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Abstract. In the previous lecture we have introduce and discussed the con-
cept of affinely-rigid, i.e., homogeneously deformable body. Some symmetry
problems and possible applications were discussed. We referred also to our
motivation by Euler ideas. Below we describe the general principles of the
quantization of this theory in the Schrödinger language. The special stress
is laid on highly-symmetric, in particular affinely-invariant, models and the
Peter-Weyl analysis of wave functions.
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1. Introduction

Let us consider quantum-mechanical system in configuration space Q – the n-
dimensional differential manifold. In Schrödinger theory pure states are described
by complex scalar densities Ψ of weight 1/2 [13]. The scalar product is given by

(Ψ,Φ) =

∫
ΨΦ =

∫
Ψ(q)Φ(q)dq1 . . .dqn.

Usually Q is a Riemannian or pseudo-Riemannian space (Q,Γ). Classical kinetic
energy is then given by

T =
1

2
Γµν

dqµ

dt

dqν

dt
·

The metric Γ gives rise to the natural volume measure

dµΓ(q) =
√
|det[Γµν ]|dq1 . . . dqn.

73



74 Jan J. Sławianowski and Vasyl Kovalchuk

Wave densities Ψ are then represented by scalar functions ψ

Ψ(q) = ψ(q) 4

√
|detΓµν |.

Scalar product becomes then [12]

(Ψ|Φ) = ⟨ψ|φ⟩ =
∫
ψ(q)φ(q)dµΓ(q).

Classical and quantum kinetic energies are given by

T =
1

2
Γµνpµpν , ΓµαΓαν = δµν , pµ =

∂T

∂q̇µ
= Γµν

dqν

dt

T = −~2

2
∆(Γ)

where ∆(Γ) is the Laplace-Beltrami operator

∆(Γ) =
1√
|Γ|

∑
µ,ν

∂µ
√
|Γ|Γµν∂ν = Γµν∇µ∇ν

H = T+V, (Vψ)(q) = V (q)ψ(q).

If Q is multiply-connected, we can admit wave functions on Q, the covering man-
ifold of Q. But ψψ should be projectable to Q. This is the case with rigid body,
affinely-rigid body and many other systems [1–3, 5, 6, 13, 22, 23].
We assume Q to be a Lie group G. It is endowed with the Haar measure µ. But
usually µΓ = µ. Namely, in practical problems Γµν is left- or right-invariant. But
then µΓ is so as well. But the invariant measure onG is unique up to normalization
constant, so we can admit µΓ = µ.
Let Eµ, Eµ be elements of mutually dual bases in G′, G′∗ (Lie algebra and co-
algebra of G), and qµ – first kind canonical coordinates on G

g(q) = exp(qµEµ).

Lie-algebraic velocities

Ω =
dg

dt
g−1 = ΩµEµ =

(
Ωµ

ν(q)
dgν

dt

)
Eµ

Ω̂ = g−1dg

dt
= Ω̂µEµ =

(
Ω̂µ

ν(q)
dgν

dt

)
Eµ = g−1Ωg.

Left- and right-invariant kinetic energies have the form

Tleft =
1

2
Lµν(q)Ω̂µΩ̂ν , Tright =

1

2
Rµν(q)Ω

µΩν

where [Lµν(q)], [Rµν(q)] – constant, non-singular and symmetric matrices.
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Legendre transformation is given non-holonomically by

Σ̂µ =
∂Tleft

∂Ω̂µ
= LµνΩ̂ν , Σµ =

∂Tright
∂Ωµ

= RµνΩ
ν .

They are Hamiltonian generators, i.e., momentum mappings of right and left trans-
formations. Hamiltonians are given by

Hleft = Tleft + V (q) =
1

2
LµνΣ̂µΣ̂ν + V (q)

Hright = Tright + V (q) =
1

2
RµνΣµΣν + V (q)

where [Lµν(q)], [Rµν(q)] denote inverses of [Lµν(q)], [Rµν(q)].
When the structure constants are Cλ

µν

[Eµ, Eν ] = EλC
λ
µν

then the Poisson brackets are

{Σµ,Σν} = ΣλC
λ
µν ,

{
Σ̂µ, Σ̂ν

}
= −Σ̂λC

λ
µν ,

{
Σµ, Σ̂ν

}
= 0.

Left and right regular translations in L2(G,µ) are given by

(L(k)Ψ) (g) = Ψ(kg), (R(k)Ψ) (g) = Ψ(gk).

They are unitary

⟨L(k)Ψ|L(k)φ⟩ = ⟨Ψ|φ⟩ = ⟨R(k)Ψ|R(k)φ⟩

and represent G

R(kl) = R(k)R(l), L(kl) = L(l)L(k).

Generators are defined as usual

(Lµf) (g) =
∂

∂qµ
f (k(q)g)

∣∣∣∣
q=0

(Rµf) (g) =
∂

∂qµ
f (gk(q))

∣∣∣∣
q=0

.

Commutation rules have the form

[Lµ,Lν ] = −LκC
κ
µν , [Rµ,Rν ] = RκC

κ
µν , [Lµ,Rν ] = 0

Lµ, Rµ are anti-self-adjoint

⟨LµΨ|φ⟩ = −⟨Ψ|Lµφ⟩ , ⟨RµΨ|φ⟩ = −⟨Ψ|Rµφ⟩ .
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Classical Poisson brackets in terms of Lµ, Rµ are expressed as follows

{A,B} = ΣλC
λ
µν
∂A

∂Σµ

∂B

∂Σν
− ∂A

∂Σµ
LµB +

∂B

∂Σµ
LµA

= −Σ̂λC
λ
µν
∂A

∂Σ̂µ

∂B

∂Σ̂ν

− ∂A

∂Σ̂µ

RµB +
∂B

∂Σ̂µ

RµA.

In particular, when f depends only on qµ, we have

{Σµ, f} = −Lµf, {Σ̂µ, f} = −Rµf.

Exponential expression for L(k), R(k) read

F (k(q)g) = exp (qµLµ)F, F (gk(q)) = exp (qµRµ)F.

This is true for the restricted class of smooth F -s, but the left-hand sides are gen-
erally well defined. One can show that

Lµ = Σα
µ
∂

∂qα
, Rµ = Σ̂α

µ
∂

∂qα

where
Σα

µΩ
µ
β = δαβ, Σ̂α

µΩ̂
µ
β = δαβ.

Quantum operators of physical Σ, Σ̂-quantities are dependent on the Planck con-
stant

Σµ :=
~
i
Lµ =

~
i
Σα

µ(q)
∂

∂qα
, Σ̂µ :=

~
i
Rµ =

~
i
Σ̂α

µ(q)
∂

∂qα
·

Obviously, they are self-adjoint. The quantum Poisson bracket

Q {F,G} =
1

i~
[F,G] =

1

i~
(FG−GF)

for Σµ, Σ̂µ has the same algebraic structure as classical

{Σµ,Σν}Q = ΣλC
λ
µν ,

{
Σ̂µ, Σ̂ν

}
Q
= −ΣλC

λ
µν ,

{
Σµ, Σ̂ν

}
Q
= 0.

Quantum operators of kinetic energy are given by

Tleft =
1

2
LµνΣ̂µΣ̂ν = −~2

2
LµνRµRν

Tright =
1

2
RµνΣµΣν = −~2

2
RµνLµLν .

If G is semi-simple, then these models coincide when the Killing tensor

γµν = Cα
βµC

β
αν
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is used as the metric tensor at the identity of G. Then

Γµν(q) = γαβΣ
α
µ(q)Σ

β
ν(q) = γαβΣ̂

α
µ(q)Σ̂

β
ν(q).

More precisely, this is true when

G = G1 × . . .×Gp = ×N
k=1Gk

where Γ(k) are simple and

Γ =

N∑
k=1

ckπk
∗Γ(k) = c1π1

∗Γ(1) + . . .+ cNπN
∗Γ(N)

πk = G → Gk is the natural projection, Γ(k) is the Killing metric on Gk and ck
are constants.

2. Quantization of Affine Bodies

Let us now go to the general case of the quantized affinely-rigid body [4, 7, 10,
11, 15, 17, 18, 21]. In the classical part it was stated that the configuration space
is LI(U, V ) × M , where M is the physical space, V , U are translation spaces
of the physical and material spaces M , N , and LI(U, V ) is the manifold of lin-
ear isomorphisms from U onto V . The induced coordinates in the configuration
space are

(
xi, φi

K

)
. Any choice of coordinates identifies Q ≃ GAffI(N,M) with

LI(U, V )×M , and consequently, with GL(n,R)×̃Rn. The most natural measures
on GL(n,R)×̃Rn and GL(n,R) seem to be a, l, where

da(φ, x) = dx1 . . . dxndφ1
1 . . .dφ

n
n = dl(φ)dx1 . . . dxn

dl(φ) = dφ1
1 . . . dφ

n
n.

They are not Haar measures. The latter ones are given by α, λ, where

dα(φ, x) = (detφ)−n−1da(φ, x)

dλ(φ) = (detφ)−ndl(φ).

In practical calculations it is convenient to express them in terms of the two-polar
decomposition

dλ(φ) = dλ(L, q,R) =
∏
i̸=j

∣∣sh (qi − qj)∣∣ dν(L)dν(R)dq1 . . .dqn
where ν is the Haar measure on SO(n,R), or equivalently – on the manifold of
orthonormal frames.
Similarly, one can show that

dl(φ) = dl(L,Q,R) =
∏
i̸=j

∣∣(Qi +Qj
) (
Qi −Qj

)∣∣dν(L)dν(R)dQ1 . . . dQn.
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We shall use the shortened notation

Pλ =
∏
i̸=j

∣∣sh (qi − qj)∣∣ , Pl =
∏
i ̸=j

∣∣(Qi +Qj
) (
Qi −Qj

)∣∣ .
Then

dλ(φ) = Pλdν(L)dν(R)dq
1 . . . dqn, dl(φ) = Pldν(L)dν(R)dQ

1 . . .dQn.

Switching out the dilatational variable, i.e., reducing to the subgroup SL(n,R), we
obtain

dλSL(φ) = Pλdν(L)dν(R)δ
(
q1 + . . .+ qn

)
dq1 . . . dqn.

The indices µ in Σµ, Σ̂µ become now two-indices like (ab),
(
A
B

)
. Therefore, the

laboratory and co-moving representations of affine spin become now operators

Σa
b :=

~
i
La

b =
~
i
φa

K
∂

∂φb
K
, Σ̂

A
B :=

~
i
RA

B =
~
i
φm

B
∂

∂φm
A
·

Similarly, the spin and vorticity operators are given by

Sa
b = Σa

b − gacgbdΣd
c, VA

B = Σ̂
A
B − ηACηBDΣ̂

D
C .

When using the Lebesgue measure l, we must replace Σµ, Σ̂µ by

Σ(l)ab = Σa
b +

~n
2i
δab, Σ̂(l)AB = Σ̂

A
B +

~n
2i
δAB.

Similarly, for the linear momentum in spatial and material representations we have

Pa =
~
i

∂

∂xa
, P̂A =

~
i
φa

A
∂

∂xa
·

They are interrelated through φ

P̂A = φa
APa, Pa = φ−1A

a P̂A.

One can also introduce the translational and total affine momentum of the body
with respect to some fixed spatial origin O ∈M

Λ[O]ij = xiPj , J[O]ij = Λ[O]ij +Σi
j .

They generate GAff(M) acting, e.g., through

(xa, φa
A) 7→

(
La

bx
b, La

bφ
b
A

)
.

Let us introduce the operator of canonical momentum conjugate to the “centre of
mass” of logarithmic deformation invariants

p =
~
i

∂

∂q
= Σa

a = Σ̂
A
A.
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The deviatoric, i.e., shear components of Σ, Σ̂ are given by

σa
b := Σa

b −
1

n
p δab, σ̂A

B := Σ̂
A
B −

1

n
p δAB.

Just like in classical theory, spin and vorticity are Hamiltonian generators of the
left and right rotations of φ. For any functions F , H of the L,R-arguments we
have

F (W (µ)L) =

(
exp

(
i

2~
µijS

j
i

)
F

)
(L)

H (T (ν)R) =

(
exp

(
− i

2~
νABV

B
A

)
H

)
(R)

where the coefficients µij , νAB are g, η-skew-symmetric

µij = −gikgjlµlk, νAB = −ηACηBDν
D
C

W (µ), T (ν) are finite transformations from SO(V, g), SO(U, η).
Other factors of the two-polar decomposition are unaffected. From the point of
view of “rigid bodies” L, R are “spatially” rotated respectively in V and U . The
corresponding “co-moving” components

ϱa
b = La

iL
j
bS

i
j , τ a

b = −RB
bR

a
AV

A
B

generate right, i.e., material, rotations of the L,R-rigid bodies. Namely, for any
ωa

b satisfying
ωa

b = −δacδbdωd
c

the corresponding Z(ω) ∈ SO(n,R) acts on the L, R dependence as follows

F (LZ(ω)) =

(
exp

(
i

2~
ωa

bϱ
b
a

)
F

)
(L)

H (RZ(ω)) =

(
exp

(
− i

2~
ωa

bτ
b
a

)
H

)
(R).

Just like in classical theory one achieves a partial diagonalization of the kinetic
energy in terms of operators

Ma
b = −ϱa

b − τ a
b, Na

b = ϱa
b − τ a

b.

In geodetic affinely-invariant models in two dimensions these quantities are con-
stants of motion. For n > 2 it is no longer the case, but the Casimir invariants built
of ϱa

b, τ a
b are constants of motion. They are so even in non-geodetic case if the

potential energy depends only on deformation invariants.
Casimir operators are given by

C(k) = Σa
bΣ

b
c . . .Σ

r
sΣ

s
a = Σ̂

A
BΣ̂

B
C . . . Σ̂

R
SΣ̂

S
A.
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In particular for k = 2

C(2) = Σa
bΣ

b
a = Σ̂

A
BΣ̂

B
A.

For skew-symmetric tensor operators like Sa
b, Va

b we change the normalization

∥S∥2 = −1

2
Sa

bS
b
a, ∥V∥2 = −1

2
VA

BV
B
A.

In analogy to classical formulas one can show that [18–20,24,25,32,34–36,40,41,
43, 44, 48, 49]

Taff−aff
int =

1

2A
C(2)− B

2A(A+ nB)
p2

Tmet−aff
int =

1

2α
C(2) +

1

2β
p2 +

1

2µ
∥S∥2

Taff−met
int =

1

2α
C(2) +

1

2β
p2 +

1

2µ
∥V∥2

with the same meaning of symbols as in the classical part

α = I +A, β = −(I +A)(I +A+ nB)

B
, µ =

I2 −A2

I
·

In certain formulas it is convenient to separate the shear and dilatational phenomena

Taff−aff
int =

1

2A
CSL(n,R)(2) +

1

2n(A+ nB)
p2

Tmet−aff
int =

1

2(I +A)
CSL(n,R)(2) +

1

2n(I +A+ nB)
p2 +

I

2(I2 −A2)
∥S∥2

Taff−met
int =

1

2(I +A)
CSL(n,R)(2) +

1

2n(I +A+ nB)
p2 +

I

2(I2 −A2)
∥V∥2.

The Peter-Weyl decomposition of wave functions is given by

Ψ(φ) = Ψ(L,D,R) =
∑

α,β∈Ω

N(α)∑
m,n=1

N(β)∑
k,l=1

Dα
mn(L)f

αβ

nk
ml

(D)Dβ
kl

(
R−1

)
.

Here Ω is the set of equivalence classes of irreducible unitary representations of
SO(n,R) and N(α) is their dimension.
The two-polar decomposition is non-unique. Let W ∈ SO(n,R) has in every row
and column exactly one ±1 element and nulls besides. Then

LWDW−1R−1 = LDpermR
−1
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where Dperm is diagonal and differs from D by the permutation of diagonal ele-
ments. So, we must have

fαβ
nk
ml

(
qπW (1, . . . , qn)

)
=

N(α)∑
r=1

N(β)∑
s=1

Dα
nr(W )fαβ

rs
ml

(
q1, . . . , qn

)
Dβ

sk(W )

for any matrix W of the above form.
The same is true on the subsets M (k;p1,...,pk) ⊂ SO(n,R)×R× SO(n,R), where
there is a coincidence between some of

(
q1, . . . , qn

)
. Then W contains some con-

tinuous part. The special and simplest case is the total degeneracy when D = λIn.
Then L, R separately are not determined and only LR−1 is well defined.
If α, β, m, l are kept fixed, then we can omit the symbols m, l and just write

Ψ(φ) = Ψαβ
ml(L,D,R) =

N(α)∑
n=1

N(β)∑
k=1

Dα
mn(L)f

αβ
nk (D)Dβ

kl

(
R−1

)
.

Obviously, Dα are N(α) × N(α) quadratic matrices and fαβ are N(α) × N(β)
matrices depending on deformation invariants D(q).
Let us fix our attention on the physical case n = 3. Then ωa

b is expressed by the
rotation vector k – canonical coordinates of the first kind

ωa
b = −εabckc, ka = −1

2
εab

cωb
c

k ∈ [0, π]− SO(3,R), k ∈ [0, 2π]− SU(2) = SO(3,R)

where n = k/k is a rotation axis.
The generated finite rotations are given by exponentials

W (k) = exp (kaEa) =

∞∑
m=0

1

m!
(kaEa)

m , (Ea)
b
c = −εabc

or explicitly

W (k)u = u+ k × u+
1

2
k ×

(
k × u

)
+ . . .

W (k)ab = cos k δab + (1− cos k)
kakb
k2

+ sin k εabc
kc

k
·

Generators of the left and right translations are given by

La =
ka
k

∂

∂k
− 1

2
ctg

k

2
εab

ckbDc +
1

2
Da

Ra =
ka
k

∂

∂k
− 1

2
ctg

k

2
εab

ckbDc −
1

2
Da
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where D are generators of inner automorphisms

Da = La −Ra = εab
ckb

∂

∂kc
·

The following holds

W (πn) =W (−πn) =W (πn)−1

so, for any n W (πn) are square roots of identity.
The covering group Spin(3) ≃ SU(2) is parameterized by k with k ∈ [0, 2π]

u(k) = exp (kaea) = cos
k

2
I2 −

ka

k
sin

k

2
iσa

ea = σa/2i – generators of SU(2).
Now u(πn) ̸= u(−πn), but u(2πn) = −u(n).
Casimir invariants are given by

CSO(V,g)(2) = S2
1 + S2

2 + S2
3, CSO(U,η)(2) = V2

1 +V2
2 +V2

3.

For n = 3 the family of Casimirs begins and terminates at p = 2. The Haar
measure is proportional to

dµ(k) =
4

k2
sin2

k

2
d3k = 4 sin2

k

2
sinϑdkdϑdφ

for both SO(3,R) and SU(2). But if we wish to normalize the measure to unity,
then some normalization constant must appear. Otherwise SU(2) has the twice
larger volume than SO(3,R), what is, by the way, relatively sensible.
The Peter-Weyl theorem becomes then

Ψ(φ) = Ψ(L,D,R) =

∞∑
s,j=0

s∑
m,n=−s

j∑
k,l=−j

Ds
mn(L)f

sj

nk
ml

(D)Dj
kl

(
R−1

)
or with fixed values of m, l, s, j

Ψsj
ml(L,D,R) =

s∑
n=−s

j∑
k=−j

Ds
mn(L)f

sj
nk(D)Dj

kl

(
R−1

)
.

They satisfy eigenequations of rotational Casimirs

∥S2∥Ψsj
ml = ~2s(s+ 1)Ψsj

ml, ∥V2∥Ψsj
ml = ~2j(j + 1)Ψsj

ml.

And traditionally one uses eigenstates of ∥S2∥, ∥V2∥

S3Ψ
sj
ml = ~mΨsj

ml, V3Ψ
sj
ml = ~lΨsj

ml.
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Similarly for ϱ3, τ 3

ϱ3Ψ
sj

ml
nk

= ~nΨsj

ml
nk

, τ 3Ψ
sj

ml
nk

= ~kΨsj

ml
nk

.

On GL+(3,R) s, j are non-negative integers and m, l, n, k jump by one from −s,
−j to s, j. But something similar may be done on GL+(3,R). One begins with
SU(2)× R3 × SU(2) – the analog of the two-polar representation

Ψ(u, q, v) =
∞∑

s,j∈N/2∪{0}

s∑
m,n=−s

j∑
k,l=−j

Ds
mn(u)f

sj

nk
ml

(q)Dj
kl

(
v−1

)
where with fixed s, j other quantum numbers jump by one under the summation
sign. But the summation must be restricted only to two disjoint subspaces: one
with both s, j half-integer and the other one with integers. In any case this must be
so if ψψ is to be projectable onto GL+(3,R) (incidentally, it is not quite clear if it
must be so) [45–47, 50–53].

3. Affine and Euclidean Models of Kinetic Energy in Terms of the
Two-Polar Splitting

Let us quote the explicit expressions for the highly (affinely) invariant kinetic en-
ergy operators.

For models of internal kinetic energy left- and right-affinely invariant we have

Taff−aff
int = − ~2

2A
Dλ +

~2B
2A(A+ nB)

∂2

∂q2

+
1

32A

∑
a,b

(Ma
b)

2

sh2 q
a−qb

2

− 1

32A

∑
a,b

(Na
b)

2

ch2 q
a−qb

2

where, however, something classically unexpected appears

Dλ =
1

Pλ

∑
a

∂

∂qa
Pλ

∂

∂qa
=

∑
a

∂2

∂(qa)2
+
∑
a

∂ lnPλ

∂qa
∂

∂qa
·

The “naively” expected term
∑

a ∂
2/∂(qa)2 appears when we substitute

φ =
√
PλΨ.
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But this is for the price of additional “bad” potential Ṽ

− ~2

2A
D̃ = − ~2

2A

∑
a

∂2

∂(qa)2
+ Ṽ

Ṽ = − ~2

2A

1

Pλ
2
+

~2

4A

1

Pλ

∑
a

(
∂Pλ

∂qa

)2

.

For the internal models right-affinely, left-metrically invariant, and conversely, left-
affinely, right-metrically invariant we have respectively

Tmet−aff
int = − ~2

2λ
Dλ −

~2

2β

∂2

∂q2
+

1

32α

∑
a,b

(Ma
b)

2

sh2 q
a−qb

2

− 1

32α

∑
a,b

(Na
b)

2

ch2 q
a−qb

2

+
1

2µ
∥S∥2

Taff−met
int = − ~2

2λ
Dλ −

~2

2β

∂2

∂q2
+

1

32α

∑
a,b

(Ma
b)

2

sh2 q
a−qb

2

− 1

32α

∑
a,b

(Na
b)

2

ch2 q
a−qb

2

+
1

2µ
∥V∥2

where α, β, µ are given by the previous formulas.
For the doubly isotropic d’Alembert model with the scalar inertia I we obtain

Td.A.
int = −~2

2I
Dl +

1

8I

∑
a,b

(Ma
b)

2

(Qa −Qb)
2 +

1

8I

∑
a,b

(Na
b)

2

(Qa +Qb)
2

with Dl given by

Dl =
1

Pl

∑
a

∂

∂Qa
Pl

∂

∂Qa
=

∑
a

∂2

∂ (Qa)2
+

∑
a

∂ lnPl

∂Qa

∂

∂Qa
·

Then again the substitution
φ =

√
Pl Ψ (1)

eliminates the first-order derivatives but introduces a hardly treatable potential

Ṽl = −
~
2I

1

P 2
l

+
~2

4I

1

Pl

∑
a

(
∂Pl

∂Qa

)2

.

Although the kinetic energy operator may be in the d’Alembert case expressed by
the usual Laplace operator

Td.A. = −~2

2I
∆n2

= −~2

2I

∑
i,A

∂2

∂ (φi
A)

2
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this is useless because the geodetic models predict infinite motion, and to be phys-
ically admissible, they must be modified by the potential term V

(
Q1, . . . , Qn

)
.

And then only curvilinear coordinates, e.g., polar or two-polar ones are useful and
everything goes back to the previous treatment.
Similarly, for affinely-invariant models one can modify Taff−aff , Tmet−aff , and
Taff−met by the doubly isotropic potential correction V

(
q1, . . . , qn

)
.

The matrix generators of Dα will be denoted by Mα, so that for

W (ω) = exp

(
1

2
ωa

bE
b
a

)
we have

Dα(ω) = exp

(
1

2
ωa

bM
αb

a

)
.

If n = 3, then
Dj(ω) = exp

(
ωaM j

a

)
.

Obviously, then [
M j

a,M
j
b

]
= −εabcM j

c.

Let us introduce hermitian matrices of angular momenta

Sαa
b =

~
i
Mαa

b, Sj
a =

~
i
M j

a.

Their Poisson brackets have the form
1

i~
[
Sj

a, S
j
b

]
= εab

cSj
c.

The advantage of their use is that differential operators ρa
b, τ a

b, Ma
b, Na

b are
algebraized. Let us introduce the symbols

−→
Sαa

bf
αβ := Sαa

bf
αβ ,

←−
Sβa

bf
αβ := fαβSβa

b.

The affinely-invariant and even rotationally-invariant Schrödinger equation

HΨ = EΨ

splits then into family of equations

Hαβfαβ = Eαβfαβ

where for any α, β ∈ Ω, fαβ is again the N(α) ×N(β) matrix depending on qa.
The problem is N(α)×N(β)-fold degenerate.
Hαβ is an N(α)×N(β) matrix the elements of which are differential operators

Hαβ = Tαβ +V.
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Dα are irreducible, therefore the Casimir matrices

Cα(p)az := Sαa
bS

αb
c . . . S

αu
wS

αw
z︸ ︷︷ ︸

p factors

reduce on them to ones proportional to IN(α)

Cα(p) =

(
~
i

)p

C(α, p)IN(α).

One can show that the Schrödinger equations reduce to the above family with the
following quantum counterparts of the classical kinetic energy

Tαβfαβ = − ~2

2A
Dλf

αβ +
1

32A

∑
a,b

(←−
Sβa

b −
−→
Sαa

b

)2

sh2 q
q−qb

2

fαβ

− 1

32A

∑
a,b

(←−
Sβa

b +
−→
Sαa

b

)2

ch2 q
q−qb

2

fαβ +
~2B

2A(A+ nB)

∂2

∂q2
fαβ

Tαβfαβ = − ~2

2α
Dλf

αβ +
1

32α

∑
a,b

(←−
Sβa

b −
−→
Sαa

b

)2

sh2 q
q−qb

2

fαβ

(2)

− 1

32α

∑
a,b

(←−
Sβa

b +
−→
Sαa

b

)2

ch2 q
q−qb

2

fαβ − ~2

2β

∂2

∂q2
fαβ − ~2

2µ
C(α, 2)fαβ

Tαβfαβ = − ~2

2α
Dλf

αβ +
1

32α

∑
a,b

(←−
Sβa

b −
−→
Sαa

b

)2

sh2 q
q−qb

2

fαβ

(3)

− 1

32α

∑
a,b

(←−
Sβa

b +
−→
Sαa

b

)2

ch2 q
q−qb

2

fαβ − ~2

2β

∂2

∂q2
fαβ − ~2

2µ
C(β, 2)fαβ.

One must not confuse the representation labels α, β with the inverses of the multi-
plicative constants. We apologise for this inconvenience. It is seen that there is no
very essential difference between those three expressions; only one in multiplica-
tive constants and with the use of spin and vorticity Casimirs. Those formulas are
valid for any spatial dimension n. In the directly physical case n = 3 we have
obviously α = s = 0, 1/2, 1, . . . ∈ N/2∪{0}, β = j = 0, 1/2, 1, . . . ∈ N/2∪{0}
when we admit half-integer values of angular momenta and vorticity. If we admit
only integer values, then obviously s, j ∈ N ∪ {0}. Obviously, in three dimen-
sions we have C(2, 2) = s(s + 1), C(j) = j(j + 1). Then the constant terms in
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the formulas (2), (3) are simply given by ~2s(s + 1)/2µ, ~2j(j + 1)/2µ. Those
corrections to the affine-affine model are very interesting and have the structure
interesting for any physicist. The term ~2s(s + 1)/2µ is interesting as the rota-
tional connection to the situation when the purely deformative part is established
and later on excited to quicker rotations. From this point of view the correction
term ~2j(j + 1)/2µ in (3) is perhaps even more interesting because it may be in-
terpreted as a kind of internal quantum term following from the SO(3,R)-group or
its covering SU(2). This might be something like the isospin. To combine them,
i.e., to obtain some combination of terms ~2s(s+1)/2µ, ~2j(j+1)/2µ, we should
modify more deeply the primary affine-affine model, e.g., to use the quantization
of kinetic energies like (171), (172) from the classical part of this text.
Let us observe that the use of the two-polar description together with the Weyl-
Peter theorem enables one to simplify the expression for the scalar product, reduc-
ing it to the integration over the qi-variables and the series summation over discrete
variables. Namely, if we take two wave functions Ψ1, Ψ2 with the deformation
profiles f1, f2, then one can easily show that

⟨Ψ1 | Ψ2⟩ =
∑

α,β∈Ω

1

N(α)N(β)

∫ N(α)∑
n,m=1

N(β)∑
k,l=1

f1
αβ

nk
ml

f2
αβ

nk
ml

Pλdq
1 . . . dqn.

When we restrict ourselves to the subspace of wave functions with fixed labels
α, β,m, l and use the simplified N(α)×N(β)-matrix amplitudes

Ψαβ
(
L; q1, . . . , qn;R

)
= Dα(l)fαβ

(
q1, . . . , qn

)
Dβ(R−1) (4)

this scalar product may be reduced to⟨
Ψ1

αβ | Ψ2
αβ

⟩
=

1

N(α)N(β)

∫
Tr

(
fαβ+1

(
q1, . . . , qn

)
fαβ2

(
q1, . . . , qn

))
·Pλ

(
q1, . . . , qn

)
dq1 . . . dqn.

For the general case (4) may be written as

⟨Ψ1 | Ψ2⟩ =
∑

α,β∈Ω

1

N(α)N(β)

∫
Tr

(
fαβ+1 fαβ2

)
Pλdq

1 . . .dqn. (5)

where, obviously

Tr
(
fαβ+1 fαβ2

)
=

N(α)∑
n,m=1

N(β)∑
k,l=1

f1
αβ

nk
ml

f2
αβ

nk
ml

.

The weight factor Pλ may be eliminated from (5) by (1).
Let us mention again the usual d’Alembert models. Now for the isotropic iner-
tial tensor and for the doubly isotropic potential energy we can also state that the
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Schrödinger equation
HΨ = EΨ

reduces to the family
Hαβfαβ = Eαβfαβ

where

Hαβfαβ = −~2

2I
Dlf

αβ +
1

8I

∑
a,b

(←−
Sβa

b −
−→
Sαa

b

)
(Qa −Qb)

2 fαβ

+
1

8I

∑
a,b

(←−
Sβa

b +
−→
Sαa

b

)2

(Qa +Qb)
2 fαβ + V

(
Q1, . . . , Qn

)
fαβ.

It is clear that without the potential term, i.e., when dealing with the geodetic
model, all motions are infinite and there are no elastic vibrations, just like in the
corresponding classical theory.
We have seen that in classical mechanics the geodetic affinely-invariant models on
SL(n,R) may describe elastic vibrations. Moreover, there exists a sharp thresh-
old between finite vibrations and infinite escaping motions. It is given by some
relationship between spin and vorticity. In GL(n,R) the same qualitative picture
may be obtained by introducing some stabilizing dilatational potential. By anal-
ogy something similar exists in quantum theory. Let us consider this again in the
special, particularly simple model in n = 2. The Haar measure on GL(2,R) may
be expressed as

dλ
(
α; q1, q2;β

)
=

∣∣sh (q1 − q2)∣∣dα dβ dq1dq2

where, as usual q1, q2 are logarithmic deformation invariants and α, β are polar
angles parametrizing respectively L and R in the two-polar decomposition. As
usual we introduce new variables

q =
1

2

(
q1 + q2

)
, x = q2 − q1.

In certain problems it is also convenient to introduce the mixed angular variables

γ =
1

2
(β − α) , δ =

1

2
(β + α) .

Therefore

dλ (α; q, x;β) = |shx| dα dβ dqdx, Pλ = |shx| .

According to the Peter-Weyl theorem, or more directly, to the Fourier theorem, we
have the following expansion for our wave functions on GL(2,R)

Ψ (α; q, x;β) =
∑

m,n∈Z
fmn(q, x)eimαeinβ .
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For the model T aff−aff
int we have the following reduced expression for the kinetic

energy Tmn

Tmnfmn = −~2

A
Dxf

mn − ~2

4(A+ 2B)

∂2fmn

∂q2

(6)

+
~2(n−m)2

16A2sh2 x2
fmn − ~2(n+m)2

16A2ch2 x2
fmn.

For the metric-affine and affine-metric models Tmet−aff
int , T aff−met

int we obtain re-
spectively

Tmnfmn = − ~2

I +A
Dxf

mn − ~2

4(I +A+ 2B)

∂2fmn

∂q2

+
~2(n−m)2

16(I +A)sh2 x2
fmn − ~2(n+m)2

16(I +A)ch2 x2
fmn +

I~2m2

I2 −A2
fmn

Tmnfmn = − ~2

I +A
Dxf

mn − ~2

4(I +A+ 2B)

∂2fmn

∂q2

+
~2(n−m)2

16(I +A)sh2 x2
fmn − ~2(n+m)2

16(I +A)ch2 x2
fmn +

I~2n2

I2 −A2
fmn

where

Dxf
mn =

1

|shx|
∂

∂x

(
|shx| ∂f

mn

∂x

)
.

Of course, for the purely geodetic models on GL(2,R) the spectrum is continuous,
because dilatational motion is free. To avoid this fact we must introduce to the
Hamiltonian some dilatation-stabilizing potential Vdil(q). This may be either the
potential well or some harmonic oscillator with large elastic constant. Of course,
the problem is also explicitly separable for any potential of the form

V (q, x) = Vdil(q) + Vsh(x).

The corresponding solutions of the time-independent Schrödinger equation will be
sought in the product form

fmn(q, x) = φmn(q)χmn(x).

It is interesting that there exists a discrete spectrum for χ-terms in SL(2,R) even in
the purely geodetic models without any shear potential Vsh(x). This depends on the
mutual relationship between “gyroscopic” quantum numbers m, n. If |n−m| <
|n+m|, then the attractive ch−2-term becomes dominant at large distances, when
|x| → ∞, and the spectrum for χ is then discrete. Conversely, it becomes con-
tinuous when |n−m| > |n+m|. For the affine-affine model (6) the spectrum is
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not bounded from below. Conversely, for the affine-metric and metric-affine mod-
els the kinetic energy may be bounded from below and so is the spectrum. This
happens for certain open range of parameters I , A, B.
Similar phenomena hold for the dimension of space greater than two, because ev-
erything follows from the commutation rules (structure constants) of SL(n,R).
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classical and Quantum Systems of Angular Momentum, Part I. Group Algebras as a
Framework for Quantum-Mechanical Models with Symmetries, J. Geom. Symmetry
Phys. 21 (2011) 61–94.

[46] Sławianowski J., Kovalchuk V., Martens A., Gołubowska B. and Rożko E., Quasi-
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