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Abstract. We construct explicit parametrizations in terms of elliptic
functions for unduloids depending on a parameter. We then use these
parametrizations to study geodesics on unduloids. In particular, we use
Maple to find interesting closed geodesics on unduloids.

1. Introduction

Finding closed geodesics on manifolds is an important and quite difficult prob-
lem in geometry (e. g. see [10]). For instance, it was a major advance when,
around 1930, Lusternik and Schnirelmann showed that S? with any Riemann-
ian metric possesses at least 3 closed geodesics. Recent acclaimed work of
Franks [4] shows that, in fact, an infinite number of distinct closed geodesics
exist. Lusternik and Fet proved that every closed manifold possesses at least
one closed geodesic and this type of result can be extended for, say, surfaces
not homeomorphic to the plane or cylinder [16]. In general, the focus has
been on proving existence theorems rather than finding explicit examples of
closed geodesics. In this paper, we will consider a non-compact cylinder-like
surface called the unduloid and study some aspects of its geodesics. In par-
ticular, we will see that Maple may be used to find (within some tolerance)
closed geodesics of an interesting type. We will not simply draw pictures and
make claims, however, but rather, prove that our computer methods determine
closed geodesics.(™ () For this, we bring classical differential geometry and

() We wish to thank David Singer for several conversations which contributed mightily to the
development of the method for finding closed geodesics presented here.
@A preliminary version of this paper has appeared in the Proceedings of Maple Workshop 2002.

206



Unduloids and their Closed Geodesics 207

the subject of elliptic functions to bear.

We will begin by reviewing the subject of elliptic functions and the methods
of differential geometry which pertain to geodesic determination. For a brief
history of the development of elliptic functions, see [15]. For a straightforward
exposition of their properties and applications, see [7] (as well as [3] and [9]).
Finally, for a recent approach in terms of dynamical systems, see [11].

The basics of differential geometry (especially in conjunction with computer
algebra systems) may be found in [12, 14, 6].

2. Recollections of Elliptic Functions

The easiest way to understand the elliptic functions is to consider them as
analogues of the ordinary trigonometric functions. From freshman calculus, we
know that

arcsm

[

Of course, if z = sin(t) (—7/2 <t < 7/2), then we have

sin(t)
du

NI

In this way, we may view sin(t) as an inverse function for the integral. Now,
fixing some £ with 0 < k < 1 (called the modulus), we make the

t = arcsin(sin(t)) =
0

Definition 1. The Jacobi sine function sn(u, k) as the inverse function of the
following integral. Namely,

sn{u,k)
/ dt o
Uu = .
/ V1 — 121 — k2¢2

More generally, we write

(2)

k) = 0/ Ny =

and call F(z,k) an elliptic integral of the first kind. An elliptic integral of
the second kind is defined by

) / \/1—14,'2752
(z,

V112
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When z = 1 in F(z,k) and E(z,k), then these integrals are respectively
denoted by K(k) and E(k) and called the complete elliptic integrals of the
first and second kind.

The Jacobi cosine function cn(u, k) may be defined in terms of sn(u, k)
sn”(u, k) + cn’(u, k) = 1.
A third Jacobi elliptic function dn(u, k) is defined by the equation
dn’®(u, k) + k?sn?(u, k) = 1.

The integral definition of sn(u, k) makes it clear that, sn(u,0) = sin(u). Of
course, cn(u,0) = cos(u) as well. The derivatives of the elliptic functions can
be found from the definitions (but also see [11] where the elliptic functions are
essentially defined in terms of their derivatives!). For instance, let us compute
the derivative of sn(u, k). Suppose in (2) that z = z(u). Then

dFf  dF dz 1 dz
du  dz du  1— 221 — k222 du

But, from (1), we know that, when z = sn(u, k), we have F(z,k) = u. Hence,
replacing z by sn(u, k) and using du/du = 1, we obtain

1 dsn(u, k)

1=
\/1 — sn(u, k)Q\/l — k?sn(u, k)2 du

dsn(u, k)

—a = \/1 — sn(u, k)Q\/l — k?sn(u, k)?

d k

dsn(u, k) = cn(u, k) dn(u, k) .

du
We also have

éj?lgglﬁl ::Afsn(U,kﬁ‘jn(uak)
du
ddn(u, k) v
———— = k*sn(u, k) en(u, k) .
du

Maple has built-in elliptic functions, so we can easily plot them as follows.
We take £ =1/ V2 for concreteness.

> with(plots) :with(linalg):
We will need to have a numerical value for K(1/v/2). We can find this as
follows.

> k1 := 1/sqrt(2);
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k1l := %\ﬂi

> fsolve(JacobiSN{(u, k1) = 1, u);
1.854074677

Here are the plots of the elliptic sine sn, cosine cn and dn.

> plot({JacobiSN(u, k1), JacobiCN(u, k1), JacobiDN(u, k1)},
u = -1.854074677..3%1.854074677) ;

1 -

L dn(u)
0.5 -

cn()

- sn(u)
0.0 f

05

u

Figure 1. Elliptic sine, cosine and dn

We see from Fig. 1 that sn(u, k) and cn(u, k) are periodic, but what is the
period? We can determine the period by recalling (1)

sn{u,k)

/ dt

u =

/ Vv1— 121 — k2¢2
and

A dt
K(k) = 0/ JIoevlo e

We see that, from the first equality, sn(K(k), k) = 1. Clearly, from the graph,
we find that K (k) is 1/4 of the period of sn(u, k). Of course, this can be
verified analytically (see, for instance, [18, p. 368]), but this argument suffices
for our purposes. Also, the identity, sn*(u, k) + en®*(u, k) = 1 implies that
cn(u, k) has the same period as sn(u, k) and that ecn(K(k),k) = 0. So, the
value of the complete elliptic integral K (k) can be found also by calculation
where the elliptic cosine vanishes.

Finally, we will require the following result later.
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Proposition 1. The following identity holds™

/ch(a,k)dﬂ: E(Sn(z; ELR) 1 kszF(sn(u,k),k). @)

0

Proof: We compute from the definitions

E(sn(u,k),k) 1—k*
k2 k2

sn{u,k)
/ 1 1 — k2¢2 B (1 —k?) 1 5y
a k2 1 —t2 5 \/(1 —#2)(1 — k2t2)

sn{u,k) sn{u,k)

/ 1— k22 — (1 — k2 1 — V12 "
k21— 21— k22 S V1R

Now make the substitution ¢ = sn(u, k) with dt = cn(a, k) do(a, k) da and
note that the limits of integration transform as follows. When ¢ = 0, we have
sn(i, k) = 0, so 4 = 0. When t = sn(u, k), then sn(u, k) = sn(u, k), so
u = u. Hence, we obtain

F(sn(u, k), k)

0

u

Elon(u, k) k) 1= B oo k), k) = /

k2 k2

cn(t, k) en(u, k) dn(a, k) da
dn(a, k)

0
_ /cn2(a, )l
0
0

3. The Calculus of Variations

Elliptic integrals often arise in the calculus of variations (as we shall see below).
The calculus of variations deals with problems of the following sort: find a
curve y = y(x) which makes the integral

J= [ P@,y@),y (@)

(1) Although F(sn(uo, k), k) = ug, we shall continue to write F(sn(uo, k), k) because simplifi-
cation in Maple appears to work better in that case.
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a minimum (or, more generally, a critical value). A (famous) necessary condi-
tion for a minimizer y(z) is the Euler-Lagrange equation

d (8F> oF _ 5

dz oy’ 7%_

A curve y(x) which satisfies the Euler-Lagrange equation is said to extremize
: . .. d
J. A more compact notation for this equation is —(F, ) — F, = 0. Two

variations of the Euler—Lagrange necessary condition arise when we have the
following situations:

i) If F(z,y,vy’) does not explicitly depend on z, then the Euler-Lagrange
equation may be replaced by the first integral

JOF

F—yay!—

c (6)

where c is a constant. The equivalence of the first integral with the Euler—
Lagrange equation is seen by simply differentiating the first integral with
respect to .

ii) If we wish to minimize J = f;}l F(z,y(z),y (z)) dz subject to an extra

constraint I = [ G(x,y,y’) dz, then we take either the Euler-Lagrange
equation or the first integral associated to the integral

K=/(F(:c,y,y’)+>\G(9~“,y,y’))dx-

0

The constant A is called a Lagrange multiplier. See [12] for details.

4. Some Differential Geometry

We are interested in explicitly describing geometric objects by parametrization
in terms of elliptic functions. Of course, one reason we want to do this is that
we have an array of classical tools with which to study such a parametrized
surface. (Modern expositions of the subject can be found in, for instance,
[1,6,8,12] and [17].) A parametrized surface S is determined by its first and
second fundamental forms:

I = Edu® + 2F dudv + G dv?

7
Il = Ldu® + 2M dudv + N do? )
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where the coefficients are given by

E = Efu,v] = x, - X, F = Flu,v] = x, - X,,
G = Glu,v] = x, - x,, L = L[u,v] = x,, * n, (8)
M = M[u,v] = Xy - 1, N= Nu,v] =% 1.

Here n is the unit normal vector to §

X, X X,

©)

n=nlu,v] = —.
[0 X X ||
Intuitively, the metric coefficients F, I’ and G describe the stretching necessary
to map a piece of the plane up to the surface under the parametrization. As can
be seen from the definition, the coefficients L., M and N of I/ have more to
do with acceleration and, hence, curvature. Indeed, there are classical formulas
which describe two types of curvatures at every point of the surface. These
are the Gauss and mean (meaning ‘“average”) curvatures, denoted by K and
H respectively. The formulas are
LN - M? EN + GL - 2FM

_ T 0 m=
EG _F2 O 2(EG — F?)

We will deal only with surfaces of revolution which have parametrizations of
the general form (up to permutation of coordinates)

x(u,v) = (g(u), h(u) cos(v), h(u) sin(v)) .

It is easy to compute that, for such surfaces, we always have F' = 0 = M, so
the formulas for Gauss and mean curvature reduce accordingly.

The Maple 7 procedures which calculate these geometric quantities are as fol-
lows. First, we have procedures for the dot product, norm and cross product.

> dp := proc(X, Y)
X[11xY[1] + X[2]*Y[2] + X[3]1*Y[3];
end:

> nrm := proc(X) local ans;

ans := sqrt(dp(X, X));

simplify(combine(ans), radical, symbolic, trig);
end:

> xp := proc(X, Y)

local a, b, c;

X[21*Y[3] - X[3]*Y[2];
b := X[3]xY[1] - X[1]1*Y[3];
c := X[1]*Y[2] - X[2]*Y[1];
[a, b, c];

end:

a @
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The next procedures compute the metric F, F' and G, the unit normal of a
parametrized surface and the coefficients of II, L., M and N.

> EFG := proc(X)

local Xu, Xv, E, F, G;

Xu := [diff(X[1], u), diff(X[2], u), diff(X[3], uw)l;
Xv := [diff(X[1], v), diff(X[2], v), diff(X[3], v)];
E := dp(Xu, Xu); F := dp(Xu, Xv); G := dp(Xv, Xv);
simplify([E, F, G], symbolic);

end:

> UN := proc(X)

local Xu, Xv, Z, s;

Xu := [diff(X[1], uw), diff(X[2], w), Aiff(X[3], w];
Xv := [diff(X[1], v), dAiff(X[2], v), diff(X[3], v)]1;
Z := xp(Xu, Xv);

s := nrm(Z);

simplify([Z[1]/s, Z[2]/s, Z[3]/s], symbolic);

end:

> lmn := proc(X)
local Xu, Xv, Xuu, Xuv, Xvv, U, 1, m, n;

Xu := [diff(X[1], u), diff(X[2], u), diff(X[3], uw)l;

Xv = [diff(X[1], v), diff(X[2], v), diff(X[3], v)]1;

Xuu := [diff(Xul1], u), diff(Xul2], u), diff(Xul3], u)l;
Xuv := [diffXul[1], v), diff(Xul2], v), diff(Xul3], v)];
Xvv := [diff(Xv[1], v), diff(Xv[2], v), diff(Xv[3], v)];
U := UN(X);

1 := dp(U, Xuu); m := dp(U, Xuv); n := dp(U, Xvv);
simplify([1, m, n], symbolic);
end:

Of course, we immediately get procedures for calculating Gauss and mean
curvature as well.

> GK := proc(X)
local E, F, G, 1, m, n, S, T;

S := EFG(X);

T := Ilmm((X);

E := S8[1]; F := S[2]; G := S[3];

1 :=T[1]; m := T[2]; n := T[3];
simplify((1*n - m~2)/(E*G - F~2), symbolic);
end:

> MK := proc(X)
local E, F, G, 1, m, n, S, T;

S := EFG(X);
T := 1lmm((X);
E := S[1]; F := 8[2]; G := S[3];
1 :=T[1]; m := T[2]; n := T[3];

simplify ((Exn + G*1 - 2xF*m)/(2+xExG - 2*F~2), symbolic);
end:
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But we are interested in understanding finer details of a surface. Namely, we
shall be interested in understanding something about the geodesics on a surface.
Intuitively, geodesics are the straight lines of a surface; the shortest distances
between points. Any curve a(t) which lies on a surface S parametrized by
x(u, v) may be written as a(t) = x(u(t),v(t)), with u(¢) and v(¢) determining
the curve. We therefore have the following result which serves for us as both
a definition and proposition.

Proposition 2. Geodesics are completely determined as solutions of a set of
second order differential equations (once initial conditions are specified) called
the geodesic equations:

E E G s

u' + ﬁuﬂ + Evu"u’ =577 = 0 (10)
FE, w v
o 2Gu’2 + %u’v’ + QGGU’Q =0. (11)

Here we have taken F' = 0 since this will always be true for the surfaces
we consider. We will use Maple to solve these equations numerically and plot
geodesics on our special surfaces. There is also a special feature about geodesics
on a surface of revolution which will allow us to predict geodesic behavior and
then verify it pictorially. This feature is called the Clairaut relation.

Definition 2. Suppose a parametrization x(u,v) has metric coefficients E and
G which only depend on the parameter uw and F = 0. Then x(u,v) is said to
be u-Clairaut.

When x(u,v) is u-Clairaut, the geodesic equations take the form

E, 2 Gu 2 G
" u ! u !/ " u [
'+ —u" — —=v'" =0 v+ —u'v'=0.
2F 2E G
In general, for a u-Clairaut parametrization x(u,v) and a unit speed geodesic
a, we can reduce the second geodesic equation quite easily to first order. The

equation v + %Lu’ v' = 0 becomes
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Now, a geodesic @ may be assumed to be unit geodesic, so we have &' =
x,u' + x,v" with

lo/|? = Eu? + Gv? =1.
This is called the unit speed relation. If the expression for ¢ is inserted into
the unit speed relation, we obtain

1= Eu” + Gv'”?

2

2 C
2
1= Eu?+ S
U +G
,Q_C;*C2
-~ EG
G —c2
/::I:
b EG

Now if we divide ' by u/, we obtain an integral relating « and v.

Proposition 3. For a u-Clairaut parametrization, geodesics are characterized
by the integral relation

VE
v:i/@%du.

Proof:
dv v . el . +eVE
du v L /c:];é2 VGG — &
VE
v = —  du.
\/5\/ G —c?
O

Let ¢ be the angle between the tangent vector of a unit speed geodesic a and
X,, the tangent vector of the u-parameter curve given by fixing a v-value in
the parametrization x(u,v). Then the Clairaut relation holds.

Proposition 4. For a u-Clairaut parametrization, the following relation holds:

: : . c
VG sin ¢ = ¢, where c is the constant given above by v' = o
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Proof:
. o' -x, (x,u" + x,v") - x,
sin ¢
o] - |x,| 1-VG
Gv' c
_— e = GU’ = G—
VG G
\/asinqﬁ =c.
O

We will see that the Clairaut relation restricts geodesics in fundamental ways.

We can use Maple 7 to calculate the geodesic equations, to solve them numer-
ically and then to plot the solutions (i. e. geodesics) on a given parametrized
surface.

> geoeq := proc(X)

local S, eql, eq2;

S := EFG(X);

eql := diff(u(t),t$2) + subs({u = u(t), v = v(t)}, diff(S[1],u)/(2%5[1]))

*¥diff (u(t), t)°2 + subs({u = u(t), v = v(t)}, diff(S[11, v)/(S[11))

*diff (u(t), t)*diff(v(t), t) - subs({u = u(t), v = v(t)},

diff(s[3], u)/(2%S[1]1))*diff(v(t), t)"2 = 0;

eq2 := diff(v(t),t$2) - subs({u = u(t), v = v(t)}, diff(S[1],v)/(2%S[3]))

*diff (u(t), t)°2 + subs({u = u(t), v = v(t)}, diff(S[3], u)/(S[31))

*diff (u(t), t)*diff(v(t), t) + subs({u = u(t), v = v(v)},

diff(S[3], v)/(2%S[3]1))*diff(v(t), t)"2 = O;

eql, eqg2;

end:

5. A Surface of Delaunay: The Unduloid

Suppose we have a surface of revolution which encloses a fixed volume
V = 7 [y(x)?*dz such that surface area A(S) = 27 [y(x)y/1+ y'(z)*dz

is minimized. What are the resulting surfaces? Neglecting 7 in the formula,
the set-up for this constrained problem takes the form

extremize / <2y(x) 1+ 9/ (x)? — )\y(z)2> dz .

Since the integrand does not depend on the independent variable z, we may use
the first integral f — ' (0f/0y’) = & in place of the Euler-Lagrange equation

to get
2 !
2yx/1+y’2—)\y2—y’—yy =l
V1 —I—y’2
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We then obtain

2ay

v = —c (12)
V14 y?
where a = —1/X and ¢ = ¢/ . The surfaces of revolution determined by (12)

are called surfaces of Delaunay. Surfaces of Delaunay were originally defined
in [2] as surfaces of revolution of constant mean curvature. The variational
viewpoint presented above is due to Sturm in an appendix to [2]. We can
transform (12) into the following

(13)

Further on we will assume that the above constant c is strictly positive, that
is ¢ = b%. The profile curves of surfaces of Delaunay may be characterized
as those curves arising from rolling conics on a line. Such curves are called
roulettes of conics. The case above with ¢ > 0 corresponds to the roulette
of an ellipse with axes a and b, a > b (see [12]). These types of surfaces of
Delaunay are called unduloids. The radicand in (13) is real just when y lies
in the interval

a=a— Va*— b?, B=a+ va*— b>. (14)
Introducing the eccentricity ¢ of the ellipse,
e=4/1— — (15)

the interval above can be rewritten in the form
a=a(l —¢), B=a(l+e). (16)

This leads us to change variables as follows:

y =av1+e? 4 2esin g, ¢ €[-7/2,7m/2]. (17)
Performing this change one gets

Qg cos ¢
—> d
Vv1+e?+ 2esin ¢

dy b, y® + b — 2a°(1 + esin ¢)

and

\/4a2y2 — (y2? + )2 — 2ea’cos ¢.
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As a result, the integral which we are interested in becomes

¢

:d¢)=a//‘ (1 +esing) _ 4 5
/2 \/1 + €% 4 2esin¢

and can be split further into two types of integrals which themselves can be
transformed into elliptic integrals.

Lemma 1. For k = ;L—qq, let K = K(k) and E(k) denote the complete

elliptic integrals of the first and second kind respectively, we have

é -
dé 9
= 2 (K + F(sn(u, k), k)

and

6 - - 5T g
/ singdg 2 p+q(E(k)+E(Sn(u,k)ak))

—7/2 \/p‘l—QSll'ld) q

2p

qvp t+4q

Here, u corresponds to ¢ under the transformation sinqz; =1—2sn*(u, k).

+ (K + F(sn(u, k), k)) .

Proof: We make the substitution sing = 1 — 2sn?(@, k) with d¢ =
—2dn(@) da (where, as usual, we shorten the notation for the elliptic functions
for fixed k). Note that ¢ = —7/2 corresponds to — K under the substitution.

—2dn(a

¢
742 \/p+qs1n / vPta dn (@)
-2 /
= du
vPta J

- V}%(K | F(sn(u, k), ))

where, again we use F'(sn(u, k), k) = u. For the second type of integral, we
make the same substitution to obtain
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¢
/ Sil’l¢ dq;
—7/2 p+q81n¢

__ 2 ot (pta P9
B ETh \/m( 3g DK m K
p+q P —q
+ TE(SD(U,)) — 5 u)
2 2
+(p+ @) E(sn(u)) — (p — @u)
2 (K +u) - 21D () 1 Bsu(u), k) .

= —= u) —
qvp+q q

In our case, p =1+ £ and ¢ = 2¢, so that

2\E

1+e

Taken together, the above considerations give us
z(u) = a(l —e)[F(sn(u, k), k) + K(k)] + a(l + ¢)[E(sn(u, k), k) + E(k)]

where K (k) and E(k) are the complete elliptic integrals of the first and second
kind, respectively. We must also convert y(¢) to y(u) by the transformation
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sin¢ =1 — 2sn*(u). This gives

y(u) = a\/(l +¢€)? — desn?(u)

4e )
:a(1+5)\ﬁ msn (u)

= a(1 +¢)y/1 — k2sn2(u) = a(1 + €) dn(u).

Revolving the curve (z(u),y(u)) around the z-axis leads to
Theorem 1. A parametrization for the surface of Delaunay S is given by
x(u,v) = (x(u),y(u) cosv,y(u) sinwv)
where
z(u) = a(l — &)[F(sn(u, k), k) + K(k)] + a(1 + &)[E(sn(u, k), k) + E(k)]
and

y(u) = a(l + &) dn(u).

In Maple, we have

> delau := [ax(1 - epsilon)*(EllipticK(kk) + EllipticF{(JacobiSN(u, kk), kk))
+ a*(1 + epsilon)*(EllipticE(kk) + EllipticE(JacobiSN(u, kk), kk)),

ax*(1 + epsilon)*JacobiDN(u, kk)*cos(v),

a*(1 + epsilon)*JacobiDN(u, kk)*sin(v)];

The metric coefficients of the unduloid may be calculated by Maple.
> EFG(subs(kk = 2*sqrt(epsilon)/(1 + epsilon), delau));

2
—e2 4 4¢ JacobiSN (u 2 1%) — 2 — 1| a?

?

14 2 + €2
0,

2
- [—52 + 4¢ JacobiSN (u 2 Ve ) — 2 — 1] a?

1+e¢

Using the relationships among the elliptic functions, we can simplify the results
to
E = 4a® dn®(u, k), F =0, G =a*(1+¢)*dn’(u, k).

Now let’s use Maple to calculate the coefficients of the second fundamental
form and the mean curvature. We write the results of the procedure “lmn” in
standard IATEX form because the Maple output is difficult to typeset.

> lmn(subs(kk = 2*sqrt(epsilon)/(1 + epsilon), delau));
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4ae dn(u, 21+E)Cn(u,2]ﬁij (ZSn(u 2£i;) ——1——5) V/14-2€—F52 4e sn(u, 2fi;)
(—1—25—52 —|—4€sn(u,21+i‘i)2> \/1—sn(u,2ﬁ)2(1+s)
—cn(u,21+5)dn(u 21+E) (25sn(u 21‘{5) -I-252sn(u,21+5)2—25—5 —1)
\/1+2s+52 — desn(u,2 25 \/1—sn(u,21‘_/,i)2

These formulas (with k£ = 2y/¢/(1 + ¢) understood) reduce to

L =

dae (1 2
1+e¢ 1+¢

2¢e
N =a(l 1-
A “)( 1+

sn(u)Q) : M =0

. sn(u)2) :

From these and the metric coefficients, we can easily compute the mean cur-
vature. Maple gives the following verification.

> MK(subs(kk = 2*sqrt(epsilon)/(1 + epsilon), delau));

. (1+ €) JacobiCN (u, 2 %) JacobiDN (u 2 %)

2a 2 2
\/ 1 — JacobiSN (u 2 %) \/ 1 4 26 + 2 — 4e JacobiSN (u 2 %)

This reduces to H = 1/(2a) and verifies that, in fact, unduloids (as all Delaunay
surfaces) have constant mean curvature.

6. Geodesics on Unduloids

The metric coefficients of the parametrization of the unduloid were found to
be

E=4a’dn’(u), F=0, G=2a*(1+¢e)dn’(u).
These only depend on = (as they must since the unduloid is a surface of

revolution), so the parametrization is u-Clairaut. Therefore, a Clairaut relation
holds:

VGsin(f) = a(1 + €) dn(u) sin(h) = ¢.

Geodesics on the unduloid obey the Clairaut relation. Thus, their behavior can
be predicted. Moreover, Proposition 3 says that geodesics are characterized by
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the integral

v:ﬂ:/\/_i/—Ejdu

2dn (ug)

/\/dn — dn’ (uo)
dnuo
/J —sn()'

Here, u, is the “initial” point of the geodesic and we have chosen ¢ = /2
in the Clairaut relation to get ¢ = a(1l + ) dn(w,) which has been substituted
in the general integral formula. Note that v is continuous and monotonically
increasing in u. This explains why our geodesics always proceed in a “forward”
direction.

Approach 1. The following steps determine closed geodesics on unduloids.

o Write a Maple procedure with inputs € (to specify an unduloid) and u (to
specify a starting point for a geodesic which starts parallel to a parallel
circle of the unduloid) and output the u-value corresponding to when the
geodesic achieves revolution variable v equal to .

e We look for those outputs w which are zero. Because we use numerical
solutions of the geodesic equations to compute the endpoints of geodesics,
we cannot hope to obtain u = (. Rather, because v is continuous and
monotonically increasing, we look for positive and negative outputs in order
to guarantee a starting ugy with final value v =0 at v = .

e The process above determines a closed geodesic on the unduloid for the
following reasons. First, as we will see, in the parametrization of the
unduloid, uw = 0 corresponds to the “equatorial” geodesic depicted in Fig. 5.
The unduloid is symmetric with respect to this equator, so, if we know that
the ug geodesic travels m around the unduloid at w = 0, then symmetry
says that it will travel another m until it reaches the point on the unduloid
corresponding to —uq. Then it will bounce off the parallel circle at —u, and
travel around by a total of 2w back to the original parallel circle. Again,
symmetry says that the geodesic must close up.(l)

Remark 1. We note here that it is not true in general that the endpoints of
geodesics depend continuously on initial conditions. The fact that it is true
here is due to the fact that the parametrization is u-Clairaut.

() Note that the geodesic obeys the Clairaut relation and it is known that a geodesic can never
be asymptotic to a non-geodesic parallel circle. Thus, the geodesic must bounce back.
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Figure 2. An unduloid with ¢ = 0.7

Figure 3. An unduloid with € = 0.3

Now let’s use Maple 7 to find geodesics according to the plan just enunciated.(")
First, to get a picture of various unduloids, we create a procedure to draw
unduloids given inputs a and ¢ in the parametrization for unduloids above. See
Fig. 2 and Fig. 3.

> with(plots):

(1) At this time, Maple 8 is just becoming available. If necessary, updates to the procedures given
below will appear on [13].
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> plotund := proc{a, eps)

local kk, uu;

kk := 2*sqrt(eps)/(1 + eps);

uu := fsolve{(JacobiSN(u, kk) =1, u);

plot3d(subs({u = u(t), v = v(t)}, [a*x(1 - eps)*(EllipticK(kk) +
EllipticF(JacobiSN(u, kk), kk)) + a*(1 + eps)*(EllipticE(kk) +
EllipticE(JacobiSN(u, kk), kk)), a*(1 + eps)*JacobiDN(u, kk)*cos(v),
ax(1 + eps)*JacobiDN(u, kk)*sin(v)]), u = -uu..uu, v = 0..2%Pi,
scaling = constrained, axes = boxed);

end:

> plotund(1, 0.7);
> plotund(1, 0.3);

Geodesics on the unduloid may be found by solving the geodesic equations
numerically using “dsolve” and then putting the numerical solution values into
the parametrization for the unduloid. This is the content of the following
procedure. The inputs include the € of the parametrization, initial points and
derivatives, a running time “T”, the number of points used to plot each geodesic
“N”, a grid of the form [a, b], the orientation of the plot given by “theta” and
“phi” and the color of the geodesic.

> undugeo := proc(eps, u0, vO, DuO, DvO, T, N, gr, theta, phi, col)
local kk2, del, delO, ulim, desys, ul, vl, geo, plotX, equator;

kk2 := evalf(2*sqrt(eps)/(1 + eps));

ulim := fsolve(JacobiSN(u, kk2) = 1, u);

del := subs(a = 1, [a*(1 - eps)*(EllipticK(kk2)

+ EllipticF(JacobiSN{(u, kk2), kk2))

+ ax(1 + eps)*(EllipticE(kk2) + EllipticE(JacobiSN(u, kk2), kk2)),
ax*(1 + eps)*JacobiDN(u, kk2)*cos(v),

a*(1 + eps)*JacobiDN(u, kk2)*sin(v)]);

del0 := subs({a = 1, u = 0},

[ax(1 - eps)*(EllipticK(kk2) + EllipticF(JacobiSN(u, kk2), kk2))

+ ax(1 + eps)*(EllipticE(kk2) +

EllipticE(JacobiSN(u, kk2), kk2)), a*(1 + eps)*JacobiDN(u, kk2)*cos(v),
ax(1 + eps)*JacobiDN(u, kk2)*sin(v)]);

desys := dsolve({geoeq(del), u(0) = u0, v(0) = v0, D(u)(0) = DuO,
D(v)(0) = DvO}, {u(t), v(t)}, type = numeric, output = listprocedure);
ul := subs(desys, u(t)); vl := subs(desys, v{(t));

geo := tubeplot(subs(u = ’ul’(t), v = ’v1’(t), del), t = 0..T,

radius = 0.02, color = col, numpoints = N):

equator := tubeplot(delO, v = 0..2*Pi, radius = 0.015, color = black);
plotX := plot3d(subs({u = u(t), v = v(t)}, del), u = -ulim..ulim,

v = 0..2+%Pi, grid = [grl[1], gr[2]], shading = ZGRAYSCALE):
display({geo, plotX, equator}, style = wireframe, scaling = constrained,
orientation = [theta, phil);

end:

The following example plots a geodesic on a cylinder (i. e. the case € = 0)
which starts parallel to a parallel circle (see Fig. 4). In general, throughout this
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paper, we will start our geodesics parallel to a parallel circle. This is described
by the initial conditions Du0 = 0, Dv0 = 1.

> undugeo(0.0, 0.4, 0, O, 1, 20, 40, [20, 20], -109, 66, blue);

Figure 4. A geodesic on a cylinder

Of course, we shall mostly be concerned with € # 0. In this case, a geodesic
(which we hope will be closed) must bounce back and forth between parallel
circles. The following procedure determines the u-value when the geodesic
has gone around the unduloid by 7. If u = 0, then symmetry considerations
provide a closed geodesic. Because a numerical solution cannot be trusted to
be 100 % accurate, we need to use something like monotonicity and continuity
to guarantee a closed geodesic.

> halfbouncepoint := proc(u0, eps)

local kk2, del, geosystem, uuu, vvv, ttt, uuul;

kk2 := 2xsqrt(eps)/(1 + eps);

del := subs(a = 1, [a*(1 - eps)*(EllipticK(kk2)

+ EllipticF(JacobiSN{(u, kk2), kk2))

+ a*x(1 + eps)*(EllipticE(kk2) + EllipticE(JacobiSN(u, kk2), kk2)),

ax*(1 + eps)*JacobiDN(u, kk2)*cos(v), a*(1 + eps)*JacobiDN{(u, kk2)*sin(v)]);

geosystem := dsolve({geoeq(del), u(0) = u0, v(0) = 0, D(u)(0) = O,

D(v)(0) = 1},

{u(t), v(t)}, type = numeric, output = listprocedure, range = 0..25);
uuu := subs(geosystem, u(t)); vvv := subs(geosystem, v(t));

ttt := timelimit (30, fsolve(vvv(t) = evalf(Pi), t));

if type(ttt, float) then

uuul := eval(uuu(t), t = ttt);

uuul;

else print(‘time error‘);

end if;

end:

The following example with ¢ = 0.3 shows our method. The first applica-
tion of “halfbouncepoint” shows the existence of a closed geodesic. Further
applications zoom in on the correct value for 40 and the closed geodesic is
then plotted (see Fig.6). Note that it is a general fact that a parallel circle
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is a geodesic where the profile curve has a critical point, so the equator (i. e.
u0 = 0) on an unduloid is always a geodesic (see Fig. 5).

Figure 6. A closed geodesic for € = 0.3

> for jj from -2 to 2 do
print(0.99 + jj*0.005, halfbouncepoint(0.99 + jj*0.005, 0.3)); od;

0.980, —0.00354601376090929238
0.985, —0.00155537162876178446
0.99, 0.000478130347751064930
0.995, 0.00255504657297548006
1.000, 0.00467593536017002660

> for jj from -2 to 2 do
print(0.9888 + jj*0.0001, halfbouncepoint(0.9888 + jj*0.0001, 0.3)); od;

0.9886, —0.0000956024228562558400
0.9887, —0.0000547339092084751702
0.9888, —0.0000138482941866551866
0.9889, 0.0000270544615188748633
0.9890, 0.0000679746262203292234

> for jj from -2 to 2 do
print (0.9888338613 + jj*0.0000000001, halfbouncepoint(0.9888338613 +

jj*0.0000000001, 0.3)); od;
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0.9888338611, —0.215471530591940242 x 10 °
0.9888338612, —0.131270777668085481 x 10 °
0.9888338613, —0.470980860648589905 x 10~ "°
0.9888338614, 0.371504283499385357 x 10 '°
0.9888338615, 0.121351875380024121 x 10 °

> undugeo(0.3, 0, 0, O, 1, 25, 40, [20, 20], -119, 68, blue);
> undugeo (0.3, 0.9888338614, 0, 0, 1, 100, 200, [20, 20], -90, 68, blue);

Figure 7. A closed geodesic for € = 0.4

Here is the case € = 0.4. We show only the last step of the process of zooming
in on u0 and the closed geodesic (or rather, the close approximation to the true
one) in Fig. 7.
> for jj from -2 to 2 do
print(1.604921062 + jj*0.000000002, halfbouncepoint(1.604921062 +
jj*0.000000002, 0.4)); od;
1.604921058, —0.975764764430883670 x 10 °
1.604921060, —0.625177360401296678 x 10 °
1.604921062, —0.276254281559792926 X 108
1.604921064, 0.104294152827866249 x 10 °
1.604921066, 0.454881944134469252 x 10 °
> undugeo (0.4, 1.604921062, 0, 0, 1, 30, 60, [20, 20], -109, 66, blue);
The next case shows that, as we get closer to a cylinder (i. e. as € — 0), closed
geodesics of the kind we have depicted disappear.
> undugeo(0.25, 0.2, 0, 0, 1, 20, 40, [20, 201, -90, 66, blue);

> for jj from -2 to 2 do
print(0.25 + jj*0.03, halfbouncepoint(0.25 + jj*0.03, 0.25)); od;

0.19, 0.000981709956794714302
0.22, 0.00153040225539034531
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0.25, 0.00225650162095684384
0.28, 0.00318734922151134044
0.31, 0.00435150862645489884
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Figure 8. A geodesic for € = 0.25

We see that, as u0 increases, so does the u-value where v = 7. We try to go
lower to find the closed geodesic, but we never seem to get the negatives and
positives which ensure the existence of a closed geodesic.

> for jj from -2 to 2 do
print(0.15 + jj*0.02, halfbouncepoint(0.15 + jj*0.02, 0.25)); od;

0.11, 0.000188946175343870614
0.13, 0.000312394892872004649
0.15, 0.000480819333432193266
0.17, 0.000701462070509302959
0.19, 0.000981709956794714302

> for jj from -2 to 2 do
print(0.06 + jj*0.03, halfbouncepoint(0.06 + jj*0.03, 0.25)); od;

0.00, 0.0

0.03, 0.383093716991672563 x 107 °
0.06, 0.0000305832394461361790
0.09, 0.000103353275101991736
0.12, 0.000245496153549967550

Although we cannot seem to find a closed geodesic for £ = 0.25, we can find
one for € = 0.27.

> for jj from -2 to 2 do
print(0.647237683 + jj*0.000000002, halfbouncepoint(0.647237683 +
jj*0.000000002, 0.27)); od;

0.647237679, —0.605163563574886988 x 1077
0.647237681, —0.236546335904280758 x 1077
0.647237683, 0.132067925606021986 x 10 °
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0.647237685, 0.235248143664809618 x 10 °
0.647237687, 0.603848639060128312 x 10 °

> undugeo(0.27, 0.647237683, 0, 0, 1, 30, 60, [20, 20], -90, 68, red);

Figure 9. A closed geodesic for € = 0.27

The procedure “halfbouncepoint” can produce unexpected results. For ¢ =
0.45, we actually find rwo closed geodesics by observing where changes of
signs occur in the output of “halfbouncepoint™.

> for jj from -2 to 2 do
print(1.82 + jj*0.02, halfbouncepoint(1.82 + jj*0.02, 0.45)); od;

1.78, —0.116912442366751828
1.80, —0.0682354690654627247
1.82, —0.0155980583680302554
1.84, 0.0411104550678680000
1.86, 0.101949580950035340

> for jj from -2 to 2 do

print(1.8256479 + jj*0.000000004, halfbouncepoint(1.8256479 +
jj*0.000000004, 0.45)); od;

1.825647892, 0.253827999504435686 x 10
1.825647896, —0.110532436264562661 x 10 °
1.8256479, —0.161765549514664153 x 10~
1.825647904, —0.254823376785034972 x 10~°
1.825647908, 0.319462907100165338 x 10~

Notice that we have two changes of sign here. In the following, we focus on
both and plot the corresponding geodesics (see Fig. 10 and Fig. 11).
> for jj from -2 to 2 do

print (1.825647894 + jj*0.000000001, halfbouncepoint(1.825647894 +
jj*0.000000001, 0.45)); od;
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1.825647892, 0.253827999504435686 x 10~
1.825647893, 0.151038128462510635 x 10~
1.825647894, —0.579997126212011826 x 10~ "
1.825647895, —0.251446704209153452 x 10 °
1.825647896, —0.110532436264562661 x 10 °

> undugeo(0.45, 1.8256478935, 0, 0, 1, 30, 60, [22, 20], -134, 79, red);

Figure 11. Another closed geodesic for ¢ = 0.45

> for jj from -2 to 2 do
print (1.825647906 + jj*0.000000001, halfbouncepoint(1.825647906 +
jj*0.000000001, 0.45)); od;

1.825647904, —0.254823376785034972 x 10 °
1.825647905, —0.227405424569997184 x 10 °
1.825647906, 0.763889081985096030 x 10~ "
1.825647907, 0.377853410721620820 x 10~
1.825647908, 0.319462907100165338 x 10~

> undugeo(0.45, 1.8256479055, 0, 0, 1, 30, 60, [22, 20], -112, 73, blue);
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We can find closed geodesics up to a certain point. For example, for large €’s,
we have something like the following.

> for jj from -2 to 2 do
print(3.065 + jj*0.001, halfbouncepoint(3.065 + jj*0.001, 0.75)); od;

3.063, —0.0530297385471027311
3.064, —0.0314215156819902600
3.065, —0.00969423314278463136
3.066, 0.0121391026845334722
3.067, 0.0340685135056265354

> undugeo(0.75, 3.065, 0, 0, 1, 56, 70, [20, 20], -90, 68, red);

Figure 12. A closed geodesic for ¢ = 0.75

Figure 13. A wild geodesic for € = 0.85

But, again, unusual behavior is observed after some point for larger €’s. Let’s
look at € = 0.85. We have observed that the ©0’s which give closed geodesics
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increase as € increases. If we search for u0’s that work, we find the behavior
below typical. Although it appears that Fig. 13 may be closed, further calcula-
tions show that this is not the case (as “halfbouncepoint” indicates).
> for jj from -2 to 2 do
print(3.85 + jj*0.02, halfbouncepoint(3.85 + jj*0.02, 0.85)); od;
3.81, 3.09367094439529476
3.83, 3.31473932779440883
3.85, 3.53072473699172917
3.87, 3.74103649971058516
3.89, 3.88261887508628200
> undugeo(0.85, 3.85, 0, 0, 1, 100, 150, [20, 20], -137, 79, red);
> undugeo(0.85, 3.8, 0, 0, 1, 110, 150, [20, 20], -26, -108, red);
> undugeo(0.95, 3.85, 0, 0, 1, 160, 220, [20, 20], -137, 79, red);

Figure 14. Another wild geodesic for € = 0.85

Figure 15. A wild geodesic for ¢ = 0.95
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7. Open Problems

The central question which must be addressed in the future is precisely how
the existence of closed geodesics (of the type we are interested in) depends on
. In particular, the following problems should be considered:

e Find the exact € < 0.27 where closed geodesics (of the type above) don’t
exist.

e Use the integral for v to analyze the cutoff ¢ < 0.27 where closed geodesics
(of the type above) don’t exist.

e Modify the procedure “halfbouncepoint” to handle the cases € > 0.75 where
geodesics become very complicated. Do closed geodesics exist?

e Of course, we have concentrated on closed geodesics of a very particular
type. The same arguments as given above would guarantee a closed geodesic
(with many self-intersections) if one of our “parallel” starting geodesics
hits the equator at any rational multiple of 7. It is very easy to modify
“halfbouncepoint” to handle this case, but it is unclear what the correct
guesses should be to even begin a systematic search. Nevertheless, for the
€ where we have not found closed geodesics of simple type, the rational
multiple idea may yet yield more complicated closed geodesics.
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