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Abstract. We consider some aspects of the spectral theory of a system that
is a generalization to a pole gauge Zakharov-Shabat type system on the Lie
algebra sl(3,C) but involving rational dependence on the spectral parameter
and subjected to Z2 × Z2 × Z2 reduction of Mikhailov type. The question
of the existence of analytic fundamental solutions under some special type
of boundary conditions has been considered, recently we consider boundary
conditions in general position.
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1. Introduction

In this article we shall consider the linear problem LS±1ψ = 0 of the type

i∂xψ +

 0 (λ− λ−1)u (λ+ λ−1)v
(λ− λ−1)u∗ 0 0
(λ+ λ−1)v∗ 0 0

ψ = 0 (1)

with ‘boundary’ conditions

lim
x→±∞

u(x) = u0, lim
x→±∞

v(x) = v0.

In the above u(x), v(x) (the potentials) are smooth complex valued functions on x
where x belongs to the real line and by ∗ is denoted the complex conjugation. In
addition, the functions u(x) and v(x) satisfy the relation

|u(x)|2 + |v(x)|2 = 1. (2)
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We shall call the above system the rational GMV (RGMV) system. The history
of the above problem is the following. In number of papers [5–8], there has been
studied the auxiliary linear problem

LS1ψ = (i∂x + λS1)ψ = 0, S1 =

 0 u v
u∗ 0 0
v∗ 0 0

 (3)

where u(x), v(x) have the same properties as above. We call this system GMV
system.

The GMV system arises naturally when one looks for integrable system having
a Lax representation [L,A] = 0 with L of the form i∂x + λS(x) and A of the
form i∂t +U(x, λ) where S(x) ∈ sl(3,C) and L,A are subject to Mikhailov-type
reduction requirements. The notion of Mikhailov-type reductions, see [10–12]
has nice applications since it permits to reduce the number of the independent
functions in the Lax representations in a way compatible with the evolution given
by [L,A] = 0. The presence of reductions affects all the theory of the Nonlinear
Evolution Equations solvable by an auxilliary linear problem L, see [9]. In the
particular case of the system (3) the Mikhailov reduction groupGM is generated by
two elements g0 and g1 acting in the following way on the fundamental solutions:

g0(ψ)(x, λ) =
[
ψ(x, λ∗)†

]−1
, g1(ψ)(x, λ) = H1ψ(x,−λ)H1 (4)

where † denotes Hermitian conjugation and H1 = diag(−1, 1, 1). Since g0g1 =
g1g0 and g20 = g21 = id the reduction group is isomorphic to Z2 × Z2. According
to the definition of Mikhailov reduction group it leaves the set of the fundamental
solutions invariant. One can prove that this forces the matrix S1 in the GMV system
to be of the form we see in (3). The condition (2) is of different nature, in fact one
can prove that it ensures that S1 has constant eigenvalues +1, 0,−1, so that for
each x the matrix S1(x) belongs to the orbit OJ0(SU(3)) of J0 = diag(1, 0,−1)
with respect to the adjoint action of the group SU(3). Thus one is able to show
that that the GMV system is gauge-equivalent to a Generalized Zakharov-Shabat
(GZS) system on sl(3,C) and as a consequence it has nice spectral properties,
identical to that of the GZS. This could be used to develop the spectral theory of
the so-called Recursion Operators in two different ways. Either develop the theory
independently (but in analogy with GZS), as has been done in the works we cited
in the above, or to develop it using the gauge covariant theory of the Recursion
Operators, see [4]. The last approach has been adopted in [13–15].

The linear problem we shall consider has been introduced in [5, 6] simultaneously
with the GMV and it is a sort of its generalization. Indeed, assume that one wants
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bigger Mikhailov reduction group, generated this time by the following three ele-
ments

g0(ψ)(x, λ) =
[
ψ(x, λ∗)†

]−1

g1(ψ)(x, λ) = H1ψ(x,−λ)H1, H1 = diag(−1, 1, 1)

g2(ψ)(x, λ) = H2ψ(x,
1

λ
)H2, H2 = diag(1,−1, 1).

(5)

Since the elements gi, i = 0, 1, 2 commute and g2i = id the reduction group is
Z2 × Z2 × Z2. Naturally, LS1 cannot admit such such reduction group for which
rational dependence on λ is needed. Thus one comes to consider the linear problem

LS±1ψ = (i∂x + λS1 + λ−1S−1)ψ = 0 (6)

subject to reduction generated by g0, g1, g2. If one sets SL(λ) = λS1 + λ−1S−1

one obtains that the reduction group forces SL(λ) to obey

(SL(λ
∗))† = S(λ), H1SL(−λ)H1 = S(λ), H2SL(λ

−1)H2 = S(λ). (7)

In this way one sees that S1 is as in (3) and S−1 = H2S1H2, that is

S−1 =

 0 −u v
−u∗ 0 0
v∗ 0 0

 (8)

so LS±1 becomes exactly the linear problem (1) we started with. The question
about the Recursion Operators for RGMV , has been considered in [8], and in [5]
have been made the first steps into considering its spectral properties. In that work
have been made also some important observations how to construct the fundamen-
tal solutions analytic in λ (FAS) for (1). However, in [8] the authors limited their
scope to the degenerate cases when either u0 or v0 is equal to zero. We shall con-
sider now boundary conditions for which both u0, v0 ̸= 0 and will call them either
non-degenerate boundary conditions or boundary conditions in general position.

2. FAS. Asymptotic Behavior for x → ±∞

In order to write down the integral equations that will permit us to analyze the
fundamental analytic solutions (FAS) we need to know their asymptotic behavior
when x → ±∞. We expect that the when x → ±∞ the solutions of LS±1ψ = 0
will behave as (exp iJ(λ)x)A where A = A(λ) is a matrix that does not depend
on x and

J(λ) = (λS1 + λ−1S−1)|u=u0,v=v0 . (9)

It is not hard to find that J(λ) has eigenvalues

µ0 = 0, µ± = ±
√

2(|v0|2 − |u0|2) + (λ2 + λ−2). (10)
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Since |u0|2 + |v0|2 = 1 one can also cast µ± in the following equivalent forms

µ± = ±
√
4|v0|2 + (λ− λ−1)2 = ±

√
−4|u0|2 + (λ+ λ−1)2. (11)

Hence J(λ) is diagonalizable and there is a constant matrixC (depending of course
on u0 and v0 and λ) such that

C−1J(λ)C = µ(λ) diag(1, 0,−1) = µ(λ)J0, J0 = diag(1, 0,−1). (12)

Denote
r(λ) = 2(|v0|2 − |u0|2) + (λ2 + λ−2). (13)

Then µ is a square root of r(λ) which of course has two branches. In the degenerate
cases r(λ) becomes a square of an analytic functions having simple poles at λ = 0
and λ = ∞ (In fact r(λ) = (λ + λ−1)2 when u0 = 0 and r(λ) = (λ − λ−1)2

when v0 = 0) so the two branches are ±(λ+ λ−1) when u0 = 0 and ±(λ− λ−1)
when v0 = 0.
In case both u0 and v0 are different from zero the situation is not so trivial. One
of the ways to describe the branches will be to cut the plane into simply connected
regions such that in each of them the function r(λ) does not have zeros, then in
each of them there will be exactly two branches of the square root of r(λ). Since
all the zeros of r(λ) lie on the unit circle S1 centered at λ = 0, see below (15), it
is natural to introduce the four regions G±, Ω±

G+ = {λ ; |λ| < 1, Imλ > 0}, G− = {λ ; |λ| < 1, Imλ < 0}
Ω+ = {λ ; |λ| > 1, Imλ > 0}, Ω− = {λ ; |λ| > 1, Imλ < 0}.

(14)

These regions are obtained cutting C using the circle S1 and the real line R. On
each them one can define branches of the logarithm of r(λ) and hence the branches
of the square root.
However, there is a better way to investigate µ(λ) and it is to make analytic con-
tinuation of the square root

√
r(λ). To this end let us consider r(λ) more closely.

The function r(λ) is meromorphic on the extended plane (Riemann sphere P1). At
the points λ = 0 and λ = ∞ it has a poles of order two. Further, r(λ) has simple
zeros at the four points

z1 = |u0|+ i|v0|, z2 = −|u0|+ i|v0|
(15)

z3 = −|u0| − i|v0|, z4 = |u0| − i|v0|.

They degenerate into two points in case either u0 or v0 equals zero. (At ±1 in the
case v0 = 0 and at ±i in the case u0 = 0). All the zeros lie on the unit circle
S1 = {λ : |λ| = 1}. Let us also note that since the function r(λ) is invariant under
the involutions mapping the Riemann sphere into itself

λ 7→ λ∗, λ 7→ −λ, λ 7→ λ−1. (16)
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Naturally, the set of zeros is invariant under these involutions which could be
checked immediately.

For the analytic continuation of
√
r(λ) we first remark that r(λ) could be written

into the form

r(λ) = λ−2(λ− z1)(λ− z2)(λ− z3)(λ− z4).

Then one can apply to r(λ) the standard technique for analytic continuation of
a germ of the square root. For this consider the closed arcs a± where a+ is the
open arc with ends z2,3 = −|u0| ± i|v0| containing λ = −1 and a− is the arc
with ends z3,4 = |u0| ∓ |v0| containing λ = 1. Let G0 be the region C \ ({0} ∪
ā+ ∪ ā−) where by bar is denoted the closure. Thus G0 consists of the punctured
plane from which are eliminated the arcs ā+, ā− which we shall call the cuts. A
standard technique considering the increment ∆γ arg(r(λ)) of the argument of
r(λ) along arbitrary partially smooth closed curve in G0 then shows that

√
r(λ)

allows analytic continuation starting from any λ0 and ζ0 such that ζ20 = r(λ0). Of
course, there are only two square roots, so if one of them is denoted by µ(λ), the
other will be −µ(λ). We shall assume that µ(λ) will be the function that for λ = i
takes the value 2i|u0|. In more general ( in the case of non-degenerate boundary
conditions case the requirement we use amounts to the same) we shall always take
as µ the branch for which Im(µ(i)) is positive for ai, a-real a > 1.
We need to investigate the sign of Im(µ(λ)) (we need that for the construction of
the FAS). Using just the definition of the analytic continuation it is not so easy
though for example for the points on the imaginary axis one can do it. For ex-
ample, one calculates that µ(−i) = −2i|u0|2. However, there is a simpler way to
investigate the sign of Im(µ(λ)). Indeed, if Im(µ) = 0 then Im(µ2) = 0. So we
can find the set of points at which Im(µ2) = Im(r(λ)) = 0 and then remove from
it the points at which µ2 is real and µ2 ≤ 0. Thus we discover that Im(µ) = 0
either if λ is real (λ ̸= 0) or if λ belongs to the arcs ā±. However, the arcs ā±
are the cuts we eliminated in order to extend µ. Then we get that Im(µ)(λ) > 0
for λ ∈ G0 in the upper half-plane and Im(µ)(λ) < 0 for λ ∈ G0 in the lower
half-plane. On the real line (except λ = 0) we have that Im(µ) = 0, µ ̸= 0. (The
function Im(µ) (but not µ since Re (µ) has a jump) could be extended setting it
equal to zero to all points of the arcs a± and µ could be extended setting it equal
to zero at λ = zi, i = 1, 2, 3, 4. The function µ is meromorphic in G0 ∪ {∞}
and has simple poles at λ = 0, λ = ∞. Next, the symmetry properties of r(λ)
lead to symmetry properties for µ(λ). The first one follows from the fact that if
we expand µ in Taylor or Laurent series the coefficients in these expansions will
be real. The two other ones follow taking into account that the maps λ 7→ −λ,
λ 7→ λ−1, λ 7→ λ∗ interchange the upper and lower half-planes, that in each con-
nected open set

√
r(λ) has exactly two branches µ and −µ, and that we know the
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sign of Im(µ(λ)) is same as the sign of Im(λ). Thus we obtain

µ∗(λ∗) = µ(λ), µ(λ−1) = −µ(λ), µ(−λ) = −µ(λ). (17)

All this (and also what follows) has a nice interpretation in terms of the theory of
compact Riemann surfaces, since the square root defines a two-fold covering of the
Riemannian sphere, see [2] but we are not going to discuss it here since up to now
our results for the FAS are local.
Now, as we shall see, for the construction of the fundamental analytic solutions
(FAS) of LS±1 it is important to know the regions in which Im(µ(λ)) is positive
(negative). Naturally, we must also know what branch we shall use since on this
choice depends the matrix C = C(λ, µ(λ)) that diagonalizes J(λ)

C =
1√
2

 1 0 1

µ−1(λ− λ−1)u∗0 −
√
2µ−1(λ+ λ−1)v0 −µ−1(λ− λ−1)u∗0

µ−1(λ+ λ−1)v∗0
√
2µ−1(λ− λ−1)u0 −µ−1(λ+ λ−1)v∗0

 .

The matrix C(λ, µ(λ)) is not unique, and this is the first difficulty one must over-
come. We have chosen it to be unitary for real λ since in this case J(λ) is Her-
mitian. Of course, here µ(λ) is one of the branches of the square root. Chang-
ing µ to −µ, that is passing from C(λ, µ(λ)) to C(λ,−µ(λ)) is equivalent to
multiplying C(λ, µ(λ)) to the left by diag(1,−1,−1) = −H1. We shall write
C+(λ) = C(λ, µ(λ)) and C−(λ) = C(λ,−µ(λ)). Thus C− = −H1C+ and

C−1
+ J(λ)C+ = µJ0, C−1

− J(λ)C− = −µJ0, J0 = diag(1, 0,−1).

Let us mention that for the degenerate cases we have that the matrices C± do not
depend on λ, which makes the things much easier.

3. FAS. Integral Equations

Now, let us assume that ϕ is a solution to the equation

LS±1ϕ = (i∂x + λS1(x) + λ−1S−1(x))ϕ = 0. (18)

As pointed out in [5] in order to investigate fundamental solutions of (18) it is
useful to introduce the functions

Φ±(x, λ) = C−1
± (λ)ϕ(x, λ) exp (∓iµ(λ)J0x) (19)

which satisfy the equation

i∂xΦ± + [λ(C−1
± S1C±) + λ−1(C−1

± S−1C±)]Φ± ∓ µ(λ)Φ±J0 = 0. (20)

Conversely, if Φ+(x, λ) and Φ+(x, λ) satisfy the corresponding equation in (20)
then both functions

ψ± = C±Φ± exp (±iµ(λ)J0)
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satisfy the equation (18). For the sake of brevity let is put

S±[λ, x] = λ(C−1
± S1C±) + λ−1(C−1

± S−1C±) (21)

we shall even put S±[λ, x] = S±[λ] sometimes, and then (20) is written as

i∂xΦ± + S±[λ]Φ∓ µ(λ)Φ±J0 = 0. (22)

Since the number of subscripts and superscripts starts to grow quickly we shall
concentrate first on the functions Φ+ and shall not write the subscript +. Thus
such functions satisfy

i∂xΦ+ S+[λ]Φ− µ(λ)ΦJ0 = 0. (23)

Let us try to find functions Φp,n that satisfy the above equation and in addition
satisfy limx→−∞Φn(x) = 1, limx→+∞Φp(x) = 1. Let us first assume that λ
is such that Im(µ(λ)) = 0. Let the functions Φn,p are solutions of the following
integral equations of Volterra type

Φn(x, λ) = 1+ i

x∫
−∞

dy
[
eiµ(x−y)J0(S+[λ]− µJ0)Φ

n(y, λ)e−iµ(x−y)J0
]

Φp(x, λ) = 1+ i

x∫
+∞

dy
[
eiµ(x−y)J0(S+[λ]− µJ0)Φ

p(y, λ)e−iµ(x−y)J0
]
.

(24)

Then assuming that one can differentiate under the sign of the integral one checks
that Φn,p will satisfy (23) with the required asymptotic. So in case Im(µ(λ)) = 0
the question is transformed to the question of the solutions to the integral equations
(24). Let us remark that the function S+[λ] − µJ0 goes to zero when x → ±∞.
If this convergence is fast enough the above integral equations have unique solu-
tions. In particular, this will happen if S+[λ]−µ(λ)J0 have compact support (with
respect to x for fixed λ). The functions ϕn,p = C+Φ

n,p exp (iµ(λ)xJ0) for the
problem (18) are the analogs of the so-called Jost solutions for the GZS system.
We should not forget that there is another pair of equations that correspond to the
choice −µ(λ), that is, the superscript gives information about the asymptotic when
x → ±∞ and not of the branch so in fact we have four functions, namely ϕn,p± .
In case Im(µ(λ)) ̸= 0, some of the exponents that appear in the integrand when
one writes the integral equations (24) components-wise are growing, so for con-
sidering the fundamental analytic solutions (FAS) of (22) and consequently of the
system LS±1ψ = 0 we must modify the integral equations. It is a fact that is well
known for the GZS system and its generalization – the Caudrey-Beals-Coifman
(CBC) system, see [1, 3]. One considers two separate cases: a) Im(µ(λ)) > 0
and b) Im(µ(λ)) < 0. The systems of integral equations will be written for the
components of the 3× 3 matrix functions ζn(x, λ) and ζp(x, λ).
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Case a). The condition Im(µ(λ)) > 0, fixes the asymptotic at −∞. (For boundary
conditions in general position this means that λ belongs to the upper half-plane
without the cuts). Solutions are denoted by ζn(x, λ) and the system of the integral
equations runs as

ζnjk(x, λ) = δjk

+i

3∑
s=1

∫ x

−∞
dy(S+[λ](y)− µ(λ)J0)jsζ

n
sk(y, λ) exp [iµjk(x− y)]

when j ≤ k and when j > k (25)

ζnjk(x, λ) =

i

3∑
s=1

∫ x

+∞
dy(S+[λ](y)− µ(λ)J0)jsζ

n
sk(y, λ) exp [iµjk(x− y)] .

Case b). The condition Im(µ(λ)) < 0, fixes the asymptotic at −∞. (For boundary
conditions in general position this means that λ belongs to the lower half-plane
without the cuts). Then we must consider the following system

ζnjk(x, λ) = δjk

+i

3∑
s=1

∫ x

−∞
dy(S+[λ](y)− µ(λ)J0)jsζ

n
sk(y, λ) exp [iµjk(x− y)]

when j ≥ k and when j < k (26)

ζnjk(x, λ) =

i
3∑

s=1

∫ x

+∞
dy(S+[λ](y)− µ(λ)J0)jsζ

n
sk(y, λ) exp [iµjk(x− y)] .

In the above formulas µkk = 0, µ12 = −µ21 = µ, µ13 = −µ31 = 2µ, µ23 =
−µ32 = µ. One sees that for i < j we have that Im(µij) > 0 in the upper
half-plane and Im(µij) < 0 in the lower half-plane while for i > j we have
Im(µij) < 0 in the upper half-plane and Im(µij) > 0 in the lower half-plane.
Thus for j ̸= k in the integrands we always have falling exponents ensuring that
the kernels of the above integral operators fall exponentially when x → ±∞. As
we shall see this circumstance in case the function (S+[λ] − µ(λ)J0) has a small
L1(R) norm ensures that the above equations have solutions ζn,+(x, λ) (for λ in
the upper half-plane without the cuts) and ζn,−(x, λ) (for λ in the lower half-plane
without the cuts). We shall omit the superscripts + (−) assuming that when λ is
in the upper half-plane we have ζn,+(x, λ) and when it is in the lower half-plane
we have ζn,−(x, λ). We shall preserve the superscripts only when it is necessary
to avoid ambiguity, for example, when λ is real and we must know whether we
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are having the extension of the corresponding functions from above or from below.
Let us mention again that in fact we should write also subscripts ± to ζn(x, λ)
depending what is the branch of the square root we use. In other words, in the
upper half-plane we have the solutions e ζn,++ (x, λ), ζn,+− (x, λ) and in the lower
the solutions ζn,++ (x, λ), ζn,+− (x, λ). They all tend to 1 when x→ −∞.
In a similar way, we can consider the integral equations for the functions ζp(x, λ).
Finally we just mention that for the degenerate cases the construction of the solu-
tions ζn,p in the degenerate cases do not differ from the one we had in the above.
Our intention is to establish results, that are analogs of similar results for the CBC
system, namely

• For potentials that go fast to their limit values (this words should be given
precise meaning) the integral equations for ζn±(x, λ), ζ

p
±(x, λ) have unique

solutions which satisfy

lim
x→−∞

ζn±(x, λ) = 1, lim
x→+∞

ζp±(x, λ) = 1. (27)

• These functions are analytic in the regions where Im(µ(λ)) ̸= 0 and could
be extended by continuity to their boundaries.

• For a class of potentials that do not go fast to their limit values, and that
should be further specified, the fundamental solutions ζn±(x, λ), ζ

p
±(x, λ)

possibly do not exist in a finite number of points where they have pole type
singularities – the discrete spectrum of the linear problem (18).

• The Mikhailov reduction symmetries g1, g2, g3 should result in symmetries
of the solutions ζn±(x, λ), ζ

p
±(x, λ).

The above is a program that we expect to follow and the present article is a first
step. For the lack of space we shall prove only the theorem of uniqueness and will
formulate a simple theorem of existence. The proofs follow the ideas in [1, 3].

Proposition 1. Suppose for given potentials u(x), v(x) and Im(λ) ̸= 0 the bounded
fundamental solutions ζn±(x, λ), ζ

p
±(x, λ) exist. Then they are unique.

Proof: Let us assume for example that Im(λ) > 0 and we have two bounded
solutions of the type ζn,+− (x, λ), let us denote them by ζ1(x, λ) and ζ2(x, λ). The
solutionsζ1,2 satisfy (23) and limx→−∞ ζ1(x, λ) = limx→−∞ ζ2(x, λ) = 1. But
then

ψ1 = C+(λ)ζ1(x, λ)e
iµ(λ)xJ0 , ψ2 = C+(λ)ζ2(x, λ)e

iµ(λ)xJ0

are fundamental solutions of (18). Therefore, there exists a non-degenerate matrix
A(λ) which does not depend on x such that ψ2(x, λ) = ψ1(x, λ)A(λ). This of
course means that

ζ2(x, λ) = ζ1(x, λ)e
−iµ(λ)xJ0A(λ)eiµ(λ)xJ0 .
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Since ζ1(x, λ) and ζ2(x, λ) are bounded, then e−iµ(λ)xJ0A(λ)eiµ(λ)xJ0 should also
be bounded for x ∈ R. But as Im(µ(λ)) ̸= 0 one sees that this could happen only
if A(λ) is diagonal and then e−iµ(λ)xJ0A(λ)eiµ(λ)xJ0 = A(λ). This means that
ζ2(x, λ) = ζ1(x, λ)A(λ). Taking the limit when x → +∞ shows that we must
have A(λ) = 1 so ζ2(x, λ) = ζ1(x, λ). �

Let us note that the reasoning in the proof could be applied also to investigate what
will be the relation between the solutions ζn,+(x, λ) and ζp,+(x, λ). (We consider
the general position case). As we have seen there should be a diagonal matrix
D+(λ) (which must analytic in λ in the upper half-plane without the cuts) such
that

ζn,+(x, λ)D+(λ) = ζp,+(x, λ)

for λ in the upper half-plane (without the cuts) and

ζn,−(x, λ)D−(λ) = ζp,−(x, λ)

for λ in the lower half-plane (without the cuts). This time D−(λ) is diagonal and
analytic in the lower half-plane (without the cuts). Since

lim
x→+∞

ζn,+(x, λ) = D+(λ), lim
x→+∞

ζn,−(x, λ) = D+(λ) (28)

one can recover for example ζp(x, λ from ζn(x, λ) and therefore only one of them
is considered.
From now on we shall consider only the solutions ζn(x, λ) and usually shall not
write the superscript ‘n’.
It is more interesting however to consider the relation between the solutions ζ+(x, λ)
and ζ−(x, λ) which leads to the definition of scattering data for our linear problem
but we shall not discuss this issue in the present article.

4. FAS. The Effect of the Symmetries

The issue about the existence of solutions is quite involved and must be inves-
tigated thoroughly but as a first and simple step we shall consider the existence
and analytical properties of the solution of the corresponding system of integral
equations for Im(λ) > 0 (without the cuts) in case of ‘small’ potentials. Let us
introduce the following classical norms. In the space of the functions R(x) where
R(x) is a 3 × 3 matrix whose entries are complex functions on the line R and
belong to L1(R) we set

||R||1 = max
1≤i,j≤3

+∞∫
−∞

|Rij(x)|dx (29)
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and for R(x) whose entries are bounded we define

||R||∞ = sup
x∈R;1≤i,j≤3

|Rij(x)|. (30)

The space with the norm (29) we denote by L1(R; 9) and the space with the norm
(30) by L∞(R; 9). Of course, both these spaces are Banach spaces.

Proposition 2. Suppose Ω is an open subset in the upper half-plane (without the
cuts) with compact closure that do not contain λ = 0. Suppose that for any
λ ∈ Ω̄ the the function Q(x, λ) = (S+[λ, x] − µ(λ)J0) belongs to L1(R, 9) and
||Q(x, λ)||1 < 1. Then for λ ∈ Ω there exists unique solution ζ+(x, λ) of the
integral equations (25) with the following properties

1. The solution ζ+(x, λ) together with its λ-derivatives allows continuous ex-
tension to the closure Ω̄ of Ω.

2. The solution ζ+(x, λ) and its inverse obey the estimates

||ζ+||∞ < (1− α)−1, ||(ζ+)−1||∞ < (1− α)−1

where α = maxλ∈Ω̄ ||Q(x, λ)||1 < 1.

We shall not give the proof of the above result here, we shall only mention that
the assumptions we made permit to regard the integral equations for ζ+ as a fixed
point theorem for which the Banach fixed point theorem could be applied.
From now on, we shall assume that we have FAS defined everywhere exept for
the cuts and the real line and shall find how the symmetries we had for our linear
problem (6) affect the solutions we introduced. In this subsection we shall assume
that the fundamental solutions ζ±(x, λ) exist.

Lemma 3. Suppose we have the general position boundary conditions. The ma-
trces C+(λ), C−(λ) = −H1C+(λ) satiisfy the relations

C−(λ) = −H1C+(λ), [(C±(λ
∗)†]−1 = C±(λ, µ(λ))

C∓(λ) = H2C±(λ
−1)H2, C±(−λ) = C±(λ).

(31)

As a consequence we obtain that

Corollary 4. In the case of general position boundary conditions the functions
S±[λ, x] satisfy

S†
±[λ

∗] = S±[λ], H2S±[λ
−1]H2 = S∓[λ], S±[−λ] = S∓[λ]. (32)

Then using the uniqueness of the solutions ζ one gets
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Proposition 5. In the case of general position boundary conditions the solutions
ζ(x, λ) have the following properties

[(ζ±(x, λ
∗)†]−1 = ζ±(x, λ), ζ±(x,−λ) = ζ∓(x, λ)

H2ζ±(x, λ
−1)H2 = ζ∓(x, λ).

(33)

And finally, in terms of the solutions

χ±(x, λ) = C±(λ)ζ±(x, λ) exp (±iµ(λ)xJ0)

of the linear problem RGMV the above symmetries take the form

Theorem 6. In the case of general position boundary conditions the solutions
χ(x, λ) have the following properties

[(χ±(x, λ
∗)†]−1 = χ±(x, λ)

H2χ±(x, λ
−1)H2 = χ∓(x, λ), H1χ±(x,−λ)H1 = χ∓(x, λ)(−H1).

(34)

The relations in the above propositions should be properly read since they are
written in the form we see for shortness. For example, what they mean in case
Im(λ) > 0 is the following

((ζ−± )†(x, λ∗))−1 = ζ+∓ (x, λ), H2(ζ
−
± (x, λ−1)H2 = ζ+∓ (x, λ)

H1(ζ
−
± (x,−λ)H1 = ζ+∓ (x, λ).

5. Conclusions

We have investigated the problem of fundamental analytic solutions (FAS) for the
operator LS±1 in case of boundary conditions in general position. We established
the uniqueness and the symmetry property for these solutions. Also, we have estab-
lished some results about the existence of FAS which however should be consider-
ably improved in order to prove that FAS exist for a reasonable class of potentials.
This is a trend we are going to follow in the next future. Finally, the big goal is to
establish completeness relations constructed through the FAS of LS±1 . This will
permit to extend the known theory of expansions over the so-called adjoint solu-
tions which is basic for the Recursion Operators approach to soliton equations to
the equations solvable though the auxiliary linear problem LS±1ψ = 0.

Acknowledgements

The author is grateful to NRF South Africa incentive grant 2015 for the financial
support.



Some Aspects of the Spectral Theory for sl(3,C) System with Z2 × Z2 × Z2 . . . 391

References

[1] Beals R. and Coifman R., Scattering and Inverse Scattering for First Order Systems,
Comm. Pure & Apppl. Math. 37 (1984) 39–89.

[2] Foster O., Riemannsche flächen, Heidelberg Taschenbücher Band, Springer, Berlin
1977.

[3] Gerdjikov V. and Yanovski A., Completeness of the Eigenfunctions for the Caudrey-
Beals-Coifman System, J. Math. Phys. 35 (1994) 3687–3721.

[4] Gerdjikov V., Vilasi G. and Yanovski A., Integrable Hamiltonian Hierarchies - Spec-
tral and Geometric Methods, Lect. Notes Phys. 748, Springer, Berlin 2008.

[5] Gerdjikov V., Mikhailov A. and Valchev T., Reductions of Integrable Equations on
A.III-Symmetric Spaces, J. Phys. A: Math. & Gen. 43 (2010) 434015.

[6] Gerdjikov V., Mikhailov A. and Valchev T., Recursion Operators and Reductions
of Integrable Equations on Symmetric Spaces, J. Geom. Symmetry Phys. 20 (2010)
1–34.

[7] Gerdjikov V., Grahovski G., Mikhailov A. and Valchev T., Polynomial Bundles and
Generalized Fourier Transforms for Integrable Equations on A. III-type Symmetric
Spaces, SIGMA 7 (2011) 096.

[8] Gerdjikov V., Grahovski G., Mikhailov A. and Valchev T., Rational Bundles and Re-
cursion Operators for Integrable Equations on A. III-type Symmetric Spaces, Theor.
Math. Phys. 167 (2011) 740–750.

[9] Gerdjikov V. and Yanovski A., CBC Systems with Mikhailov Reductions by Coxeter
Automorphism I. Spectral Theory of the Recursion Operators, Studies Appl. Math.
134 (2015) 145–180.

[10] Lombardo S. and Mikhailov A., Reductions of Integrable Equations. Dihedral Group,
J. Phys. A 37 (2004) 7727–7742.

[11] Mikhailov A., Reduction in the Integrable Systems. Reduction Groups (in Russian),
Lett. JETF 32 (1980) 187–192.

[12] Mikhailov A., The Reduction Problem and Inverse Scattering Method, Physica D 3
(1981) 73–117.

[13] Yanovski A., Geometric Interpretation of the Recursion Operators for the General-
ized Zakharov-Shabat System in Pole Gauge on the Lie Algebra A2, J. Geom. Sym-
metry Phys. 23 (2011) 97–111.

[14] Yanovski A., On the Recursion Operators for the Gerdjikov, Mikhailov and Valchev
System, J. Math. Phys. 52 (2011) 082703.

[15] Yanovski A. and Vilasi G., Geometry of the Recursion Operators for the GMV Sys-
tem, J. Nonlinear Math. Phys. 19 (2012) 1250023-1/18.


