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Abstract. In this paper we study a Generalized Willmore flow for graphs
and its numerical applications. First, we derive the time dependent equa-
tion which describes the geometric evolution of a Generalized Willmore flow
in the graph case. This equation is recast in divergence form as a coupled
system of second order nonlinear PDEs. Furthermore, we study finite ele-
ment numerical solutions for steady-state cases obtained with the help of the
FEMuS library (Finite Element Multiphysics Solver). We use automatic dif-
ferentiation (AD) tools to compute the exact Jacobian of the coupled PDE
system subject to Dirichlet boundary conditions.
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1. Introduction

Let M be a smooth immersed surface in R3. We consider the Generalized Will-
more energy functional

W =

∫
M
(aH2 + b) dS

where a = 2kc represents the double of the usual bending rigidity and b is the
surface tension coefficient. The term dS is the area element with respect to the
induced metric. Then, the corresponding Euler-Lagrange equation is given by

∆H + 2(H2 −K − ϵ)H = 0
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where ϵ = b/a and ∆ is the Laplace-Beltrami operator corresponding to the natural
metric [1]. The Willmore functional and its generalizations play a prominent role
in differential geometry [8, 11, 12]. These generalizations include the Helfrich en-
ergy for lipid bilayers, in which bending rigidities are established as multiplicative
constants of the mean curvature H and the Gauss curvature K, while neglecting
the surface tension of the membranes. In this study, our Generalized Willmore en-
ergy is a composition of the classical bending energy (Willmore energy) and the
energy due to the surface tension. Recently, Willmore-type energies and Willmore-
type surfaces in space forms were studied in [2] in which the authors proved that
Willmore-type immersions in different space forms essentially satisfy the same
PDE (Willmore-type equation).
In this paper we address the Generalized Willmore flow for graphs which was
recently studied by other authors over the past decades [5]. The paper is organized
as follows. In Section 2 we first obtain a formulation to a Generalized Willmore
flow equation for evolving surfaces. This fourth order Generalized Willmore flow
equation, together with the mean curvature formula for a graph, form a coupled
PDE system. Our final goal is to numerically solve this PDE system corresponding
to the Generalized Willmore flow based on finite element methods. Our coupled
PDE system can be linearized in practice with automatic differentiation tools. In
Section 3, we provide non trivial solutions which are induced by a Clifford torus
for the coupled PDE system subject to the Dirichlet boundary conditions and then
the convergence results and graphical figures are presented for the Generalized
Willmore flow for graphs at the steady case.

2. Generalized Willmore Flow

Let us briefly review the literature on Willmore flow which is the L2-gradient flow
corresponding to the Willmore energy. The Willmore flow usually occurs in digi-
tal geometry processing, geometric modeling, and physical simulation. Recently,
the authors [4] studied the discrete Willmore energy and its flow and they derived
the relevant gradient expressions including a linearization (approximation of the
Hessian), which are required for nonlinear numerical solvers. In [3], Barrett, Gar-
cke, and Nurnberg presented a parametric approximation of Willmore flow and
related geometric evolution equations and they provided numerous numerical ex-
periments, including simulations for energies appearing in the modelling of bio-
logical cell membranes. In 2004, a level set formulation for Willmore flow was
derived by Droske and Rumpf and they used gradient flow perspective and gen-
eralized the metric to sets of level set surfaces using the identification of normal
velocities and variations of the level set function in time via the level set equa-
tion [7]. Several papers [6, 10] the authors analyzed the error estimates for the
Willmore flow of graphs along with numerical experiments. For instance, Ji and
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Xu [10] analyzed a local discontinuous Galerkin method for the Willmore flow
of graphs on Cartesian meshes. In [5], Deckelnick, Dziuk and Elliott provided a
computation of geometric partial differential equations and mean curvature flow
in a precise way. In 2015, a C1-finite element method for the Willmore flow of
two-dimensional graphs subject to Dirichlet boundary conditions was introduced
by Deckelnick, Katz, and Schieweck. They proved quasi-optimal error bounds in
Sobolev norms for the solution and its time derivative [6]. These papers motivated
us to provide a numerical approach for our Generalized Willmore flow for graphs.
We are interested in reformulating a Generalized Willmore flow equation of graphs
and presenting a numerical approach using automatic differentiation.
Let us consider the evolution of a two-dimensional surface M(t) which is embed-
ded in R3 and described as a graph of function u : (0, T ) × Ω → R, Ω ⊂ R2

where Ω is an open domain. Then we consider the following geometric evolution
equation which is the Generalized Willmore flow equation

V = ∆H + 2(H2 −K − ϵ)H (1)

on M(t), where V is the normal velocity of the evolving surfaces M(t) corre-
sponding to the Generalized Willmore energy

W (M) =

∫
M
(H2 + ϵ) dS

for an immersed surface M in R3 [2]. The surface M is evolving in time to follow
variations of steepest descent of the energy. It is a fourth-order flow, since the
variation of the energy contains fourth-order derivatives.

2.1. The Graph Case

For every t ∈ [0, T ] let M(t) = {(x, y, U(x, y, t)) ; (x, y) ∈ Ω ⊂ R2} be the
graph of U . Recall that the Laplace-Beltrami operator is given by the formula

∆ =
1

A
∇ ·

((
AI − ∇U(∇U)T

A

)
∇
)

where A =
√

1 + |∇U |2 =
√

1 + U2
x + U2

y .

∆H can be expressed as in the matrix form

∆H =
1

A
∇ ·

(
1

A

(
1 + U2

y −UxUy

−UxUy 1 + U2
x

)
∇H

)
. (2)

We can rewrite (2) as

∆H = ∇·
(
1

A

(
I−∇U(∇U)T

A2

)
∇(AH)

)
−H∇·

(
1

A

(
I−∇U(∇U)T

A2

)
∇A

)
.
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Using

2H = ∇ ·
(
∇U
A

)
(3)

we obtain

1

A

(
I − ∇U(∇U)T

A2

)
∇A =

1

A

(
∇A− ∆U

A
∇U

)
+ 2H

∇U
A

· (4)

It is straightforward to verify that

∇ ·
(
1

A

(
∇A− ∆U

A
∇U

))
= −2K . (5)

Using (4) and (5) we can express (2) as

∆H = ∇ ·
(
1

A

(
I − ∇U(∇U)T

A2

)
(∇AH)

)
+ 2HK − 2H∇ ·

(
H

∇U
A

)
(6)

∆H = ∇ ·
(
1

A

(
I − ∇U(∇U)T

A2

)
(∇AH)

)
+ 2HK −∇ ·

(
H2∇U

A

)
− 2H3 .

By substituting (6) in (1) we obtain the fourth order PDE given by

V −∇ ·
(
1

A

(
I − ∇U(∇U)T

A2

)
(∇AH)

)
+∇ ·

(
H2∇U

A

)
+ 2Hϵ = 0 . (7)

Using (3) we rewrite (7) as

Ut −A∇ ·
(
1

A

(
I − ∇U(∇U)T

A2

)
(∇AH)−H2∇U

A
− ϵ

(
∇U
A

))
= 0 (8)

where V = Ut/A. We express (1) in divergence form using the Gauss curvature
formula of a graph as shown in (8). The important point is that the Gauss curvature
does not appear in the fourth-order PDE. Then we transform the above fourth order
PDE into a coupled system of two nonlinear second order PDEs as in [5, 7].
Define

W :=
A

2
∇ ·

(
∇U
A

)
= AH

B := I − ∇U(∇U)T

A2
=

1

1 + U2
x + U2

y

(
1 + U2

y −UxUy

−UxUy 1 + U2
x

)
.

We refer toW as weighted mean curvature. Then (8) becomes as a coupled system
of two nonlinear second order PDEs with respect to two unknowns U and W
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Ut = A∇ ·
(
B

A
∇W − W 2

A3
∇U − ϵ

(
∇U
A

))
W =

A

2
∇ ·

(
∇U
A

)
.

2.2. Steady-State Weak Formulation

In this part of the paper we describe how we obtain the steady state weak formula-
tion for the above coupled PDE system. From now on we set Ut = 0 in (9). Now
we multiply (9) and (9) by test functions φ,ψ ∈ H1

0 (Ω) respectively and apply
integration by parts we obtain the following system

−
∫
Ω

B

A
∇W · ∇φ dΩ +

∫
Γ

B

A
∇W · νφdΓ +

∫
Ω

W 2

A3
∇U · ∇φdΩ

−
∫
Γ

W 2

A3
∇U · νφ dΓ +

∫
Ω
ϵ
∇U
A

· ∇φ dΩ−
∫
Γ
ϵ
∇U
A

· νφ dΓ = 0

−
∫
Ω

∇U
A

∇ψ dΩ +

∫
Γ

∇U
A

· νψ dΓ =

∫
Ω
2
W

A
ψ dΩ

where Γ is the boundary of Ω. In the case of Dirichlet boundary conditions the
boundary terms vanish in the above formulation because of the choice of the test
functions φ and ψ.
Hence, the weak formulation of the steady-state Generalized Willmore flow graph
is given by∫

Ω

(
− B

A
∇W · ∇φ+

(
W 2

A3
+
ϵ

A

)
∇U · ∇φ

)
dΩ = 0 , φ ∈ H1

0 (Ω)

(9)∫
Ω

(
2W

A
ψ +

∇U
A

· ∇ψ
)
dΩ = 0 , ψ ∈ H1

0 (Ω)

with prescribed Dirichlet boundary conditions U(Γ) = U0 and W (Γ) =W0.

3. Numerical Results

The above nonlinear coupled PDE system is solved by using a Newton scheme.
The implementation of the Jacobian matrix in the nonlinear iterations is challeng-
ing because of the complexity of the operators. Therefore we make use of Auto-
matic Differentiation (AD) tools (sometimes called algorithmic differentiation or
computational differentiation), which are a set of techniques to evaluate the deriv-
ative of a function specified by a computer program.
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3.1. Automatic Differentiation (AD) for the Generalized Willmore Flow

Let v = (U,W ) and we rewrite (9) in compact notation as

F(v) = 0 .

Let v0 be an initial guess. Then a single Newton iteration is given by

vn = vn−1 − J−1(vn−1)F(vn−1) for n ≥ 1

and it is repeated until ||vn − vn−1|| < ϵ. Here, J(vn) = ∂F
∂v (vn). Automatic

differentiation exploits the fact that every computer program, no matter how com-
plicated, executes a sequence of elementary arithmetic operations (addition, sub-
traction, multiplication, division, etc.) and elementary functions (exp, log, sin, cos,
etc.). By applying the chain rule repeatedly to these operations, derivatives of arbi-
trary order can be computed automatically accurately to working precision. In our
work we have chosen to use the Adept software library, which enables algorithms
written in C++ to be automatically differentiated using an operator overloading
strategy. The full Jacobian matrix can be computed with very little code modifica-
tion [9].

3.2. The Clifford Torus as a Steady-State Solution of the Willmore Flow

In order to validate our numerical algorithm, we have compared steady-state Will-
more flow solutions with known analytical solutions. We have tested not only that
each solution converges to the corresponding analytic one, but also that the theo-
retical convergence order is recollected for h→ 0, where h is the size of the mesh
domain discretization. In this section, we compare the numerical solution of the
Generalized Willmore graph (with ϵ = 0) with a sector of the Clifford torus. Other
comparisons that have been done show similar results.
In geometric topology, the Clifford torus is a torus in R4 defined by

{(cosu, sinu, cos v, sin v) ∈ R4 ; 0 < u < 2π, 0 < v < 2π} .

The so called Clifford torus in R3 is the stereographic projection of the actual
Clifford torus in S3 and its parametrization is given by

R(u, v) = ((a+ cosu) cos v, (a+ cosu) sin v, sinu)

where a =
√
2. Using the coefficients of the first and second fundamental forms it

can be easily shown that the profile, the mean curvature, the area element and the
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weighted mean curvature of the Clifford torus in R3 are given respectively by

U = sinu, H =
1

2
+

cosu

2(a+ cosu)

A =
1

sinu
, W = AH =

1

sinu

(
1

2
+

cosu

2(a+ cosu)

)
.

For u = 0 and u = π (the limits in u for the half-torus graph) the area element
degenerates, A→ ∞, and for this reason we chose only the sector

π

6
≤ u ≤ 5π

6
and 0 ≤ v ≤ 2π.

The domain in the xy-plane is then given by the annulus with the following inner
and outer radii

rin = a+ cos

(
5π

6

)
=

√
2−

√
3/2, rout = a+ cos

(π
6

)
=

√
2 +

√
3/2.

The Dirichlet boundary conditions for U and W are also given by

U
∣∣
u=π

6
= U

∣∣
u= 5π

6
=

1

2

W
∣∣
u=π

6
= 2

( √
2 +

√
3

2
√
2 +

√
3

)
and W

∣∣
u= 5π

6
= 2

( √
2−

√
3

2
√
2−

√
3

)
.

We numerically solve (9) with the help of the FEMuS library, an open-source Finite
Element Multiphysics Solver which uses automatic differentiation to evaluate the
exact Jacobian in the Newton iteration scheme.
Tables 1 and 2 show the error in the L2 norm, the error in the H1 norm, and the
corresponding convergence order, for different types of finite element families:
piecewise linear, piecewise quadratic and piecewise bi-quadratic. All errors van-
ish as h → 0. Concerning the error in the L2 norm, the theoretical asymptotic
convergence orders are recovered for each finite element family: 2 for linear, 3 for
quadratic and 3 for bi-quadratic. Also for the error in the H1 norm the theoretical
asymptotic convergence orders are recovered for each finite element family: 1 for
linear, 2 for quadratic and 2 for bi-quadratic.

3.3. Generalized Willmore Torus

In this section we solve the Generalized Willmore equation system (9) on the same
domain and with the same boundary conditions for U and W as in the previous
section, but we set the parameter ϵ ̸= 0. The resulting graph is not a Clifford torus
anymore but a deformation of it, and an analytic solution is no longer available
for comparison. From now on, we refer to each numerical solution obtained with
ϵ ̸= 0 as Generalized Willmore torus.
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Table 1. L2 error and order of convergence.

Level Error Order
Linear 1 0.80250526412991 0.816

2 0.45592348448236 0.603
3 0.30010739849527 1.055
4 0.14447436375537 2.278

Quadratic 1 0.31005231733663 0.478
2 0.22258445401225 1.592
3 0.07381751192955 3.702
4 0.00567108101373 3.694

Bi-quadratic 1 0.29624038528483 0.431
2 0.21978351295985 1.612
3 0.07188702858815 3.692
4 0.00556110069160 3.687

Table 2. H1 error and order of convergence.

Level Error Order
Linear 1 1.46692032049981 0.448

2 1.07535707689442 0.523
3 0.74859603065803 0.717
4 0.45556627111955 1.420

Quadratic 1 0.72593962244321 0.529
2 0.50317937874966 1.514
3 0.17614866253213 2.635
4 0.02835757454658 2.023

Bi-quadratic 1 0.69164015329336 0.480
2 0.49599585575234 1.529
3 0.17186852938676 2.619
4 0.02797960015931 2.016

In Fig. 1, we show the variation of the profile cross section for the Generalized
Willmore torus with three different values of ϵ, namely ϵ = 0.001, 0.01 and 0.03.
Note that by increasing the value of ϵ the cross section moves farther away from
the one of the Clifford torus (which corresponds to ϵ = 0).

Finally, in Figs. 2 and 3 we show the color maps of the profile U and the general-
ized curvature W for the Generalized Willmore torus with ϵ = 0.01.
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Figure 1. On the left: cross section of some computed Generalized
Willmore torus surfaces for the angle range π/6 ≤ u ≤ 5π/6, for
various values of ϵ. The dashed curve is the Clifford torus. The curves
for ϵ = 0.03 (A), ϵ = 0.01 (B) and ϵ = 0.001 (C) are visible on the
right, in a zoom of the dash-dotted rectangle.

Figure 2. Generalized
Willmore torus profile
U with ϵ = 0.01.

Figure 3. Generalized
Willmore torus weigh-
ted curvature W with
ϵ = 0.01.

4. Conclusions

In this article we proposed a numerical scheme for solving a Generalized Willmore
flow for graphs. We reformulated the graph evolution equation as a coupled sys-
tem of nonlinear PDEs where the unknowns are the profile and the weighted mean
curvature. We made use of automatic differentiation tools to compute the Jacobian
in the Newton linearization of the finite element weak formulation. Finally we
studied the accuracy of the algorithm by providing nontrivial steady-state numeri-
cal solutions of the Generalized Willmore flow for graphs. The present work can
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be extended in several directions. The numerical scheme and the implementation
presented here can be applied to time-dependent problems as well as to the case of
general parametric surfaces immersed in R3. Moreover, numerical investigations
may be performed with varying values of ϵ and with different types of boundary
conditions. These studies are expected to bring new interesting results which will
be the subject of future works.
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