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Abstract. On the total space of the cotangent bundle T ∗M of a Riemannian
manifold (M,h) we consider the natural Riemann extension ḡ with respect to
the Levi-Civita connection of h. In this setting, we construct on T ∗M a new
para-complex structure P , whose harmonicity with respect to ḡ is character-
ized here by using the reduction of ḡ to the (classical) Riemann extension.
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1. Introduction

Let M be a connected smooth n-dimensional manifold and let T ∗M be its cotan-
gent bundle. We suppose that the manifold M is endowed with a symmetric linear
connection ∇. In [12], Patterson and Walker introduced the (classical) Riemann
extension that was generalized by Sekizawa and Kowalski to natural Riemann ex-
tension, which is a semi-Riemannian metric of signature (n, n), on the total space
of T ∗M , (see [14] and [11]). Later, Bejan and Kowalski [5] characterized har-
monic functions with respect to the natural Riemann extension ḡ on T ∗M . Also,
the natural Riemann extension is a special class of modified Riemann extensions
which is studied in [7] and [10].
Harmonicity is a very interesting topic in some mathematical fields, such as differ-
ential geometry, analysis, partial differential equations, theoretical physics and so
on. We recall that a C2− map φ : (N,h) → (N̄ , h̄) between (semi-)Riemannian

172



A Harmonic Endomorphism in a Semi-Riemannian Context 173

manifold is harmonic if its tension field τ(φ) vanishes identically. This means that
φ satisfies the Euler-Lagrange equations.

Later on, Garciá-Río, Vanhecke and Vázquez-Abal introduced the harmonicity of
a (1,1)-type tensor field T on a (semi-)Riemannian manifold N . In [9], they say
that a (1,1)-type tensor field on a (semi-)Riemannian manifold (N,h) is called
harmonic if it is a harmonic map when it is viewed as a map T : (TN, hc) →
(TN, hc) between (semi-)Riemannian manifolds, where c denotes the complete
lift. Also, they characterized the harmonicity of a (1,1)-type tensor field as being
divergence-free, i.e., δT = 0.

If (M,∇) is a manifold endowed with a symmetric linear connection, we have
constructed on the total space of T ∗M a canonical almost product structure P
(i.e., P 2 = Id and P ̸= ±Id) which preserves the vertical and the complete lift
[6]. We proved there that P was almost para-complex, since its eigen values +1
and −1 have the same multiplicity. (For the notion of almost para-complex struc-
ture, we refer the reader to [8] and [1–3]). Moreover, in [6] we characterized the
harmonicity of P , (viewed as an endomorphism field, or as a (1,1)-tensor field) in
the sense of [9], with respect to the natural Riemann extension ḡ on T ∗M .

In the present paper, we construct a new structure P on the total space T ∗M of
the Riemannian manifold (M,h), which inverts the vertical and the complete lifts
and we prove that P is para-complex. Then, we give a necessary and sufficient
condition such that the endomorphism field P is harmonic in the sense of [9] with
respect to the natural Riemann extension ḡ on T ∗M , constructed with the Levi-
Civita connection ∇ of h.

2. Preliminaries

Let M be a connected smooth n-dimensional manifolds and T ∗M denotes its
cotangent bundle. Let p : T ∗M → M be a natural projection from the cotan-
gent bundle T ∗M to a manifold M . At any arbitrary point x ∈ M , any local chart(
U ;x1, ..., xn

)
correspond to (p−1(U);x1, ..., xn, x1∗, ..., xn∗) at (x,w) ∈ T ∗M .

We define the function xi ◦ p on p−1 (U) with xi on U , where xi∗ = wi =

w
((

∂
∂xi

)
x

)
at each point (x,w) ∈ T ∗M , i = 1, . . . , n. Then, at any point (x,w),

we get a basis for the tangent space of (T ∗M)(x,w){
(∂1)(x,w) , ..., (∂n)(x,w) , (∂1∗)(x,w) , ..., (∂n∗)(x,w)

}
.

We denote ∂i =
∂

∂xi
and ∂i∗ =

∂

∂wi
, i = 1, . . . , n.
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Let W ∈ χ(T ∗M) denote the canonical vertical vector field on T ∗M which is a
global vector field defined in local coordinate systems, by

W =

n∑
i=1

wi∂i∗. (1)

For any α ∈ Ω1(M) (which is a differential form on M ), its vertical lift αv is a
vector field which is tangent to T ∗M and defined by

αv (Zv) = (α (Z))v , Z ∈ χ (M) . (2)

In local coordinates one has

αv =

n∑
i=1

αi∂i∗ (3)

where α =
n∑

i=1
αidx

i. Also, for any fv = f ◦ p ∈ F (T ∗M) with f ∈ F (M), we

note that αv (fv) = 0, f ∈ F (M).
For any vector field X ∈ χ (M), the complete lift is defined as a vector field
Xc ∈ χ (T ∗M) such that

Xc (Zv) = [X,Z]v , Z ∈ χ (M) . (4)

In local coordinates, one has

Xc
(x,w) =

n∑
i=1

ξi (x) (∂i)(x,w) −
n∑

h,i=1

wh

(
∂iξ

h
)
(x) (∂i∗)(x,w)

where X = ξi∂i. We also have Xc (fv) = (Xf)v, f ∈ F (M).
Now, we recall the following definition which was given in [14], as a generalization
of the (classical) Riemann extension defined in [12]

Definition 1. Let M be a manifold endowed with symmetric linear connection ∇.
Then, the natural Riemann extension ḡ is defined at each point (x,w) ∈ T ∗M such
that

ḡ(x,w) (X
c, Y c) = −aw (∇XxY +∇YxX) + bw(Xx)w(Yx)

(5)
ḡ(x,w) (X

c, αv) = aαx (Xx) , ḡx,w (αv, βv) = 0

for all vector fields X,Y and all differential one-forms α, β on M , where a, b are
arbitrary constants. We may assume a > 0 without loss of generality.

We note that if a = 1 and b = 0, then (T ∗M, ḡ) is the classical Riemann extension
of M endowed with ∇ (see [12] and [15]).
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Let (x,w) be an arbitrary fixed point of T ∗M , where w ̸= 0. We take {α1, ..., αn}
to be a basis of covectors on T ∗

xM such that

α1 = w (6)

and let {e1, ..., en} be its dual basis on TxM . We denote by the same letter ei the
parallel extension of each ei (along geodesic starting at x) to a normal neighbor-
hood of x in M , for i = 1, . . . , n, (see [11]). We obtain a local frame {e1, ..., en}
defined around x in M , such that

(∇eiej)x = 0, i, j = 1, . . . , n. (7)

We note that

ḡ(x,w)

(
eci , e

c
j

)
= bw (ei,x)w (ej , x) , i, j = 1, . . . , n.

Next, we denote by the same letter {α1, ..., αn} the local coframe defined around
x on M , which is dual to the local frame {e1, ..., en}, i.e., αi(ej) = δij , i, j =
1, . . . , n, and we have automatically α1,x = w.

We construct as in [5], an orthonormal basis {Ei, Ei∗}i=1,...,n with respect to ḡ in
T(x,w) (T

∗M) which is defined at any point (x,w) ∈ T ∗M by the formulas

E1 = ec1 +
1− b

2a
αv
1, E1∗ = ec1 −

1 + b

2a
αv
1

Ek =
1√
2a

(eck + αv
k) , Ek∗ =

1√
2a

(eck − αv
k) .

(8)

It follows that ḡ (Ei, Ei) = 1 and respectively ḡ (Ei∗, Ei∗) = −1, i = 1, . . . , n,
from which we can see that ḡ is of signature (n, n).

Now, we recall the following statement which is given in [16]

Proposition 2. Let X and Y be two vector fields on T ∗M . If X (Zv) = Y (Zv)
holds for all Z ∈ χ (M), then X = Y .

Later, we use the following

Notation 1. If T is a (1, 1)-tensor field on a manifold M , then the contracted
vector field C (T ) ∈ χ (T ∗M) is defined at any point (x,w) ∈ T ∗M , by its value
on any vertical lift as follows

C (T ) (Xv)(x,w) = (T X)v(x,w) = w ((T X)x) , X ∈ χ (M) .
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For the Levi-Civita connection ∇̄ of the Riemann extension ḡ, we get the following
formulas (see e.g. [11])(

∇̄XcY c
)
(x,w)

= (∇XY )c(x,w) + Cw ((∇X) (∇Y ) + (∇Y ) (∇X))(x,w)

+Cw (Rx (·, X)Y +Rx (·, Y )X)(x,w) −
c

2
{w (Y )Xc

+w (X)Y c + 2w (Y )Cw (∇X) + 2w (X)Cw (∇Y )

+w (∇XY +∇Y X)W}(x,w) + c2w (X)w (Y )W(x,w) (9)(
∇̄Xcβv

)
(x,w)

= (∇Xβ)v(x,w) +
c

2
{w (X)βv + β (X)W}(x,w)(

∇̄αvY c
)
(x,w)

= − (iα (∇Y ))v(x,w) +
c

2
{w (Y )αv + α (Y )W}(x,w)(

∇̄αvβv
)
(x,w)

= 0, X, Y ∈ χ (M) , α, β ∈ Ω1 (M)

where the coefficient c denotes the fraction
b

a
· For any (1, 1)-tensor field T and

any one-form α on M , we denote by iα (T ) the one-form of M defined by

(iα (T )) (X) = α (T X) , X ∈ χ (M) .

3. Harmonicity of an Almost Para-Complex Structure

In this section, we assume (M,h) to be a Riemannian n-dimensional manifold and
let ∇ be the Levi-Civita connection of h. Here we construct an almost product
structure P on T ∗M and we show that P is para-complex. We provide a necessary
and sufficient condition for which P is harmonic on T ∗M , with respect to the nat-
ural Riemann extension ḡ. Then, as a consequences, we characterize the classical
Riemann extension in terms of the harmonicity of P .

Definition 3. We define a linear transformation by

P : χ(T ∗M) → χ(T ∗M), where PXc = αv, Pαv = Xc (10)

where Xc and αv are respectively the complete lift of any vector field X ∈ χ(M)
and the vertical lift of a differential one-form α which is dual to X , with respect to
h on M .

Remark 4. Different from the endomorphism P constructed in [6], which pre-
serves both the vertical and complete lifts, here the (1, 1)-tensor field P given by
(10) inverts the vertical and complete lifts.

In what follows, we use the standard notation for the musical isomorphism α ∈
T ∗M → α♯ ∈ TM defined by h, such that h(α♯, Y ) = α(Y ), Y ∈ χ(M).
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Proposition 5. Let (M,h) be a Riemannian manifold. Then, the endomorphism
P constructed by (10) is an almost para-complex structure on the total space of
T ∗M .

Proof: First, we note that P is an almost product structure, since P 2 = Id and
P ̸= ±Id. We remark that if X ∈ χ(M) is a vector field and α ∈ Ω1(M) is its
dual one-form with respect to h, then Xc+αv and Xc−αv are eigen vector fields
of P corresponding to the eigen values (+1) and (−1), respectively. Now, we note
that the rank of the eigen distributions corresponding to the eigen values (+1) and
(−1) coincide (being equal to n), and therefore P is para-complex, which complete
the proof. �

We recall the following notion from [9]

Definition 6. Any (1, 1)-tensor field T on a (semi-) Riemannian manifold (N,h)
is called harmonic if T viewed as an endomorphism field

T : (TN, hc) → (TN, hc) (11)

is a harmonic map, where hc denotes the complete lift of the semi-Riemannian
metric h.

Using [9], we have the following characterization

Proposition 7. Let (N,h) be a (semi-)Riemannian manifold and let ∇ be the Levi-
Civita connection of h. Then any (1, 1)-tensor field T on (N,h) is harmonic if and
only if δT = 0, where

δT = traceh (∇T ) = traceh {(X,Y ) → (∇XT )Y } .

We have the following characterization

Theorem 8. Let (M,h) be a Riemannian n-dimensional manifold with the total
space of its cotangent bundle T ∗M endowed with the natural Riemann extension
ḡ. Then, the almost product structure P defined by (10) is harmonic with respect
to ḡ if and only if

n∑
i=1

[(∇eiαi)
♯]c +

n∑
k=2

∇̄eck
eck + c((n+ 1)ec1 − cαv

1)− ∇̄ec1
ec1 = 0 (12)

where the basis {e1, ..., en} and its dual basis {α1, ..., αn} were constructed in
Section 2 on T ∗M at an arbitrary fixed point (x,w) of T ∗M , such that w ̸= 0.

Proof: Let ∇̄ be the Levi-Civita connection of the natural Riemann extension ḡ
which is given by (9). Also, we note that any relation written here will be calcu-
lated at each point (x,w) ∈ T ∗M . Using Proposition 7, we have the following
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equivalences: The almost para-complex structure P on (T ∗M, ḡ) is harmonic ⇔

δP = traceḡ ∇̄P = 0.

Hence

δP = traceḡ ∇̄P =

2n∑
i,j=0

ḡij(∇̄HiP )Hj = 0 (13)

where {Hi}i=1,...,2n is a local basis of vector fields on T ∗M and ḡij is the inverse
matrix of the matrix ḡ(Hi,Hj)i,j=1,...,2n. Then

(13) ⇔
2n∑
i=1

εi(∇̄FiP )Fi = 0 (14)

where {Fi}i=1,...,2n is a local orthonormal basis on (T ∗M, ḡ) and εi = ḡ(Fi, Fi),
i = 1, . . . , 2n. From (8), the equivalences can be derived

(14) ⇔
n∑

s=1

{(∇̄EsP )Es − (∇̄Es∗P )Es∗} = 0 (15)

⇔ ∇̄E1PE1 − P ∇̄E1E1 − ∇̄E1∗PE1∗ + P ∇̄E1∗E1∗ (16)

=

n∑
k=2

∇̄Ek∗PEk∗ − P ∇̄Ek∗Ek∗ − ∇̄Ek
PEk + P ∇̄Ek

Ek.

We recall also the expression from [5, equation (4.6)](
∇̄E1∗E1∗ − ∇̄E1E1

)
(x,w)

= −1

a
{(∇e1α1)

v + cαv
1 + cW − (iα1∇e1)

v}(x,w) .

By applying P defined by (10), we get

P
(
∇̄E1∗E1∗ − ∇̄E1E1

)
(x,w)

= −1

a

{
[(∇e1α1)

♯]c + 2cec1

}
. (17)

From (9), we get(
∇̄E1PE1 − ∇̄E1∗PE1∗

)
(x,w)

=
1

a

{
∇̄ec1

ec1 − c2αv
1

}
(18)

By using (17) and (18), the left hand side of (16) becomes(
∇̄E1PE1 − P ∇̄E1E1 − ∇̄E1∗PE1∗ + P ∇̄E1∗E1∗

)
(x,w)

= −1

a

{
[(∇e1α1)

♯]c + 2cec1 − ∇̄ec1
ec1 + c2αv

1

}
(19)

where we have made use of (1), (3) and (7).
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Relying on ([5], equation (4.8)), we recall the relation
n∑

k=2

(
∇̄Ek∗Ek∗ − ∇̄Ek

Ek

)
(x,w)

= −1

a

n∑
k=2

{(∇ekαk)
v + cW − (iαk

∇ek)
v} .

By applying P defined in (10), we get
n∑

k=2

P
(
∇̄Ek∗Ek∗ − ∇̄Ek

Ek

)
(x,w)

= −1

a

n∑
k=2

{
[(∇ekαk)

♯]c + cec1

}
. (20)

From (9), we obtain
n∑

k=2

(
∇̄Ek

PEk − ∇̄Ek∗PEk∗
)
(x,w)

= −1

a

n∑
k=2

∇̄eck
eck. (21)

By using (20) and (21), the right hand side of (16) becomes

n∑
k=2

(
∇̄Ek∗PEk∗ − P ∇̄Ek∗Ek∗ − ∇̄Ek

PEk + P ∇̄Ek
Ek

)
(x,w)

=
1

a

n∑
k=2

{
∇̄eck

eck + [(∇ekαk)
♯]c + cec1

}
. (22)

From (19), (22) and (7), we obtain (12). �

Using the above theorem, where we take in particular M to be a flat manifold, then
from (9), we obtain the following:

Corollary 9. Let (M,h) be a Riemannian n-dimensional flat manifold with the
total space of its cotangent bundle T ∗M endowed with the natural Riemann ex-
tension ḡ constructed with respect to the Levi-Civita connection ∇ of h. Then, the
almost para-complex structure P given by (10) is harmonic if and only if at any
point (x,w) of T ∗M , the following condition is satisfied, under the notations made
in Section 2, for w ̸= 0

n∑
i=1

[(∇eiαi)
♯]c + c((n+ 1)ec1 − cαv

1)− ∇̄ec1
ec1 = 0. (23)

Corollary 10. Let (M,h) be a Riemannian n-dimensional flat manifold with the
total space of its cotangent bundle T ∗M endowed with the natural Riemann exten-
sion ḡ constructed with respect to the Levi-Civita connection ∇ of h. Then any two
of the following conditions imply the third one

i) The almost para-complex structure P is given by (10) is harmonic with
respect to ḡ

ii) ḡ reduces to the (classical) Riemann extension
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iii) At any point (x,w) of T ∗M , the following condition is satisfied, under the
notations made in Section 2, for w ̸= 0

n∑
i=1

[(∇eiαi)
♯]c = ∇̄ec1

ec1. (24)

Proof: If we assume that i) and ii) are satisfied, then we obtain c((n + 1)ec1 −
cαv

1) = 0. Since a vertical lift and a complete one coincide if and only if they both
vanish identically, it follows that c = 0, which implies ii). The rest of implications
follows directly from Theorem 9. �
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