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Abstract. These lectures notes are meant as an introduction to geometric
quantization. In Section 1, I begin with presentation of the historical back-
ground of quantum mechanics. I continue with discoveries in the theory of
representations of Lie groups, which lead to emergence of geometric quan-
tization as a part of pure mathematics. This presentation is very subjective,
flavored by my own understanding of the role of geometric quantization in
quantum mechanics and representation theory. Section 2 is devoted to a re-
view of geometry of Hamiltonian systems. Geometric quantization is dis-
cussed in the next two sections: prequantization in Section 3 and polariza-
tion in Section 4. In particular, I discuss geometric quantization with respect
to polarizations given by Kähler structure, cotangent bundle projection and
completely integrable system. More advanced topics, like metaplectic struc-
ture, pairing of polarizations, and commutation of quantization and reduc-
tion, are not included.
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1. Historical Background

We trace the beginning of Quantum Mechanics to Planck’s work on the black body
radiation. In his 1901 paper [29], Planck writes

“If we apply Wien’s displacement law in the latter form to equation
(6) for the entropy S, we then find that the energy element must be
proportional to the frequency, thus: E = hν.”

I want to emphasize that Planck did not postulate this result but derived it.
The next giants on the scene are Niels Bohr and Arnold Sommerfeld. In his 1913
paper [6], Bohr postulates that admissible orbits of a Hamiltonian system satisfy
the quantization condition ∫

pidq
i = nh

where (q1, ..., qn) are position coordinates, (p1, ..., pn) are conjugate momenta, h
is Planck’s constant, and the Einstein convention of summation over repeated in-
dices is adopted. These conditions applied to the harmonic oscillator yield Planck’s
relation. Bohr’s quantization of the hydrogen atom with Hamiltonian

H =
1

2m
p2 − k

|q|
gives a discrete family of allowable orbits of the electron. Atoms absorb or emit
radiation only when the electrons jump between allowed orbits.
In 1915 [36], Sommerfeld generalized Bohr’s quantization condition to the rela-
tivistic hydrogen atom with Hamiltonian

H =
√
m2 − p2 − k

|q|
·

In this case motion is not periodic, but orbits lie on three-dimensional tori. Som-
merfeld interpreted the integral in Bohr’s quantization condition as integration over
generators of the tori. The energy spectrum of the relativistic hydrogen atom ob-
tained by Sommerfeld describes exactly the Balmer series of spectral line emis-
sions of the hydrogen atom. The same energy spectrum is obtained from the Dirac
equation with mass m and potential energy − k

|q| ·
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Sommerfeld’s interpretation of Bohr’s quantization rules is usually referred to as
Bohr-Sommerfeld quantization rules. The results of Bohr and Sommerfeld are the
foundation of the Bohr-Sommerfeld theory, which historians call Old Quantum
Theory. This theory predicts, sometimes very accurately, quantum states of atoms
and molecules but does not provide information about quantum interactions.
It is worth noting that applying to the Hamiltonian of the relativistic hydrogen atom
the modified quantization conditions∫

pdq = (n+
1

2
)h

we obtain the energy spectrum, which is exactly the same as the spectrum obtained
from the Klein-Gordon equation with mass m and potential energy − k

|q| [15]. The
relation between the correction 1

2 in Bohr-Sommerfeld quantization rules and the
change from spin 1

2 to spin 0 is a mystery of quantum mechanics that is still unre-
solved [33].
The next stage of understanding of quantum physics originated with a paper of
Werner Heisenberg published in 1925 [19], importance of which was described by
P.A.M. Dirac in 1975 [18]1

“The great advance was made by Heisenberg in 1925. He made a
very bold step. He had the idea that physical theory should concen-
trate on quantities which are very closely related to observed quanti-
ties. Now, the things you observe are only very remotely connected
with the Bohr orbits. So Heisenberg said that the Bohr orbits are not
very important. The things that are observed, or which are connected
closely with the observed quantities, are all associated with two Bohr
orbits and not with one Bohr orbit: two instead of one.”

In the following year, we had two competing theories: the matrix mechanics of
Max Born and Pascuale Jordan [7] and the wave mechanics of Ervin Schrödinger
[30]. A unification of both theories into the present day quantum mechanics came
in the work of Paul Dirac [16].
The fundamental structure of modern quantum theory was formulated by Dirac
in Principles of Quantum Mechanics [17] in terms of operator algebras and their
representations. In classical mechanics, states of the system under consideration
are points of its phase space P, and dynamical variables are real-valued functions
on P . In quantum mechanics, states of the system form a complex Hilbert space
H and dynamical variables are self-adjoint operators on H. There is a Poisson sub-
algebra A of the Poisson algebra of P, on which we can define a classical analogy
given by a linear map Q associating to each f ∈ A a self-adjoint operator Qf on

1See also [26, p.261].
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H such that, for every f1, f2 ∈ A

[Qf1 ,Qf2 ] = i~Q{f1,f2} (1)

where ~ is Planck’s constant divided by 2π, and {f1, f2} is the Poisson bracket of
f1 and f2. Dirac referred to equation (1) as the fundamental quantum condition. It
implies that the map f 7→ 1

i~Qf is a homomorphism of the Poisson algebra of A
into the Lie algebra of skew-adjoint operators on H.

Another consequence of equation (1) is that we may regard the classical mechanics
as the limiting case of quantum mechanics when ~ → 0. On the other hand, if we
know the classical theory of a system, we may use equation (1) to quantize our
system; that is to construct a quantum theory of this system.

In the three decades that followed the publication of Dirac’s Principles of Quantum
Mechanics, there was a lot of work done on quantization of classical systems of
physical importance. Also, there was feed back from the mathematics community
aimed at clarification of mathematical concepts in quantum theory. Thus, quantum
physics accelerated development of mathematics, in particular functional analysis
and representation theory.

The foundation of geometric quantization is based on the fact, discovered indepen-
dently by Kirillov, Souriau and Kostant, that every co-adjoint orbit P of a Lie group
G is endowed with a symplectic form. In 1962, Aleksandr Kirillov constructed
unitary representations of nilpotent Lie groups using the orbit method, which re-
lied on the symplectic structure of co-adjoint orbits [21]. Kirillov also conjectured
that irreducible unitary representations of compact group were in one-to-one corre-
spondence with integral co-adjoint orbits. In 1966, Jean-Marie Souriau formulated
a quantization scheme in terms of sections of a circle bundle over the phase space
(P, ω) of the quantized system [37]. Souriau’s quantification géométrique did not
provide for probability amplitudes in quantum mechanics.

In 1965, Bertram Kostant outlined his theory of geometric quantization at the US-
Japan Seminar in Differential Geometry, Kyoto. A comprehensive presentation of
the first step of geometric quantization, called prequantization, was given in his
1970 paper [24]. Application of the complete theory to representations of solvable
group appeared in a joint paper with L. Auslander published in 1971 [3]. This
established the basic principle that the quantization techniques used by physicists
can be adapted so that, a large class of connected Lie groups, they yield irreducible
unitary representations corresponding to integral co-adjoint orbits.
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2. Geometry of Hamiltonian Systems

2.1. Symplectic Manifolds

A differential two-form ω on a manifold P is symplectic if it is closed and non-
degenerate. In other words, ω is symplectic if dω = 0 and

v ω = 0

for every vector v ∈ TP, where denotes the left interior product (contraction).
A symplectic manifold is a pair (P, ω), where ω is a symplectic form on P .
For each smooth function f(p, q) on a symplectic manifold (P, ω), the Hamiltonian
vector field of f is the vector field Xf defined by

Xf ω = −df.

Hence
£Xf

ω = Xf dω + d(Xf ω) = 0

and the local one-parameter local group exp tXf of diffeomorphisms of P gener-
ated by Xf preserves ω.
A symplectic structure ω of the phase space P of a classical system gives rise to
the Poisson bracket {·, ·} on C∞(P ), defined by

{f1, f2} = Xf2(f1) (2)

for all f1, f2 ∈ C∞(P ). The Poisson bracket is bilinear, and antisymmetric. More-
over, it satisfies the Leibniz rule

{f1f2, f3} = f1{f2, f3}+ f2{f1, f3}
and the Jacobi identity

{f1, {f2, f3}}+ {f2, {f3, f1}}+ {f3{f1, f2}} = 0.

The map f 7→ Xf is an antihomomorphism of the Poisson algebra of C∞(P ) to
the Lie algebra X(P ) of smooth vector fields on P , that is

[Xf1 , Xf2 ] = −X{f1,f2}

for every f1, f2 ∈ C∞(P ).
The orbit of a vector field X on P through a point p ∈ P is a maximal curve
c : t 7→ c(t) in P such that c(0) = p and

d

dt
f(t) = X(f)(t)

for every f ∈ C∞(P ). Translations along integral curves ofX gives rise to a local
one-parameter local groups of diffeomorphisms of X denoted exp tX . For every
p ∈ P

(exp tX)(p) = c(t)
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where c is the maximal integral curve of X such that c(0) = p.
Let G be a connected Lie group and

Φ : G× P → P : (g, p) 7→ Φg(p) = gp

be an action of G on P . We say that Φ is a Hamiltonian action of G on (P, ω) if
there exists an Ad∗-equivariant map J from P to the dual g∗of the Lie algebra g of
G such that, for each ξ ∈ g, the action on P of the one-parameter subgroup exp tξ
of G is given by translations along the integral curves of XJξ , where

Jξ = ⟨J | ξ⟩.

The function Jξ is called the momentum corresponding to ξ.2 For every f ∈
C∞(P )

d

dt
Φ∗
exp tξf|t=0 = XJξ(f)

which implies that the action of exp tξ on P coincides with exp tXJξ .
A symplectic form ω on P defines a de Rham cohomology class [ω] ∈ H2(P,R).
We say that ω is integral if [ω] ∈ H2(P,Z). In other words, ω is integral if, for
every closed two-surface S in P ∫

S
ω = integer.

A symplectic manifold (P, ω) is integral if the symplectic form ω on P is integral.
One of the main objectives of geometric quantization in the theory of representa-
tions of Lie groups is construction of a unitary representation of a connected Lie
group from its Hamiltonian action on an integral symplectic manifold.

2.2. Examples

2.2.1. Cotangent bundles
For every manifold Q, the cotangent bundle space T ∗Q of Q has a canonical sym-
plectic form ω defined as follows. Let π : T ∗Q→ Q be the cotangent bundle pro-
jection and let Tπ : T (T ∗Q) → TQ denote the derived map. For each p ∈ T ∗Q,
the Liouville form θ of T ∗Q associates to vectors u ∈ Tp(T

∗Q), the evaluation of
p on Tπ(u); that is

θ(u) = ⟨p | Tπ(u)⟩ . (3)
The canonical symplectic form of T ∗P is the exterior differential of the Liouville
form.3 In other words,

ω = dθ.

2Some authors use the French term moment.
3The form ω defined here has been traditionally used in theoretical mechanics [2], [39], [40]. How-
ever, some authors use the negative of dθ as the canonical symplectic form of the cotangent bundle.
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It follows that the de Rham cohomology class of the canonical symplectic form of
the cotangent bundle vanishes.
If Q is the configuration space of a dynamical system, then T ∗Q is the phase
space of the system. For simple Hamiltonian systems the symplectic structure
of the phase space is given by ω = dθ. Electromagnetic interactions leads to
an additional term. For example, the phase space of a relativistic particle in an
electromagnetic field is (T ∗Q,dθ + π∗F ), where Q is the space-time manifold
and F is the electromagnetic field. Internal degrees of freedom like spin do not
admit a configuration space.

2.2.2. Coadjoint orbits

Let G be a Lie group with Lie algebra g and let g∗ be the dual of g. For µ ∈ g∗,
the co-adjoint orbit of G through µ is

O = {Ad∗gµ ; g ∈ G}

where ⟨
Ad∗gµ | ξ

⟩
=
⟨
µ | Adg−1ξ

⟩
for every ξ ∈ g. Since the co-adjoint action of G is transitive on O, for each ξ ∈ g,
there exists a unique vector field Xξ on O generating the action of exp tξ on O,
and for every ν ∈ O

TνO = {Xξ(ν) ; ξ ∈ g}.

Let J : O → g∗ denote the inclusion map and let Jξ be the restriction of J to
evaluations on ξ ∈ g.In other words, for all ν ∈ g∗ and all ζ ∈ g

J(ν) = ν and Jζ(ν) = ⟨ν | ξ⟩ .

Since dJ has maximal rank, Xξ(ν) = 0 if and only if
⟨
dJ | Xξ(ν)

⟩
= 0, which

is equivalent to Xξ(Jζ)(ν) = 0 for all ζ ∈ g. But

Xξ(Jζ)(ν) =
⟨
dJζ | Xξ(ν)

⟩
=

d

dt

⟨
Ad∗exp tξν | ζ

⟩
|t=0

(4)

=
d

dt

⟨
ν | Adexp(−tξ)ζ

⟩
|t=0

= −⟨ν | [ξ, ζ]⟩ .

Hence

Xξ(ν) = 0 ⇐⇒ ⟨ν | [ξ, ζ]⟩ for all ζ ∈ g.

These authors define the Hamiltonian vector field Xf of f ∈ C∞T ∗Q with respect to the symplec-
tic form dθ by Xf dθ = df. Thus, the notion of the Hamiltonian vector field is the same in both
conventions.
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Definition 1. The Kirillov-Kostant-Souriau form of a co-adjoint orbit O is the
unique two-form ω on O such that

ω(Xξ(ν), Xζ(ν)) = −⟨ν | [ξ, ζ]⟩
for every ξ, ζ ∈ g.

IfXξ(ν) ω = 0, then ⟨ν | [ξ, ζ]⟩ = 0 for all ζ ∈ g, which implies thatXξ(ν) = 0.
Hence, ω is non-degenerate. Moreover, equation (4) gives

(Xξ ω)(Xζ(ν)) = ω(Xξ(ν), Xζ(ν))

= −⟨ν | [ξ, ζ]⟩ = ⟨ν | [ζ, ξ]⟩ = −
⟨
dJξ | Xζ(ν)

⟩
for every ξ, ζ ∈ g. Hence

Xξ ω = −dJξ. (5)

Further

(£Xηω)((Xξ(ν), Xζ(ν))) = £Xη(ω(Xξ(ν), Xζ(ν)))− ω((£XηXξ)(ν), Xζ(ν))

−ω(Xξ(ν), (£XηXζ)](ν))

= − d

dt

⟨
Ad∗exp(tη)ν | [ξ, ζ]

⟩
|t=0

−ω([Xη, Xξ](ν), Xζ(ν))− ω(Xξ(ν), [Xη, Xζ ](ν))

= ⟨ν | [η, [ξ, ζ]]⟩ − ⟨ν | [[η, ξ], ζ]⟩ − ⟨ν | [ξ, [η, ζ]]⟩=0

for every η, ξ, ζ ∈ g. Hence
£Xηω = 0 (6)

for every η ∈ g, which implies that ω is invariant under the co-adjoint action of G
on O. Equations (5) and (6) yield

Xη dω = £Xηω − d(Xη ω) = 0

for every η ∈ g. Hence, dω = 0,and omega is symplectic. It follows from equation
(5) that the inclusion map J : O → g∗ is the momentum map for the co-adjoint
action of G on O, and Xξ = XJξ for every ξ ∈ g.

2.2.3. Coadjoint orbits of SO(3)

Co-adjoint orbits of SO(3) are spheres

S2
r = {x ∈ R3 ; x2 = r2}.

For a fixed r > 0, let s = x|Sr
denote the restriction of x to S2

r . The Kirillov-
Kostant-Souriau ω form on S2

r can be written as

ω = −1

2
r−2

∑
i,j,k

εijks
idsj ∧ dsk =

1

r
volS2

r
(7)
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where s1, s2, s3 are components of the spin vector s, εijk is the completely anti-
symmetric tensor with ε123 = 1, and volS2

r
is the standard area form on S2

r with∫
S2
r
volS2

r
= 4πr2, for detailed computations see [12].

For a non-relativistic particle with spin s, interpreted as internal angular momen-
tum with fixed length |s| = r, the phase space is (T ∗R3×S2

r , dθ+ω), where dθ is
the canonical symplectic form of T ∗R and ω is the Kirillov-Kostant-Souriau form
given by equation (7). Geometric quantization of this system leads to the Pauli
theory of spin [28].

2.3. Reduction of Symmetries

Consider a Hamiltonian action Φ : G × P → P : (g, p) 7→ gp of a connected
Lie group G on a symplectic manifold (P, ω) with a momentum map J : P → g∗.
Suppose that we need to solve equations of motion for a Hamiltonian system on
(P, ω) with a G-invariant Hamiltonian H ∈ C∞(P ). Given a point p0 ∈ P ,
we want to find the integral curve t 7→ c(t) of XH through p0. In other words,
c(0) = p0 and, for every f ∈ C∞(P )

d

dt
f(c(t)) = XH(f)(c(t)). (8)

Since the action Φ of G preserves ω and H , it follows that it preserves XH . There-
fore, the curve t 7→ gc(t) is an integral curve of XH through gp0.
Let P/G denote the space ofG-orbits in P and ρ : P → P/G : p→ Gp denote the
orbit map. The projection t 7→ ρ(c(t)) is a curve in P/G such that ρ(c(0)) = Gp0.
If we know ρ(c(t)), we can find c(t) as follows. First, lift ρ(c(t)) to a curve c1(t)
through p0. In other words, t 7→ c1(t) is a curve in P such that c1(0) = 0 and
ρ(c1(t)) = ρ(c(t)). This implies that there exists a curve t 7→ g(t) in G such that,
for every t in the domain of c

g(t)c1(t) = c(t) (9)

Substituting equation (9) into equation (8), yields
d

dt
f(g(t)c1(t)) = XH(f)(g(t)c1(t)) (10)

for every f ∈ C∞(P ). Equation (10) is a first order differential equation for the
curve t 7→ g(t) with initial condition g(0) = identity.
The G-invariance of the Hamiltonian H implies that XHJξ = −XJξH = 0 for
every ξ ∈ g. Hence, the momenta Jξ are constant along integral curves of XH . In
particular, if µ = J(p0) ∈ g∗, then J(c(t)) = µ for all t, and the curve t 7→ g(t)
has to have the stability group Gµ = {g ∈ G ; ad∗gµ = µ} of µ.
In the discussion above, we have split the problem of finding integral curves XH

into two steps. The first step, called reduction, consists of finding the projection
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of an integral curve of XH to the orbit space P/G. The second step, called recon-
struction, consists of solving equation (10).

2.3.1. Regular reduction
In order to discuss methods of finding projections of integral curve of XH to the
orbit space P/G we must make further assumptions on the action of G on P . Sup-
pose first that the action ofG on P is free and proper. Then, the orbit space P/G is
a manifold and the orbit map ρ : P → P/G is a submersion. The ring C∞(P/G)
of smooth functions on P/G is isomorphic to the ring C∞(P )G of smooth G-
invariant functions on P . Since the symplectic form ω on P is G-invariant, it
follows that the Poisson bracket (2) is G-invariant. Thus, if f1, f2 ∈ C∞(P )G

then {f1, f2} ∈ C∞(P ). Thus, C∞(P )G has the structure of a Poisson alge-
bra, which implies that the orbit space P/G is a Poisson manifold and, for every
f̄1, f̄2 ∈ C∞(P/G), the Poisson bracket {f̄1, f̄2} ∈ C∞(P ) satisfies the condition

ρ∗{f̄1, f̄2} = {ρ∗f̄1, ρ∗f̄2}. (11)

There exists a symplectic form ω̄ on P/G such that for every f̄ ∈ C∞(P/G),
the Hamiltonian vector field Xf̄ , defined with respect to the symplectic form ω̄, is
ρ-related to the Hamiltonian vector field Xρ∗f of ρ∗f. In other words

Xf̄ ◦ ρ = Tρ ◦Xρ∗f

where Tρ : TP → T (P/G) is the tangent map of ρ : P → P/G. This implies
that, for every f̄1, f̄2 ∈ C∞(P/G)

{f̄1, f̄2} = Xf̄2
f̄1.

For H ∈ C∞(P )G, we denote by H̄ ∈ C∞(P/G) the push-forward of H by ρ. In
other words, H = ρ∗H̄ . If c(t) is an integral curve of XH through p0 ∈ P , then
ρ(c(t)) is an integral curve of XH̄ through ρ(p0).
The regular reduction was introduced by Meyer [27] and Marsden and Weinstein
[25]. It is also known as the Marsden-Weinstein reduction.

2.3.2. Singular reduction
Suppose now that the action of G on P is not free but it is proper. In this case, the
orbit space P/G is a stratified subcartesian differential space with the differential
structure C∞(P/G) isomorphic to C∞(P )G. As in the case of manifolds, geome-
try of differential spaces can be studied in terms of their smooth but one has to be
careful not to jump to conclusions. For example, a global derivation of C∞(P/G)
need not generate a local one-parameter local group of diffeomorphisms of P/G.
Therefore, vector fields on a P/G are defined as global derivations of C∞(P/G)
that generate local one-parameter local group of diffeomorphisms of P/G. With
this definition, orbits of any family of vector fields on P/G are smooth manifolds
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immersed in P/G. In particular, strata of the stratification of P/G are orbits of the
family of all vector fields on P/G [35].
As before, C∞(P/G) inherits from C∞(P )G the structure of a Poisson algebra.
For each f̄0 ∈ C∞(P/G), the derivation

Xf̄0
: C∞(P/G) → C∞(P/G) : f̄ 7→ {f̄ , f̄0}

generates a local one-parameter local group of diffeomorphisms of P/G and we
refer to it as the Poisson vector field of f̄0. Orbits of the family of all Poisson
vector fields on P/G are smooth symplectic manifolds immersed in strata of the
stratification of P/G.
As before, for H ∈ C∞(P )G, we denote by H̄ ∈ C∞(P/G) the push-forward
of H by ρ. If c(t) is an integral curve of XH through p0 ∈ P , then ρ(c(t)) is an
integral curve of XH̄ through ρ(p0).
The technique of singular reduction, in terms of the Poisson algebra structure, was
initiated by Cushman [9], and later formalized by Arms, Cushman and Gotay [1].
The role of Sikorski’s theory of differential spaces in singular reduction was first
described by Cushman and Śniatycki [11].

3. Prequantization

Let λ : L → P be a complex line bundle. A connection on L is given by a
covariant derivative operator ∇, which associates to each section σ of L and each
vector field X on P a section ∇Xσ of L such that

∇X(fσ) = X(f)σ + f∇Xσ and ∇fXσ = f∇Xσ

for every f ∈ C∞(P ). For every section σ of L, f ∈ C∞(P ) and X1, X2 ∈ X(P ),

(∇X1∇X2 −∇X2∇X1 −∇[X1,X2])(fσ) = f(∇X1∇X2 −∇X2∇X1 −∇[X1,X2])σ.

Hence, there is a two-form α on P such that

(∇X1∇X2 −∇X2∇X1 −∇[X1,X2])σ = 2πiα(X1, X2)σ. (12)

The form α is the pull-back by the section σ of the curvature form of the connection
∇.

Theorem 2. The de Rham cohomology class [α] of the curvature form α of a
connection on a complex line bundle λ : L → P is in H2(P,Z), that is, for every
compact oriented two-dimensional submanifold M of P∫

M
α ∈ Z.

Moreover, for every form α on P with [α] ∈ H2(P,Z), there exists a complex line
bundle λ : L→ P with connection ∇ such that α is the curvature of ∇.
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Equivalence classes of complex line bundles with connection with curvature form
α are parametrized by H1(P,Z).

Proof: See [24]. �

A Hermitian form ⟨· | ·⟩ on L is connection invariant if, for every pair of sections
σ1, σ2 of L and every vector field X on P

X(⟨σ1 | σ2⟩) = ⟨∇Xσ1 | σ2⟩+ ⟨σ1 | ∇Xσ2⟩.
For every line bundle with connection, there exists a connection invariant Hermit-
ian form defined up to a constant factor.
Quantization of a symplectic manifold is defined in terms of an additional free
parameter h. In quantum mechanics, h is Planck’s constant. However, in the quasi-
classical approximation, we consider limits of various expressions as h → 0. In
the theory of representations of Lie groups, the value of h is usually taken to be −i.

Definition 3. A symplectic manifold (P, ω) is quantizable if there exists a complex
line bundle L over P with a connection ∇ and a connection invariant Hermitian
form such that the curvature of ∇ is − 1

hω.

Remark 4 (Prequantization Condition). By Theorem 2 (P, ω) is quantizable if and
only if the de Rham cohomology class [ 1hω] is integral. In other words, (P, ω) is
quantizable if and only if, for every compact oriented two-dimensional submanifold
M of P ∫

M
ω = nh

for some integer n that depends on M .

Equation (12) implies that, for each section σ of a prequantization line bundle L
and every pair X1, X2 of vector fields on P

(∇X1∇X2 −∇X2∇X1 −∇[X1,X2])σ = − i

~
ω(X1, X2)σ (13)

where ~ = h
2π · which we adopt in the following.

If σ is a non-zero local section of L, the covariant derivative ∇Xσ is proportional
to σ, and there is a complex-valued one-form θ on the domain of σ in P such that
∇Xσ = −i~−1⟨θ | X⟩σ for every vector field X. Hence

∇σ = −i~−1θ ⊗ σ.

The one-form θ is called the pull-back by σ of the connection form of ∇. Equation
(13) implies that

dθ = ω|domain σ.

A function f ∈ C∞(P ) generates a local one-parameter group exp tXf of local
symplectomorphisms of (P, ω). The Hamiltonian vector field Xf on f can be
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lifted to a unique vector field X̂f on L such that exp tX̂f is a lift of exp tXf that
preserves the connection ∇. For each p ∈ P and non-zero z ∈ Lp, the horizontal
component of X̂f (z) is the horizontal lift of Xf at z, while the vertical component
of X̂f (z) is proportional to f(p). If Xf (p) = 0 then exp tX̂f acts on the fibre Lp
by multiplication by e−2πif(p). For each σ ∈ S∞(L) we set

P fσ = i~
d

dt
(exp tX̂f ◦ σ ◦ exp(−tXf ))|t=0. (14)

Direct computation yields

P fσ = (−i~∇Xf
+ f)σ. (15)

We refer to P f as the prequantization operator corresponding to f.

Proposition 5. For each f1, f2 ∈ C∞(P ) and σ ∈ S∞(L)

[P f1 ,P f2 ] = i~P {f1,f2}. (16)

Proof: See [24]. �

The map

P : C∞(P )× S∞(L) → S∞(L) : (f, σ) 7→ P f σ

is called the prequantization map.

Corollary 6. The map C∞(P ) × S∞(L) → S∞(L) : (f, σ) 7→ i
~P f σ is a

representation of the Lie algebra structure of C∞(P ) on S∞(L).

The space S∞
0 (L) of compactly supported smooth sections of L has a Hermitian

scalar product

(σ1 | σ2) =
∫
P
⟨σ1 | σ2⟩ωn (17)

where n = 1
2 dimP . For each f ∈ C∞(P ), the prequantization operator P f is

symmetric with respect to the scalar product (17). If the Hamiltonian vector field
Xf of f is complete, then P f is self-adjoint on the Hilbert space H obtained by
the completion of S∞

0 (L) with respect to the norm given by (17). Equation (16)
gives the usual commutation relations imposed in quantum mechanics. However,
prequantization does not correspond to the quantum theory, because interpretation
of (σ | σ)(p) as the probability density of localizing the state σ at a point p ∈ P
fails to satisfy Heisenberg’s Uncertainty Principle.
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3.1. Prequantization Representation a Lie Group

Suppose that we have a Hamiltonian action of a connected Lie group G on (P, ω)
with an equivariant momentum map J : P → g∗. Since the map ξ 7→ Jξ is a
homomorphism of g to the Poisson algebra C∞(P ), the map ξ 7→ (i/~)P Jξ is
a linear representation of the Lie algebra g on the space S∞(L), which we call
the prequantization representation of g. Since Hamiltonian vector fields XJξ are
complete, each operator (i/~)PJξ is skew-adjoint on the Hilbert space H obtained
by the completion of S∞

0 (L) with respect to the norm given by (17). Recall that the
action of g on L is given by vector fields X̂Jξ on L, see equation (14). We assume
that this action integrates to an action of G on L that covers the action of G on P .
We refer to this action as the prequantization action of G on P . This assumption
implies that the prequantization representation of g described above integrates to a
representation of G. That is, we have a linear representation

R : G× S∞(L) → S∞(L) : (g, σ) 7→ Rgσ

such that
d

dt
(Rexp tξσ)|t=0 = (i/~)P Jξσ

for each ξ ∈ g. The linear representation R induces a unitary representation

U : G× H → S∞(L) : (g, σ) 7→ U gσ

such that U gσ = Rgσ for each σ ∈ S∞(L)∩H. We refer to R and U as prequan-
tization representations ofG. In general, the unitary prequantization representation
U fails to be irreducible.

3.2. Prequantization Representations of SO(3)

3.2.1. Quantization of spin
In Section 2.2.3, we described the symplectic structure of co-adjoint orbits of
SO(3). They are spheres S2

r ⊂ R3 with the Kirillov-Kostant-Souriau form

ωr = −1

2
r−2

∑
i,j,k

εijks
idsj ∧ dsk =

1

r
volS2

r

which satisfy The symplectic manifold (S2
r , ωr) satisfies the Prequantization Con-

dition (Remark 4) if ∫
S2
r

ω =

∫
S2
r

1

r
volS2

r
= 4πr = nh

or

r =
nh

4π
= n

~
2
·
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Thus, the length r of the spin vector s has to be an integral multiple of ~
2 . For even

n, prequantization of (S2
r , ω) gives the prequantization representation of SO(3).

3.2.2. Prequantization line bundle

First, we need to construct a prequantization line bundle of (S2
r , ω) under the as-

sumption that n is even, and we write n = 2s, where s ∈ N.
Let V± be complements of the south pole and the north pole in S2

r , respectively
that is

V± = {J ∈ S2
r ; s3 ± r > 0}.

We introduce in V+ and V− complex functions

z± =
s1 ∓ is2

r ± s3
(18)

respectively. In V+ ∩ V−
z+z− = 1

and the functions z+ and z− define a complex structure on S2
r .

Solving equation (18) for the spin vector s we obtain

s1 = r(z± + z̄±)(1 + z±z̄±)
−1

s2 = ±ir(z± − z̄±)(1 + z±z̄±)
−1

s3 = ±r(1− z±z̄±)(1 + z±z̄±)
−1.

Hence

ω|V± = −2ir(1 + z±z̄±)
−2dz̄± ∧ dz±

θ± = −2ir(1 + z±z̄±)
−1z̄±dz±

and
θ+ − θ− = id(log z2r− ) = i~d(log z2r/~− ) = i~d(log zn−).

Since n is an integer, the transition function zn− is globally defined and single-
valued
Consider an equivalence relation ∼ on (C×V+×{+}) ∪ (C×V−×{−}) defined
by

(c, x, α) ∼ (c′, x′, α′)

if (i) (c, x, α) = (c′, x′, α′) or (ii) α = +, α′ = −, x = x′ ∈ V+ ∩ V−, and
c = z−(x)

nc′, or (iii) α = −, α′ = +, x = x′ ∈ V+ ∩ V−, and c′ = z−(x)
nc. The

space
L = [(C× V+ × {+}) ∪ (C× V− × {−})]/ ∼
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of ∼-equivalence classes is a complex line bundle over S2
r . The projection map λ

assigns to each equivalence class [(c, x, α)] ∈ L the point x ∈ P . The restrictions
of L to V± are trivial, with trivializing sections

σ± : V± → L : x 7→ [(1, x,±)].

For x ∈ V+ ∩ V−
σ+(x) = z−(x)

nσ−(x).

We define connections ∇± on L|V± by

∇±σ± = −i~−1θ± ⊗ σ±.

In V+ ∩ V−
∇−σ+ = ∇−(z

n
−λ−) = dzn− ⊗ σ− + zn−∇−σ− = dzn− ⊗ σ− − i~−1zn−θ− ⊗ σ−

= dzn− ⊗ σ− + i~−1zn−(θ+ − θ− − θ+)⊗ σ−

= dzn− ⊗ σ− + i~−1zn−(θ+ − θ−)⊗ σ− − i~−1zn−θ+ ⊗ σ−

= dzn− ⊗ σ− + i~−1zn−(i~d(log zn−))⊗ σ− − i~−1θ+ ⊗ zn−σ−

= ∇+σ+.

Similarly, ∇+σ− = ∇−σ−. Hence, there exists a unique connection ∇ on L that
restricts to ∇± on L|V± . By construction, the curvature of ∇ is −1

h ω, as required.
If ⟨·, ·⟩ is a connection invariant Hermitian form on L, then

d⟨σ±, σ±⟩=−i~−1(θ± − θ̄±) ⟨σ±, σ±⟩
=−i~−1(−2ir(1 + z±z̄±)

−1z̄±dz±−2ir(1 + z±z̄±)
−1z±dz̄±)⟨σ±, σ±⟩

=−2~−1r(1 + z±z̄±)
−1(z̄±dz± + z±dz̄±) ⟨σ±, σ±⟩

=−2~−1r(1 + z±z̄±)
−1d(1 + z±z̄±) ⟨σ±, σ±⟩

=−2~−1rd log(1 + z±z̄±) ⟨σ±, σ±⟩ .

Since r = n~
2 = s~, it follows that

d ⟨σ±, σ±⟩ = −2sd log(1 + z±z̄±) ⟨σ±, σ±⟩

or
d log ⟨σ±, σ±⟩ = −2sd log(1 + z±z̄±) = d log(1 + z±z̄±)

−2s.

Therefore, we may choose

⟨σ±, σ±⟩ = (1 + z±z̄±)
−2s =

1

(1 + z±z̄±)2s
·

In this way, we have constructed a complex line bundle L over S2
r with connection

∇ such that the curvature of ∇ is −1
h ω, and with a connection invariant Hermitian

form ⟨·, ·⟩ on L.
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3.2.3. Prequantization representation of SO(3)

Every section σ : S2
r → L can be expressed in terms of trivializing sections σ±

as σ|V± = ψ±σ±, where ψ± are functions on V±. For x ∈ V+ ∩ V−, equation
σ+(x) = z−(x)

nσ−(x) and ψ+(x)σ+(x) = ψ−(x)σ−(x) imply

ψ+(x) = z−n− (x)ψ−(x) = z−2s
− (x)ψ−(x).

For each f ∈ C∞(S2), the prequantization operator gives

P fσ± = (−i~∇±Xf
+ f)σ± = −⟨θ± | Xf ⟩σ± + fσ±.

Hence

P fσ|V± = P f (ψ±σ±) = (−i~Xfψ± + f − ⟨θ± | Xf ⟩)σ±.

By Corollary 6 the map C∞(S2
r ) × S∞(L) → S∞(L) : (f, σ) 7→ i

~P f σ is a
representation of the Lie algebra structure of C∞(S2

r ) on S∞(L).
Note that elements of the Lie algebra so(3) of SO(3) correspond to functions on
S2
r that are linear in the components s1, s2 and s3 of the spin vector s. The Hamil-

tonian vector fields of s1, s2 and s3, expressed in terms of the functions z± and z̄±
are

Xs1|V± = − i

2

(
(z2± − 1)

∂

∂z±
− (z̄2± − 1)

∂

∂z̄±

)
Xs2|V± = ±1

2

(
(z2± + 1)

∂

∂z±
+ (z̄2± + 1)

∂

∂z̄±

)
Xs3|V± = ±i

(
z̄±

∂

∂z̄±
− z±

∂

∂z±

)
.

Hence

P s1(ψ±σ±) = −~
2

(
(z2± − 1)

∂ψ±

∂z±
− (z̄2± − 1)

∂ψ±

∂z̄±

)
σ±

+
(
r(z± + z̄±)(1 + z±z̄±)

−1
)
ψ±σ±

−
⟨
− 2ir(1 + z±z̄±)

−1z̄±dz± |− i

2

(
(z2± − 1)

∂

∂z±
− (z̄2± − 1)

∂

∂z̄±

)⟩
ψ±σ±

= −~
2

(
(z2± − 1)

∂ψ±

∂z±
− (z̄2± − 1)

∂ψ±

∂z̄±

)
σ± + s~

z± + z̄±
1 + z±z̄±

ψ±σ±

+s~
z2± − 1

1 + z±z̄±
z̄±ψ±σ±

= −~
2

(
(z2± − 1)

∂ψ±

∂z±
− (z̄2± − 1)

∂ψ±

∂z̄±

)
σ± + s~

z± + z2±z̄±

1 + z±z̄±
ψ±σ±

= −~
2

(
(z2± − 1)

∂ψ±

∂z±
− (z̄2± − 1)

∂ψ±

∂z̄±

)
σ± + s~z±ψ±σ±.
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P s2(ψ±σ±) = (−i~)
(
± 1

2

)(
(z2± + 1)

∂ψ±
∂z±

+ (z̄2± + 1)
∂ψ±
∂z̄±

)
σ±

+[±ir(z± − z̄±)(1 + z±z̄±)
−1]ψ±σ±

−
⟨
− 2ir(1 + z±z̄±)

−1z̄±dz± | ±1

2

(
(z2± + 1)

∂

∂z±

)⟩
ψ±σ±

= ∓ i~
2

(
(z2± + 1)

∂ψ±
∂z±

+ (z̄2± + 1)
∂ψ±
∂z̄±

)
σ± ± is~

z± − z̄±
1 + z±z̄±

ψ±σ±

±is~
z̄±(z

2
± + 1)

1 + z±z̄±
ψ±σ±

= ∓ i~
2

(
(z2± + 1)

∂ψ±
∂z±

+ (z̄2± + 1)
∂ψ±
∂z̄±

)
σ± ± is~z±ψ±σ±

P s3(ψ±σ±) = (−i~)(±i)
(
z̄±
∂ψ±
∂z̄±

− z±
∂ψ±
∂z±

)
σ±

+[±r(1− z±z̄±)(1 + z±z̄±)
−1]ψ±σ±

−
⟨
− 2ir(1 + z±z̄±)

−1z̄±dz± | ±i
(
z̄±

∂

∂z̄±
− z±

∂

∂z±

)⟩
ψ±σ±

= ±~
(
z̄±
∂ψ±
∂z̄±

− z±
∂ψ±
∂z±

)
σ± ± s~

1− z±z̄±
1 + z±z̄±

ψ±σ±

±2s~
z̄±z±

1 + z±z̄±
ψ±σ±

= ±~
(
z̄±
∂ψ±
∂z̄±

− z±
∂ψ±
∂z±

)
σ± ± s~ψ±σ±.

Note that the functions s1, s2 and s3 on S2
r are the momenta corresponding to a

basis (ξ1, ξ2, ξ3) of so(3). In other words, si = Jξi = ⟨J | ξi⟩, where J : S2
r →

so(3)∗ is the inclusion map. The map ξ 7→ (i/~)P Jξ is a representation of so(3)
by skew-hermitian operators on the Hilbert space H of square integrable sections
of L. This representation integrates to a unitary representation U of SO(3) on H,
called the prequantization representation of SO(3).

4. Polarization

On the quantum theory side, prequantization fails to satisfy Heisenberg’s Uncer-
tainty Principle. On the representation theory side, the prequantization representa-
tion of a connected compact Lie group, e.g. SO(3), is unitary but not irreducible.
Since unitary representations of a compact Lie group G decompose into a direct
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sum of irreducible unitary representations of G, we may think of imposing an ad-
ditional condition of our quantization process in order to single out the desired
irreducible unitary representation. This condition is given by a choice of polar-
ization, which is a geometric quantization analogue of Dirac’s complete family of
commuting observables.
A complex distribution F ⊂ TCP = C ⊗ TP on a symplectic manifold (P, ω)
is Lagrangian if, for each p ∈ P , the restriction of the symplectic form ω to the
subspace Fp ⊂ TC

p P vanishes identically, and rankCF = 1
2 dimP . If F is a

complex distribution on P , we denote its complex conjugate by F . Let

D = F ∩ F ∩ TP and E = (F + F ) ∩ TP .

A polarization of (P, ω) is an involutive complex Lagrangian distribution F such
that D and E are involutive distributions on P . The polarization F is said to be
strongly admissible if the spaces P/D and P/E of integral manifolds of D and P ,
respectively, are quotients manifolds of P and the natural projection P/D → P/E
is a submersion. A polarization F is positive if iω(w, w̄) ≥ 0 for every w ∈ F .
A positive polarization F is semi-definite if ω(w, w̄) = 0 for w ∈ F implies that
w ∈ DC.

Let F be a polarization of a symplectic manifold (P, ω). We denote by C∞(P )0F
be the space of smooth complex valued functions on P that are constant along F ,
that is

C∞(P )0F = {f ∈ C∞(P )⊗ C ; uf = 0 for all u ∈ F}.

If F is strongly admissible then it is locally spanned by Hamiltonian vector fields
of functions in C∞(P )0F .
Let C∞

F (P ) denote the space of functions on P whose Hamiltonian vector fields
preserve F . In other words, f ∈ C∞

F (P ) if, for every h ∈ C∞(P )0F , the Poisson
bracket {f, h} ∈ C∞(P )0F . If f1, f2 ∈ C∞

F (P ) and h ∈ C∞(P )0F then the Jacobi
identity implies that

{{f1, f2}, h} = −{f2, {f1, h}}+ {f1, {f2, h}} ∈ C∞(P )0F .

Hence, the ring C∞
F (P ) is a Poisson subalgebra of C∞(P ).

Let S∞
F (L) denote the space of smooth sections of L that are covariantly constant

along F , namely

S∞
F (L) = {σ ∈ S∞(L) ; ∇uσ = 0 for all u ∈ F}.

We shall refer to S∞
F (L) as the space of polarized sections. For each h ∈ C∞(P )0F ,

f ∈ C∞
F (P ) and σ ∈ S∞

F (L), we have ∇Xh
(Qfσ) = 0. Thus, for every f ∈

C∞
F (P ), the prequantization operator P f maps S∞

F (L) to itself.
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Definition 7. The quantization map Q relative to a polarization F is the restriction
of the prequantization map

P : C∞(P )× S∞(L) → S∞(L) : (f, σ) 7→ P fσ = (i~∇Xf
+ f)σ

to domain C∞
F (P )×S∞

F (L) ⊂ C∞(P )×S∞(L) and codomain S∞
F (L) ⊂ S∞(L).

In other words

Q : C∞
F (P )× S∞

F (L) → S∞
F (L) : (f, σ) 7→ Qfσ = (i~∇Xf

+ f)σ. (19)

Assume that the action Φ : G × P → P preserves the polarization F . Hence,
for each ξ ∈ g, the momentum Jξ is in C∞(P ). Restricting the prequantization
representation to the Poisson algebra spanned by Jξ, for ξ ∈ g, we get a represen-
tation ξ 7→ (i~)−1QJξ

of g on S∞
F (L). If the action Φ of G on P lifts to an action

of G on L by connection preserving automorphisms, then this representation of g
integrates to a linear representation

R : G× S∞
F (L) → S∞

F (L) : (g, σ) 7→ Rgσ (20)

of G on S∞
F (L). For each g ∈ G, f ∈ C∞(P )0F and σ ∈ S∞

F (L)

Rg(fσ) = (Φ∗
g−1f)Rgσ.

We refer to R : G× S∞
F (L) → S∞

F (L) as the quantization representation of G.

4.1. Kähler Polarization

A Kähler polarization of (P, ω) is a strongly admissible polarization F such that
F ⊕ F̄ = TCP and iω(w, w̄) > 0 for all non-zero w ∈ F . These assumptions
imply that there is a complex structure J on P such that F is the space of antiholo-
morphic directions. Moreover, P is a Kähler manifold such that −ω is the Kähler
form on P .

For a Kähler polarization F on (P, ω), the prequantization line bundle L over P is
holomorphic and the space S∞

F (L) of polarized sections coincides with the space
of holomorphic sections. Moreover, holomorphic sections of L, which are normal-
izable with respect to the scalar product (17), form a Hilbert space HF . In other
words,

HF = H ∩ S∞
F (L).

Hence, the linear representation R of G on S∞
F (L) gives rise to a unitary repre-

sentation U of G on HF .

Proposition 8. A co-adjoint orbit (O,Ω) of a compact connected Lie group G
admits a Kähler polarization.
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Proof: SinceG is compact its Lie algebra g admits a positive definite AdG-invariant
metric k, which allows for an identification of g with g∗. Under this identification,
co-adjoint orbits go to adjoint orbits. Hence, we can treat O as an adjoint orbit.
For each ξ ∈ O, the tangent space TξO is the quotient of g by the Lie algebra hξ of
the isotropy group Hξ = {g ∈ G ; Adgξ = ξ}. The map adξ : g → g : ζ 7→ [ξ, ζ]
preserves hξ and it induces a map Aξ of TξO onto itself. The map Aξ is skew sym-
metric with respect to k. Hence, eigenvalues of Aξ are purely imaginary and half
of them lie on the positive imaginary axis. Let Fξ ⊂ TξO⊗C be the space spanned
by these positive eigenvalues. One can show that the set F = ∪ξ∈OFξ ⊂ TCO is
a Kähler polarization of the symplectic manifold (O,Ω). �

Theorem 9. Let O be a quantizable co-adjoint orbit. The unitary representation
U of G on the Hilbert space HF , obtained by the quantization of (O,Ω) with re-
spect to the Kähler polarization F , described in Proposition above, is irreducible.
Moreover the map O 7→ U is a bijection of the space of quantizable co-adjoint
orbits of G onto the space of irreducible representations of G.

This above result is the Borel-Weil Theorem in the formulation due to Kostant [23].

4.1.1. Quantization representation of SO(3)

In Section 3.2.3, we showed that the representation space H of the prequantization
representation corresponding to integer spin s consists of square integrable sections
σ of the prequantization line bundle L over S2

r , where r = s~. In V+ ∩ V− ⊂ S2
r

σ|V± = ψ±σ±

where σ± are trivializing sections of L|V± such that

⟨σ±, σ±⟩ =
1

(1 + z±z̄±)2s

and ψ± are complex valued functions on V±

ψ+(x) = z−2s
− (x)ψ−(x).

We observed that the functions z+ and z− define a complex structure on P . The
distribution F = C ∂

∂z̄±
is a Kähler polarization of (S2

2s, ω2s). In this case D = 0

and E = TS2
2s so that F is strongly admissible. Moreover, F is positive semidefi-

nite because

iω|V±

(
∂

∂z̄±
,
∂

∂z±

)
= i

(
−2ir(1 + z±z̄±)

−2dz̄± ∧ dz±
)( ∂

∂z̄±
,
∂

∂z±

)
= 2r(1 + z±z̄±)

−2 > 0.

A section σ of L is holomorphic with respect to this complex structure if σ|V±
= ψ±σ±, where ψ+ and ψ− depend only on the variables z+ and z−, respectively.
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Theorem 10. The space HF consisting of square integrable sections σ of L such
that σ|V± = ψ±σ±, where ψ+ and ψ− are holomorphic functions of z+ and z−, re-
spectively, is an invariant subspace of the prequantization representation of SO(3).

Proof: If ψ+ and ψ− are holomorphic functions of z+ and z−, respectively, then
∂ψ±
∂z±

are holomorphic functions of z+ and z−, respectively, and ∂ψ±
∂z̄±

= 0. In this
case, expressions for P s1 , P s2 and P s3 in Section 3.2.3 yield

P s1(ψ±σ±) = −~
2

(
(z2± − 1)

∂ψ±
∂z±

− (z̄2± − 1)
∂ψ±
∂z̄±

)
σ± + s~z±ψ±σ±

= −~
2
(z2± − 1)

∂ψ±
∂z±

σ± + s~z±ψ±σ±

P s2(ψ±σ±) = ∓ i~
2

(
(z2± + 1)

∂ψ±
∂z±

+ (z̄2± + 1)
∂ψ±
∂z̄±

)
σ± ± is~z±ψ±σ±

= ∓ i~
2
(z2± + 1)

∂ψ±
∂z±

σ± ± is~z±ψ±σ±

P s3(ψ±σ±) = ±~
(
z̄±
∂ψ±
∂z̄±

− z±
∂ψ±
∂z±

)
σ± ± s~

1 + z±z̄±
ψ±σ±

= ∓~z±
∂ψ±
∂z±

σ± ± s~ψ±σ±.

Thus, H0 is invariant under the action of the operators P s1 ,P s2 and P s3 on H.
Since the representation of SO(3) on H is obtained by integration of the opera-
tors (i/~)P s1 , (i/~)P s2 and (i/~)P s3 , it follows that H0 is invariant under the
prequantization representation of SO(3). �

The restriction of the prequantization representation (i/~)P to HF is the quantiza-
tion representation (i/~)Q corresponding to spin s. It follows that

Qs1(ψ±σ±) = −~
2
(z2± − 1)

∂ψ±
∂z±

σ± + s~z±ψ±σ±

Qs2(ψ±σ±) = ∓ i~
2
(z2± + 1)

∂ψ±
∂z±

σ± ± is~z±ψ±σ±

Qs3(ψ±σ±) = ∓~z±
∂ψ±
∂z±

σ± ± s~ψ±σ±.

4.2. Cotangent Polarization

Suppose that P = T ∗Q is the cotangent bundle of a manifoldQ, ω is the canonical
symplectic form of T ∗Q, and the polarization F is the complexification of kerTπ,
where π : T ∗Q→ Q is the cotangent bundle projection.
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The canonical symplectic form of T ∗Q is ω = dθ, where θ is the Liouville form;
see equation (3). Since ω is exact, the prequantization line bundle is trivial; that is
L = C× P . We denote by σ0 : P → L : p 7→ (1, p) the trivializing section of L.
We choose the covariant derivative operator ∇ such that

∇σ0 = −i~−1θ ⊗ σ0.

Moreover, we normalize the Hermitian form ⟨σ1, σ2⟩ appearing in equation (17)
so that ⟨σ0, σ0⟩ = 1.
The space C∞(T ∗Q)0F consists of complex-valued functions on P = T ∗Q that are
constant along the fibres of the cotangent bundle projection. In other words

C∞(P )0F = {π∗f ; f ∈ (C⊗ C∞(Q))}.

The space C∞
F (T ∗Q) of functions whose Hamiltonian vector fields preserve F =

(kerTπ)C consists of functions on T ∗Q that restrict to linear functions on fibres
of the cotangent bundle projection π : T ∗Q → Q. The space S∞

F (L) of polarized
sections of L is given by

S∞
F (L) = {π∗(ψ)σ0 ; ψ ∈ C⊗ C∞(Q)}.

By Definition 7, for every f ∈ C∞
F (T ∗Q) and σ = π∗(ψ)σ0 ∈ S∞

F (L)

Qfσ = P fσ = (−i~∇Xf
+f)π∗ψσ0 = {−i~Xf (π

∗ψ)+(f−⟨θ | Xf ⟩)π∗ψ}σ0.
(21)

In order to simplify equation (21), we use local coordinates (q1, ..., qn) on Q and
the corresponding coordinates (q1, ..., qn, p1, ..., pn) in T ∗P . In these coordinates,
θ = pkdq

k, ω = dpk ∧ dqk

Xqk = − ∂

∂pk
and Xpk =

∂

∂qk
·

Therefore, if π∗ψ = Ψ(q1, ..., qn),

QqkΨσ0 =

{
i~
∂Ψ

∂pj
+

(
qk −

⟨
pjdq

j | −∂
∂pk

⟩)
)Ψ

}
σ0 = qkΨσ0

QpkΨσ0 =

{
−i~

∂Ψ

∂qk
+

(
pk −

⟨
pjdq

j | ∂

∂qk

⟩)
Ψ

}
σ0 = −i~

∂Ψ

∂qk
σ0.

Further, if f = a(q1, ..., qn) + ak(q1, ..., qn)pk, then

Xf = ak
∂

∂qk
− ∂a

∂qi
∂

∂pk
− ∂ak

∂qj
pk

∂

∂pj

and

f − ⟨θ | Xf ⟩ = a+ akpk −
⟨
pldq

l | ak ∂

∂qk
− ∂a

∂qi
∂

∂pk
− ∂ak

∂qj
pk

∂

∂pj

⟩
= a.
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Hence, equation (21) can be written as

Qfσ =

(
−i~ak

∂Ψ

∂qk
+ aΨ

)
σ0. (22)

For each σ = π∗(ψ)σ0, we have

⟨π∗(ψ)σ0, π∗(ψ)σ0⟩ = π∗(ψ̄ψ) = (ψ̄ψ) ◦ π.

Since the fibres of the cotangent bundle projection π are not compact, it follows
that ∫

T ∗Q
⟨σ, σ⟩ωn =

∫
T ∗Q

ϑ∗(ψ̄ψ)ωn = ∞

unless σ = 0. Thus, HF = H ∩ S∞
F (L) = 0. This implies that by passing to

polarized sections we have lost the scalar product in the space of polarized states.

4.2.1. Examples

Quantization of T ∗R3. Let P = T ∗R3 be the phase space of a particle with coor-

dinates (p1, p2, p3, q1, q2, q3), Liouville form

θ =
∑
i

pidq
i

and symplectic form

ω =
∑
i

dpi ∧ dqi.

Since ω is exact, the prequantization line bundle is trivial; that is L = C× P . We
denote by

σ0 : P → L : (p1, p2, p3, q
1, q2, q3) 7→ (1, (p1, p2, p3, q

1, q2, q3))

the trivializing section of L, and the covariant derivative operator ∇ such that

∇σ0 = −i~−1

(∑
i

pidq
i

)
⊗ σ0.

Moreover, we normalize the Hermitian form ⟨σ1, σ2⟩ appearing in equation (17)
so that ⟨σ0, σ0⟩ = 1. We take F = (kerTπ)⊗ C.
The representation space S∞

F (L) consists of sections of L of the form Ψ(q)σ0,
where Ψ ∈ C∞(R3). The space C∞(P )F of quantizable functions consists of
linear functions in p with coefficients that are smooth functions of q. Dynamical
variables directly quantizable in this representation are linear functions of momenta
with coefficients given by smooth functions of q. In particular, we can quantize
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smooth functions V (q) of the position variables q = (q1, q2, q3), linear momentum
p = (p1, p2, p3), and angular momentum J = q × p. Equation (22) gives

(QV (q)Ψσ0)(q) = V (q)Ψ(q)σ0(q)

(QpΨσ0)(q) = −i~ (gradΨ(q))σ0(q) (23)

(QJΨσ0)(q) = −i~q × (gradΨ(q))σ0(q).

Since the kinetic energy functionK = 1
2p

2 is a quadratic function of p, the Hamil-
tonian vector field XK of K does not preserve the polarization. Therefore, the
approach presented here is insufficient to give quantization of energy. We shall
discuss this problem below.

Schrödinger wave mechanics. In the Schrödinger formulation of wave mechanics
of a single particle, the representation space is the space L2(R3) of square inte-
grable complex valued functions Ψ of q, and the quantization equations (23) are
satisfied, with the factor σ0 omitted. Moreover, the quantization of the kinetic
energy is postulated to be given by the Laplace operator ∆. In other words,

QKΨ = −~2

2
∆Ψ.

The scalar product in the Schrödinger theory is

(Ψ1 | Ψ2) =

∫
R3

Ψ1Ψ2dq

where dq is the Lebesgue measure on R3. With this scalar product, the operators
QV (q),Qp, QJ and QK are self-adjoint.

The function f = q · p, where · denotes the scalar product, is also quantizable and
equation (22) adapted to the notation of this example gives

Qq·pΨ(q) = −i~q · gradΨ(q).

However, the operator −i~q · grad is not self-adjoint on L2(R3). The usual expla-
nation in texts of quantum mechanics is that we should symmetrize this operator
to obtain

Qsym
q·p Ψ(q) = − i~

2
(q · gradΨ(q) + div(qV (q)))

(24)
= −i~q · gradΨ(q)− 3

2
i~Ψ(q)

which is self-adjoint.
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4.2.2. Scalar product
We have seen in examples above that the approach presented above is insufficient
to derive the Schrödinger quantization of the kinetic energy of a single particle,
and that there are quantizable functions that do not give self-adjoint operators.
Suppose that in the Schrödinger theory, we replace the Lebesgue measure dq by
an absolutely continuous measure µdq, where µ is a positive density on R3. Then

(Ψ1 | (−i~q · gradΨ2))µ =

∫
R3

Ψ1(−i~q · gradΨ2)µdq

=

∫
R3

(
−i~q · gradΨ1(q)

+i~[3 + (qk · gradµ)µ−1Ψ1]Ψ2

)
dq.

We can rewrite this equation in the form(
Ψ1 | −i~q · gradΨ2 −

i~
2
[3 +

(
3 + (qk · gradµ

)
µ−1]Ψ2

)
µ

=

(
−i~q · gradΨ1 −

i~
2
[3 + (qk · gradµ)µ−1]Ψ1 | Ψ2

)
µ

which shows explicitly the dependence on µ of the correction term in equation
(24).
We want to modify quantization rules so that the correction terms of this type are
automatically included. This can be obtained by representing quantum states as
tensor products Ψ⊗

√
µdq and defining the scalar product of the states as(

Ψ1 ⊗
√
µdq | Ψ2 ⊗

√
µdq

)
=

∫ ∫
R3

Ψ1Ψ2µdq. (25)

Equation (25) is purely symbolic. We have to define what we mean by
√
µdq and

how we extract the density µ on the right hand side, which is beyond the scope of
these lectures. For details see [4], [5] and [34].

4.3. Completely Integrable Systems

4.3.1. Action-angle coordinates
A completely integrable system on a symplectic manifold (P, ω) is given by a
n = 1

2 dimP Poisson commuting functions f1, ..., fn that are independent on a
dense open subset P0 of P . The span of the Hamiltonian vector fields of

f1, ..., fn

is a generalized involutive distribution

D = span{Xf1 , ..., Xfn}
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D on P , which restricts to an involutive Lagrangian distributionD0 = D∩TP0 on
P0. Thus, we may think of the complexification F = DC as a singular polarization
of (P, ω).
We assume that the integral manifolds of D are orbits of a Hamiltonian action of
the torus group Tn on (P, ω) with momentum map J : P → (tn)∗, where tn is
the Lie algebra of Tn. Let (ξ1, ..., ξn) be a basis in tn, such that all orbits of the
action of exp tξi on P0 are periodic with (minimal) period 2π. The corresponding
momenta

Ai = ⟨J, ξi⟩
are called actions and the parameter along the orbits of exp tξi is called an angle
corresponding to Ai and is denoted by φi, for details see [8]. For simplicity of
presentation, we assume that

ω = dθ

where the restriction of θ to P0 is

θ0 =

n∑
i=1

(Aidφi).

Then, the restriction of ω to P0 is

ω0 = dθ0 = d
n∑
i=1

(Aidφi) =
n∑
i=1

(dAi ∧ dφi).

If the boundary ∂P = P\P0 is not empty, integral manifolds of D through points
of ∂P are not Lagrangian; they are isotropic tori in (P, ω) of dimension smaller
than n = 1

2 dimP . Thus, completely integrable systems lead to quantization of
system with respect to singular polarization F = DC.

4.3.2. Bohr-Sommerfeld quantization
In this section, we reformulate the approach of Bohr and Sommerfeld, discussed
before, in the framework of geometric quantization of completely integrable sys-
tems that satisfy assumptions made above.
Since ω = dθ is exact, the prequantization line bundle L is trivial, and we may
use the trivialization section σ0 : P → L : p 7→ (1, p) as in the case of cotangent
bundle. A section σ = ψσ0 is covariantly constant along F if ∇ ∂

∂φj

(ψσ0) = 0 for

all j = 1, ..., n. But

∇ ∂
∂φj

(ψσ0) =
∂ψ

∂φj
σ0 + ψi~−1

⟨
θ | ∂

∂φj

⟩
σ0 =

( ∂ψ
∂φj

+ i~−1Ajψ
)
σ0.

Hence, ψσ0 is covariantly constant along F if, for all j = 1, ..., n

∂ψ

∂φj
+ i~−1Ajψ = 0.
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If, for ψ(p) ̸= 0, then ψ does not vanish on the orbit Op of Tn through p, and

dψ

ψ
= −i~−1Ajdφj

along the orbit. Integrating this equation from 0 to 2π, along orbits Oj,p of exp tξj
we get

lnψ |φj=2π
φj=0 = −i~−1

∫ 2π

0
Ajdφj .

Since ψ = elnψ is single valued, it follows that lnψ |φj=0= lnψ |φj=2π +2πmi
for some integer m. Therefore

−i~−1

∫ 2π

0
Ajdφj = lnψ |φj=2π

φj=0 = −2πmi

and ∫ 2π

0
Ajdφj = 2πm~ = mh. (26)

Observe that we have recovered the Bohr-Sommerfeld condition of the old quan-
tum theory. The collection of orbits of the action of Tn on P that satisfy the
Bohr-Sommerfeld conditions (26) is called the Bohr-Sommerfeld set; individual
orbits in the Bohr-Sommerfeld set are called Bohr-Sommerfeld tori.
Since the actions Aj are independent of φj , we conclude that if, for some p ∈ P0,
ψ(p) ̸= 0, then

Aj(p) = mjh/2π = mj~
for all j = 1, ..., n and some integers m1, ...,mn. In this case

dψ

ψ
= −imjdφj

and
ψ = ψ0 exp (−i(m1φ1 + ...+mnφn))

where ψ0 is a constant. Thus, there are no smooth sections of L that are covariantly
constant along F , but there exist distribution sections covariantly constant along F
that are supported on Bohr-Sommerfeld tori.
If p ∈ ∂P = P\P0, then the orbit of Tn through p is a torus of dimension smaller
than n. In this case, not all actions are independent at p, and only some angle
functions are well defined. Restricting the Bohr-Sommerfeld conditions to case,
we get lower dimensional Bohr-Sommerfeld tori.
The Bohr-Sommerfeld set S in P is the union of Tn-orbits that satisfy the Bohr-
Sommerfeld conditions. For each m = (m1, ....,mn) ∈ Zn, Bohr-Sommerfeld
orbits Om with quantum numbers m = (m1, ....,mn) are connected components
of the set

Sm = {p ∈ P ; Aj(p) = mj~ for j = 1, ..., n}.
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The Bohr-Sommerfeld orbits in ∂P are connected components of level sets of
(f1, ..., fn) determined by a smaller number of Bohr-Sommerfeld conditions. To
each Bohr-Sommerfeld orbit O ⊆ Sm, we may associate a non-zero distribution
section σO given by

σO(p) =

{
exp (−i(m1φ1 + ...+mnφn))(p) if p ∈ O

0 if p /∈ O.

The collection {σO} of distribution sections of L forms a basis of an infinite di-
mensional vector space E, in which we may define a scalar product (. | .) such that
the basis {σO} is orthonormal. The Hilbert space H of distribution sections in E
with of finite norm is the space of quantum states of Bohr-Sommerfeld quantiza-
tion.
The space C∞(P0)F of functions f ∈ C∞(P0) such that Xf preserves the polar-
ization F0 = DC

0 coincides with the space C∞(P0)
0
F of functions that are con-

stant along D0. Thus, quantizable functions in the Bohr-Sommerfeld theory are
smooth functions of the action variables A1, ..., An. For each j = 1, ..., n, the
quantum operator QAj

corresponding to Aj is diagonal in the basis {σO}. For
O ⊆ S(m1,...,mn)

QAj
σO = mj~σO for j = 1, ..., n.

Thus, the Bohr-Sommerfeld approach gives quantization only of functions on P
that only depend on the actions. The corresponding operators are diagonal in the
basis {σO}.

4.3.3. Bohr-Sommerfeld-Heisenberg quantization
In his 1925 paper [19], Heisenberg stressed the importance of operators of transi-
tions between different states. However, our recipe of geometric quantization does
not provide any such operators. On the other hand the infinite dimensional vec-
tor space E with basis {σO} has a natural structure of a local lattice defined by
the Bohr-Sommerfeld conditions. For each i = 1, ..., n, a Bohr-Sommerfeld orbit
O with quantum numbers (m1, ...,mi, ...,mn) has a predecessor O−

i with quan-
tum numbers (m1, ...,mi− 1, ...,mn) and a successor O+

i with quantum numbers
(m1, ...,mi + 1, ...,mn). If O ⊂ ∂P , then some predecessors or successors of O
may be empty sets. This local lattice structure of the Bohr-Sommerfeld set was
discovered by Cushman and Duistermaat [10]. The Bohr-Sommerfeld-Heisenberg
quantization was introduced in 2012 by Cushman and Śniatycki, see [12] and [13].

Global lattice
Suppose first that the local lattice structure described here is global, and that for
every m ∈ Zn, the set Sm consists of a single Bohr-Sommerfeld orbit O. In
this case, we can label basic vectors not by Bohr-Sommerfeld orbits O but the
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corresponding quantum numbers m. In other words, if O = Sm, we write σO =
σm.

For each i = 1, ..., n, let

mi = {m1, ...,mi−1,mi − 1,mi+1, ...,mn}
and

mi = {m1, ...,mi−1,mi + 1,mi+1, ...,mn}.
We define shifting operators ai on H by

aiσm = σmi .

The adjoint operators a†i are given by

a†iσm = σmi .

The Poisson bracket relations between actions and angles are

{e−iφk , Aj} = −iδkj e
−iφk .

Hence, Dirac’s quantization conditions

[Qf1 ,Qf2 ] = i~Q{f1,f2}

suggest the identification ak = Qe−iφk and a†k = Qeiφk , where φk is the angle
coordinate corresponding to the action Ak, provided that the exponential functions
e−iφk are globally defined.

Globalization. In reality, the exponential functions e−iφk are not defined on all of
P , but they are defined on the open dense subset P0 of P . We can try to replace
e−iφk by a globally defined smooth function χk = rke

−iφk , where the coefficient
rk depends only on the actions and vanishes at the points at which e−iφk is not
defined.
We have the following Poisson bracket relations

{χk, Aj} = −iδkj χk and {χ̄k, Aj} = iδkj χ̄k.

By Dirac’s quantization conditions, we get

[Qχk
,QAj ] = δkj~Qχk

, [Qχ̄k
,QAj ] = −δkj~Qχ̄k

.

For each basic vector σm of H,

QAj (Qχjσm) = Qχj (QAjσm)− [Qχj ,QAj ]σm

= Qχj (~mjσm)− ~Qχjσm = ~(mj − 1)Qχjσm.

Thus, Qχjσm is proportional to σmj . A similar argument shows that Qχ̄jσm is
proportional to σmj . Hence, Qχj and Qχ̄j act as shifting operators, namely

Qχjσm = bm,jσmj and Qχ̄jσm = cm,jσmj

for some coefficients bm,j and cm,j .
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We can use Dirac’s quantization conditions

[Qχj ,Qχk
] = i~Q{χj ,χk} and [Qχj ,Qχ̄k

] = i~Q{χj ,χ̄k}

and the identification
Q†
χj

= Qχ̄j

to determine the coefficients bm,j and cm,j , which must satisfy the consistency
conditions

bm,j = 0 if Smj = ∅ and cm,j = 0 if Smj = ∅.
The choice of functions χj depends on the completely integrable system under
consideration.
The procedure described here assumes i) the local lattice structure of the Bohr-
Sommerfeld set can has no monodromy and it extends to a global lattice structure
with singularities, ii) the local lattice structure of the set eigenstates of the ac-
tion operators are simple, so that there is a basis in H parametrized by quantum
numbers. Our approach does not apply to a completely integrable system with
monodromy. However, in presence of monodromy, we may apply this procedure
to the double covering of the classical system.

4.3.4. Examples
Co-adjoint orbits of SO(3) revisited
In Section 3.2.2, we constructed the prequantization line bundle L over a sphere

S2
r = {(x1, x2, x3) ∈ R3 ; (x1)2 + (x2)2 + (x3)2 = r2}

of radius r = n
2~, where n is an integer. The symplectic form on S2

r is ω = 1
rvolS2

r
,

where volS2
r

is the standard area form on S2
r with

∫
S2
r
volS2

r
= 4πr2.

For each i = 1, 2, 3, the restriction of xi to the sphere S2
r are components si of the

spin vector s.They satisfy the Poisson bracket relations {si, sj} =
∑3

k=1 εijks
k.

In spherical polar coordinates

s1 = r sin θ cosφ, s2 = r sin θ sinφ, s3 = r cos θ

and
ω = r sin θdφ ∧ dθ = −(r cos θdφ) = −s3dφ.

Thus, (J3,−φ) are action-angle coordinates for an integrable system (J3, S2
r , ω).

In this case, we can choose χ =
√
r2 − (s3)2 eiφ. The resulting Bohr-Sommerfeld-

Heisenberg quantization leads to the irreducible unitary representation of SO(3)
corresponding to the co-adjoint orbit S2

r .
The Bohr-Sommerfeld-Heisenberg quantization of co-adjoint orbits of SO(3) pre-
sented here looks very much like the construction of a highest weight representa-
tion of SO(3). In fact, it is a generalization of this construction, in which we get not
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only the highest weight representation but also identify functions on the orbit that
correspond to shifting operators. It closely resembles the approach of Schwinger
[31]. For more details, see [12].

Mathematical pendulum

The phase space of mathematical pendulum is the cotangent bundle space T ∗S1 of
a circle S1, with coordinates (p, α), symplectic form ω = dθ, where θ = pdα, and
the Hamiltonian H = 1

2p
2 − cosα + 1. Integral curves of the Hamiltonian vector

field XH of H give rise to a singular distribution D on P with singular leaves
occurring at H = 0 and H = 2. The level set H−1(0) is a stable equilibrium at
(0, 0) and the level setH−1(2) is the union of an unstable equilibrium at (0, π) and
two homoclinic orbits. This section is based on [14].
The homoclinic orbits are the only non-compact orbits of XH . However, the clo-
sures of homoclinic orbits are compact and we can apply Bohr-Sommerfeld con-
ditions to all orbits of XH . The integral of θ = pdα along each homoclinic orbit
is 8. Hence, homoclinic orbits satisfy Bohr-Sommerfeld conditions if ~ = 8

n for
some integer n. Therefore, we may assume thatH−1(2) is not a Bohr-Sommerfeld
set. This implies that there is the largest quantum number N such that, N~ < 8.
Hence

H|Sn
≤ 2 for n ≤ N, H|Sn

> 2 for n > N.

For n ≤ N , Bohr-Sommerfeld sets Sn consist of a single orbit. On the other hand,
Sn is the union of two disjoint orbits for n > N , which differ by the sign of p.
Thus, we are lead to the following decomposition

T ∗S = P0 ∪ P+ ∪ P− ∪H−1(2)

where

P0 = {(p, α) ∈ T ∗S1 ; H(p, α) < 2}
P± = {(p, α) ∈ T ∗S1 ; H(p, α) > 2, ±p > 0}.

The usual definition of an action gives a function I on T ∗S1\H−1(2) that can
be continuously extended across H−1(2), but has no smooth extension. Using the
assumption thatH−1(2) is not a Bohr-Sommerfeld set, we show that there is ε > 0
such thatH−1((2−ε, 2+ε)) does not contain Bohr-Sommerfeld orbits. Moreover,
we construct smooth functions A± on T ∗S1 such that

A±(p, α) =

 I(p, α) if 0 ≤ H(p, α) ≤ 2− ε
I(p, α) if H(p, α) ≥ 2 + ε

0 if (p, α) ∈ P∓
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and A± vanish identically in a neighborhood of H−1(2). Thus, in neighborhoods
of Bohr-Sommerfeld tori, functions A± coincide with the restrictions of I to P0 ∪
P±.

In a similar way, we construct smooth functions Θ± which, in neighborhoods of
Bohr-Sommerfeld tori, coincide with the angle variables restricted to P0 ∪ P±.
Further, we construct non-negative functions R± of H , which vanish to infinite
order at H−1(0) and H−1(2) ∪ P∓ and are equal to one on Bohr-Sommerfeld tori
contained in P0 ∪ P±. Finally, we show that quantizations of χ± = R±e

iΘ± yield
operators of shifting along the lattice of Bohr-Sommerfeld tori in P0 ∪ P±.
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