

k}.

According to the dimensionality of Fx, the orbits Ox are classified into three types

O* =
50 (3 )
5 2

for x  e  M2 U M3 
for x  e  Mi 
for x  6 M).

We call the configuration x  e  M2 U M3 non-singular and x  e  M) U M i singular, 
respectively. With respect to the orbit types, M  is stratified into

M  =  M0 U M i U M , M  := M2 U M3.

The 5 0 (3 ) action defines an equivalence relation on M. The orbit space M /5 0 (3 ) 
is called a shape space, the space of shapes of configurations. The projection map 
M  —» M /5 0 ( 3) is also stratified into

' M — > M /5 0 (3 )
< M i — > M i/5 0 (3 )

M 0 — > M0/5O (3) =  {0}

among which the principal stratum M  is made into an 50 (3 ) bundle.
The Jacobi vectors are defined by the formulae

( 1  1 r 1 /2 f  1 ^  \  ^
r ,  =  I -----1--------- 1 x :i. 1 ----- - 2 ^  m tx t , fij := ^  m,

flj M  *=i=i i=i
Then, the center-of-mass system M  can be viewed as the set of the Jacobi vectors 

M  =  { ( r i , . . . ,  T jy-i) ; rj  e  R3, j  = 1 , . . . ,  N  -  1}.
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3. Fourier Analysis of Wave Functions

Before discussing the group action on wave functions, we make a brief review of 
Fourier analysis [2], We introduce the Euler angles through g =  e^Rie^ e eRieA x 
erf>R(e3)' wjjere R(e.k) are defined through i?(e^)a =  x a. Let (De,TLe) be 
unitary irreducible representations for 5 0 (3 ), £ =  0 ,1 ,2 , . . . ,  where H e is the rep­
resentation space with an orthonormal basis eem, \m\ < £. We denote by D^J^g)  
the matrix elements of D e with respect to eem, and by djj,(g) =  sin 9 d9 d<f> dip the 
invariant volume element on 50(3 ).
For /  e  L 2(M),  the function f (gx)  can be expanded into the Fourier series,

QG
/(<?*) =  E  E  D i M i r L f W )

£=0 \m\,\n\<l

where the Fourier coefficients are defined by

(■Pnmf)(x ) := f  D emn(h)f(hx)dfj,(h).
•>«- J,SO( 3)

If we define the map E lm : L 2(M)  ® L 2(M)  by

e U
i

V W T T E  4 ® P n m f
\ n \ < e

one can check that E em satisfies the equivariance condition

( E U ) ( g x )  = D e(g)(Eemf)(x)-

4. Non-singular Configurations, Quantum Theory

Let 7T : M  —> M / S O  (3) be the 5 0 (3 ) fiber bundle. The tangent space to M  can 
be splitted into a direct sum

TX(M) = Vx ® Hx 

where Vx and Vx are defined by

14 := Tx (Ox), H x := Vx

respectively, with respect to the metric
N - 1

ds2 =  dr3 ■ drr
i= i

This decomposition of T (M )  defines a connection on M.  In a dual manner, the 
connection is defined as follows: Through the inertia tensor Ax : JR3 —» R.3 defined
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by
N - 1

A x (v) = ^ 2  Tj x (v x Tj), x  =  ( r i , . . . ,  rj\r-i), .r C A/ 
j =i

the connection form is defined to be

ujx  =  R  ^ A x 1 r 3 x  d r 3 j  •

We now consider the kinetic energy integral, from which the Laplacian is derived 
through integration by part

J V - l£  | I . | I dF = _I f  f Af d V,T  = -
2 J m “ T1 d r 3 d r 3 2

where d V  denotes the standard volume element on M.  We wish to put the Lapla­
cian in terms of local coordinates. Let a : U —> M  be a local section, where U 
is an open subset of M .  Then we can put x  e  ir_1([7) in the form x  =  ga(q), 
q e  U. We denote the local coordinates of q by (qa). By making intensive use of 
the connection form, we can break up the Laplacian A into

3

A rot =  A abK aK b
a.h= 1

rib, 3JV—6A =  A r,„ +  A

where K a and denote the infinitesimal rotation and the infinitesimal vi­

bration, which are defined, respectively, as follows:

Ka =  | 5e<fl(e°)cJWl*=t=0’

^gcr(q) I I « I I 0, 7T*

The other quantities used to express A rot and A vib are defined as follows:

aa/3 = ds ’ (dq f i )  ) ’ A.ab = d.s (Ka, K b),

(aai3) = (aaj3) \  (Aab) = (Aab) 1, p(q) = det(Aab) det(aaj3).

Operating the equivariant 7^-valued function

(EU)(SJo{q)) = DHcg)(Elf)(p{q))
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with (d/dqa )* results in

where V a is the operator given by

Va = J2m ® ^  + i£ A £ ( g)[jM]

[Pp] denoting the representation matrices for so(3), and A%(q) being given 
through

3 31V—6

^ ( 9) =  £  £  A%(q)dqaR(ea).

In the same manner, we can obtain the reduced Laplacian [1],

which acts on cross sections of M  x 50 (3) a complex vector bundle over 
M / S O (  3).

5. Collinear Configurations, Quantum Theory

In this section, we take up M i, the space of collinear configurations. The tangent 
space to M \  can be decomposed also into a direct sum,

respectively, with respect to the induced metric <1s2\m 1 on M\.  The inertia tensor 
A x is singular at x  e  M\.  In fact, for

one has ker Ax = spanjwjj}, where u a := gea, a = 1,2,3, is the moving frame. 
However, one can define

Tx (Mi) = V p  ® H p

where V p  and H p  are defined by

V p : = T x (Ox ), H p : = ( V p p

x  =  ( C i« 3 ,  • • • ,  C /V - 1 W3 ) e  M i

(A x }) 1 : span{w i,«2} —> span{«i, U2 } 

and further a (singular) connection form
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Now we are going to express the kinetic operator for collinear configurations in 
terms of local coordinates. For x  =  <700(C) with <to(C) =  (Cie3> • • •, Civ-ie.s), the 
induced metric on M \  is given by

n -  1 n -  1
ds2W =  ^  C|(d02 +  sin2 0 d 4>2) +  Y  dC |•

3 =1 3=1

The kinetic energy integral is then put in the form

I i 1) I f
2 JM% \ p i {0

df_ 2 1
89 +  sin2 0

a / 2
d<j>

N - 1

+  E
3=1

d F (1)

where dW 1) js the volume element formed from ds2W, and dspi(C) 
Integration by part provides the Laplacian

A (!)

where
1 8 f  8 \  1 a2

sin 6 80 V 8 0 /  ^  sin2 6 dtp2 

Since etR(es)ao(jp) =  cro(C), the equivariance condition

( E U ) ( ? o(0 ) =  D e(etR^ ) ( E emf) (vo(0 )

1 .-2 
2-;; I S? '

implies that

(ELf)(9(To(q)) =  Y  en ® ^ n (5e3 )(F om /)(cro(g))
|n|<£

where denote the spherical harmonics on S 2, being related with the D-func- 
tions by

Yeniges) = \ I ^ ^ D en0(g).

Operating ( E ^ f ) ( g a 0(q)) with A ^ ,  one obtains the reduced Laplacian [1],

A (l) red £(£ + 1 )
Pi(C)

which acts on cross sections o f M \  x snf 31 a direct sum o f complex line bundles
over Ml/SO(3).
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6. Non-singular Configurations, Classical Theory

In this section, we treat non-singular configurations in Lagrangian mechanics. Let 
a  : U —» M  be a local section. Then one has x  =  ga(q), q e  U. We now 
take (q, g) as local coordinates in 7r_1(C/), and (q, q, g, g) as local coordinates in 
T(jr 1 (I/)), respectively. In view of ̂ ga{q) =  g(g_1dg -I- u j^ -^g -1 , we introduce 
an so(3)-valued variable

n  =  c + E A- ( 9 ) r
a

where

£ =  5_15, Aa (g) =  E  AS(9)-R(ea).
a

Then, we may take (g, g, g, II) as local coordinates in T('k~1(U)).
By the variational principle, we can show that the Euler-Lagrange equations for 
L(q, q, g, II) are given by

where

{̂ 4, B)  := traee(£4r I?)

7y- _dAp ^  dAa  r , » 1
Ka0 dqa dqP

The K ap e  so(3) are the components of the curvature form.
If L  is rotationally invariant, one has a reduced Lagrangian L*(q, q, II) defined on

T ( M ) / S O ( 3) =  T ( M / S O ( 3)) ® Q

where Q =  M x  So(3)G and Q =  so(3). For force-free non-singular configurations, 
L  is rotationally invariant, and expressed as

l * = \ T ,  +  \ { u ,  R A R ^ U )
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where R  : R3 —» so(3) and A  =  . The Euler-Lagrange equations then reduce
to and are put in the vector form,

£ A w  ' K^ 0 ^  +  w •
0

- A n

---(A k ) =  A n  X 7T —
d t K

^ 2  Air x Af)(f
P

(An)

where
II =  R(  tt), A i3 = R(Ap), K aj3 = R(Ka0).

Note here that d/dqa —Aa denotes the covariant derivation acting on local sections 
in Q. One can further show that the total angular momentum is conserved, i.e.

f l - 1 ( gAir.

7. Collinear Configurations, Classical Theory

In view of x  =  (Cige-z, • • •, Qn - iQ̂ -z) G M i with g =  e^63e0£2, we take local 
coordinates (£,£,«,  it) for T(M \)  with u  := ge%. On the variational principle, 
we can show that the Euler-Lagrange equations are given by

dL d ( dL
d(a ~~ df \ d L
dL d /' dL\
du df '\d ii j

where P  is the projection operator given by

P  =  I  — u u T .

= 0 

=  0

Since it =  g£,e^ with £ =  g 1g, we can take (£, £, u,  £e%) as local coordinates. If 
L  is rotationally invariant, one has a reduced Lagrangian L*(Q, C, £e3) defined on

T (M i) /SO (3)  ^  T ( M 1/SO(3)  ® V

where V  is a vector bundle over M i / S O (3). For force-free collinear configura­
tions, L  is rotationally invariant, and expressed as

£* =  ^ E ( c « ) 2 +  ^ i ( 0 l f i x e 3l2
a

where
P i( C )  =  £ ( Q 2 , £  =  i ? ( 0 ) .
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The Euler-Lagrange equations then reduce to

^ C a  =  Ca|Q(fi)|2

^(p (C )O  x e 3) =  - Q ( O x (p(C)O x e3)) 
di

where Q is the projection operator given by

Q := I  -  e 3e 3 .

We can show again that the total angular momentum is also conserved, i.e.

g p ( O Q m -
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