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Abstract. The classical U(1)-Kepler problems at level n > 2 were formu-
lated, and their trajectories are determined via an idea similar to the one used
by Kustaanheimo and Stiefel in the study of Kepler problem. It is found that
a non-colliding trajectory is an ellipse, a parabola or a branch of hyperbola
according as the total energy is negative, zero or positive, and the complex
orientation-preserving linear automorphism group of C™ acts transitively on
both the set of elliptic trajectories and the set of parabolic trajectories.
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1. Introduction

The quantum U(1)-Kepler problems, which are higher dimensional generalizations
of the MICZ-Kepler problems [9, 16], have been introduced and studied [10] for
quiet a while. Their intimate connection with representation theory [1], especially
local theta-correspondence [3], has been demonstrated in [10] as well. However,
their corresponding classical models, though not difficult to be formulated, seem
to be difficult to solve, that is why there is a significant delay of the current work.
The clue to solve these classical models finally came after a closer examination of
[4,7,8] and [12-15].

To formulate these classical models, we start with the euclidean Jordan algebra
H,,(C) of complex hermitian matrices of order n. (Euclidean Jordan algebras were
initially introduced by Jordan [5], and were subsequently classified by Jordan, von
Neuman and Wigner [6]. A good reference for euclidean Jordan algebras is [2].)
Next, we introduce the space C; of rank one semi-positive elements in H, (C).
Thirdly, we observe that there are two canonical structures on the space Ci:
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I. The Kepler metric

ds? = t;—zx tr(dz L, '(dz)) (1)
where tr is the matrix trace, d is the exterior differential operator, and E; 1
denotes the inverse of the linear automorphism of the tangent space 7,C;
induced from the Jordan multiplication by x. (A detailed description of L !,
valid for any simple euclidean Jordan algebra, is given in the first paragraph
of [11]. For more details on Kepler metric, one can consult [12,14] )

II. The Kepler form
tr(z dz A dx)
WK = —l—————
K (trz)3
Here, the multiplication of matrices is the ordinary matrix multiplication and
“i” is the imaginary unit.

(2)

Finally, for each real number n, we introduce the symplectic form

Wy = we, +2u T wi
on T*C;. Here, we, is the canonical symplectic form on 7T7C;, m*wg is the pull-
back of wx under the cotangent bundle projection map

T T*Cl —)Cl.

The symplectic manifold (7#Cy,w,,) will serve as the phase space of the U(1)-
Kepler problem with magnetic charge i, and is denoted by M* hereafter.

Definition 1. Let n > 2 be an integer and p be a real number. The classical U(1)-
Kepler problem at level n with magnetic charge . is the Hamiltonian system for
which the phase space is M" and the Hamiltonian is

n? n
2(trx)?  traz

1
H" = J||P|* + 3)

where || P|| denotes the length of the cotangent vector P, measured in terms of the
Kepler metric on Cy, and x = 7(P).

w

Remark 2. In the quantization of this model, 2—” is required to represent a degree
T

two integral cohomology class of TCy (homotopy equivalent to (C]P’"_l). Then p

must be a half of an integer.

Note that, a trajectory is the path traced by a motion, so it is oriented by the velocity
of the motion. By analyzing the trajectories of U(1)-Kepler problems we shall
show that a trajectory of the U(1)-Kepler problem at level n with magnetic charge
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u is always the intersection of C; with a real plane inside H, (C), consequently,
since
C1 = {r € H,(C); 2* =trax, tra >0}

a trajectory is a quadratic curve. In fact, it will be shown that a non-colliding
trajectory is an ellipse, a parabola or a branch of a hyperbola according as the total
energy E is negative, zero or positive, moreover, the group GL(n,C)/U(1) — the
quotient group of GL(n,C) by the image of the diagonal imbedding of U(1) into
U(1) x -+ x U(1) — acts transitively on both the set of elliptic trajectories and the

~\~
n

set of parabolic trajectories of the U(1)-Kepler problems at level n.

Remark 3. The U(1)-Kepler problem at level two with magnetic charge 0 is just
the Kepler problem. The group GL(n,C)/U(1) is the complex-orientation pre-
serving linear automorphism group of C™.

1.1. Notations

If w is a complex number, then Rew and Imw denote the real and imaginary
part of w respectively. We use w to denote the complex conjugate of w and |w to
denote the length of w. For example, if w = 3 — 4i, then Rew = 3, Imw = —4,
w = 3 4 4i, and |w| = 5. Note that, if z and w are two complex numbers, then
zw = zw. Now if

t t
z=(21,-.-,2n)" w = (wi,...,wy)
where each z; and each w; is a complex number, then

Z-wi= zqw1 + -+ ZpWn, |z|2::z-Z=Z|Zi|2-

2. A Local Description of the Model

In this section we shall count the row number and column number of a matrix from
zero, so the top row of an n X n-matrix z is [zgo, Zo1, - - .]. Note that, if x is semi-
positive, then z;; > 0 for all 0 < 7 < n. For each 0 < 7 < n, we introduce the
dense open set

U, .= {$ € C1; Tiz > 0}.
It is clear that U;’s form an open cover for C;.

We shall work out a local description for the model on each U;. In fact, due
to symmetry, it suffices to do it on Uy. For x € Uy, we introduce coordinate
1 n—1
(ryzh, ..., 2"
; T; x
2= ro= ﬂ(1 + |2]?).
00 n
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2, sotrxr xzgyg = Zl TiTio = ZZ |-750i|2’ then

trx
r=—-:
n

Since x € C;, wehave trz x = =

In terms of this coordinate, the Kepler form can be written as
. (dzAdz (z-dz) A (2 - dz))
W =1

142 (1+12?)?
and the Kepler metric can be written as
(L +[z[)[de]? — |2 - dzf?
(1+122)? '
The key step in verifying (4) is to verify the identity

> 2
tr (dz L' (dz)) = 4 <dZ|2 — (Im(‘ZZ‘dZ)> ) (5)

for x = ZZ'. The proof of equation (5) is omitted here because it is very similar
to the detailed proof of identity (2.3) in [11] for H, (R).

The coordinate functions r, z*, z* on Uy induce the coordinate functions r, 2%, Z¢,
P,, P,i, P;i on T*Uj. One can check that wx = dA with

= Im(z - dz)
1422

ds? = dr? + 4r?

“4)

= A, -dz+ A5 -dz 6)

consequently, on T*Cy ¢, = T*Uy, we have
wy =dp, Adr +p, -dz +p;-dz

where p, = Py, p, = P, + 2uA, and p; = P; + 2uAs; = p,. Therefore, on
T*C1|v,, the only nontrivial basic Poisson relations are

{r,p,} =1 and {z',p,}={z,ps}=1 foreachl <i<n. (7)

In physics, p := p, dr+p, -dz+ps - dZ is called the canonical momentum because
of above canonical Poisson relations.

Proposition 4. On T*C|y, = T*Uy, the Hamiltonian (3) can be written as

1+ |z|? _ 1
E+(2T2”(|pz—2qu|2+!z-(pz—2qu>|2)+“—T- (8)

Hy = 272

1
2
Proof: From equation (4) we know that the nontrivial metric tensor components
are y

_ _ o2t 2)ey — 2
grr =1, Gzizi =21 (1+ [2]2)2 = Gz
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) trox cr ..
Since r = —, all we need to verify is that the nontrivial tensor components for

n
the inverse of the metric are

izj 1 z|? - 5 i

But this can be easily verified.

3. Conformal Kepler Problems

To continue the discussion, we need to introduce also Iwai’s [4] conformal Kepler
problem.

Definition 5. The n-th complex conformal Kepler problem is a dynamic problem
with configuration space C} and Lagrangian

1

L =272+ P

)

where |Z2 = Z - Z and |Z|? = Z - Z.

Since the Lagrangian in equation (9) is clearly invariant under the U(1) action on
C?, via Noether’s theorem, the iR-valued

M =2|MZ-Z 2 2) (10)

on T'C} must be a constant of motion. As we shall see in the proof of Proposition 7
that Im.# can be identified with the magnetic charge, so .# is refereed to as the
magnetic momentum. The total energy is

. 1
E =222 - ZF (11)
and the equation of motion is
d\? E
<|Z|2dt> Z=52 (12)

The following proposition from [11], is adapted for this article.
Proposition 6. 1) If E < 0, then the solution to equation (12) is

Z(t) =cosTu+sinTv (13)



224 Guowu Meng

for some u € C} and v € C". Here T is an increasing function of t implicitly
defined via equation

2 2 2 12
t=+/2(Jul®> + |v]?) <|u| ;M T+ [u : i sin(27)

+Re(12L-v) (1-— cos(27))> :

Moreover, for this solution we have

2 1
M =1y | ———Im(u - v), E=——1— .
V RE ) 2+ o

2) If E = O, then the solution to equation (12) is
Z(t)=u+Tv (14)

for some u € C? and v € C" with |v|? = % Here 7 is an increasing function of t
implicitly defined via equation
2 - 2 13
t=|u|"T +Re(u-v)T +6T .

Moreover, for this solution we have
A =21Im(u - v).
3) If E > 0, then the solution to equation (12) is
Z(t) = coshTu+sinh 7o (15)

for some u € C? and v € C™ with |v|? > |u|?. Here T is an increasing function of
t implicitly defined via equation

2 12 2 2
t = 2(|v\2—|u|2)<|“| 5 iy Z'”’ sinh(27)

+Re(§”’) (cosh(2r) — 1)) .

Moreover, for this solution we have

2 1
M =1 I U - 5 E= '
W o = ) o — TP
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4. Solving Equation of Motion for U(1)-Kepler Problems

The equation of motion for the Kepler problem was ingeniously solved by Kus-
taanheimo and Stiefel in [7] in which the nonlinear equation of motion was trans-
formed into a linear ordinary differential equation (ODE). This transformation,
referred to as the KS transformation in literatures, is based on the quadratic map
from C2 — R3: 2 — 2732, where & = 01;—1- 023 + 03E with o; being the Pauli
matrices.

We shall use a similar idea to solve the equation of motion for U(1)-Kepler prob-
lems. The similar transformation that we shall use, which turns the equation of
motion into a linear ODE, is based on the following quadratic map

q:C" - H,(C), Z—nzZl (16)

where Z1 is the complex hermitian conjugate of the column vector Z and ZZT is
the matrix multiplication of Z with ZT. Map g, when restricted to C? := C"\ {0},
becomes a principal U(1)-bundle over C;

qg: CI' — (. (17)
One can check that the iR-valued differential one-form
Z-dZ -7 -4Z
O = 18
272 (18)

on C7 is a connection form on this principal bundle, and the curvature form
dZANdZ  (Z-dZ)A(Z-dZ)

|1Z]? 1Z|*
on C7 is the pullback of wg in (2) under the bundle projection map (17).

doe =

Proposition 7. 1) Let Z(t) be a solution to equation (12) with magnetic momen-
tum A . Then q(Z(t)) is a solution to the equation of motion of the U(1) Kepler
problem at level n with magnetic charge —i.4 .

2) Any solution to the equation of motion of the U(1) Kepler problem at level n
with magnetic charge p is of the form q(Z(t)) for some solution Z(t) to equation
(12) with magnetic momentum ip.

Proof: Foreach 0 < i~< n, take U; to be the i-th dense open sets of C; introduced
in Section 2, and let U; be the inverse image of U; under the map ¢ in equation
(17). Then the U;’s form an open cover for C7. Let

q; ‘= (7|UZ : Ul — U;.
1) Assume that Z(t) is a solution to equation (12) with magnetic momentum .7 .

To verify that ¢(Z(t)) is a solution to the U(1) Kepler problem at level n with
magnetic charge —i.#, we just need to do it on each U;. Due to symmetry, we just
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need to do it on Uy only. For Z := (Zy, Z1, .. .)t S Uo, we introduce coordinate
(g7r7 Zl? ] Znil)

. Z

g=c¢'2 = 7|Zo|7 r=|Z A .

One can check that, under the map ¢, a point in Uy with coordinates (g,r, 24, ...,
2"~1) is mapped into a point in Uy with coordinate (r, 2%, ..., 2"~1). Moreover,
in terms of coordinates (c, r, 24 z”_l), Lagrangian (9) can be written as

1, (14 |22)|2]2 = |z - 2|2 & Im(z-2)\* 1
I — —42 4 9p2 or2 (2 -
2r +2r (1+]z\2)2 + 2r "

2 1422

so the conjugate momentums are

. I 5. 4
pa:2T2 (O{+ m(Z Z)) :_1%7 pr:’r’

2 1422
1+ 1222 —(2-2)2
= g2l 2pa As.
pZ r (1+|Z|2)2 + pa z

Then the Hamiltonian, obtained from the Legendre transform of L, can be written
as

g Lla (L+1P) 7o
Ly

2 - 2
5P +T(‘PE| +|Z‘P2’)+ﬁ—; (19)
where

P; = p; — 2pyAs.

By comparing with the Hamiltonian H, in Proposition 4, in view of the fact that
under the map gy, a point in Uy with coordinate (g,7,2%,...,2""1) is mapped to a
point in Uy with coordinate (r, 2h .., z”_l), we conclude that, for those solutions
to equation (12) with with magnetic momentum .7, equation (12) becomes the
equation of motion of the U(1) Kepler problem at level n with magnetic charge
—i, augmented with one more equation for g

22 (g 4 222N g 20
(o7 + S )
Therefore, if Z(t) is a solution to equation (12) with magnetic momentum .7, then
q(Z(t)) is a solution to the equation of motion of the U(1) Kepler problem at level
n with magnetic charge —i.# for those ¢ such that Z(t) in Uy, hence in any U; due
to symmetry.

2) Assume that z(t) is a solution to the equation of motion of the U(1) Kepler
problem at level n with magnetic charge . Without loss of generality, we may
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assume that z(tp) € Up. Let v be the unique point in T'U such that, i) T'go(v) =
x(to), i1) if (g, r, 2, g, 7, 2) is the local coordinate for v, then

7 —2-2
=1, 2 ‘—1+)_i.
I (99 21+ ) ) "

Now, if we let Z(t) be the unique solution to the conformal Kepler problem with
initial condition (Z(to), Z(to)) = v, then the analysis in part 1) of this proof
says that the magnetic momentum for Z(¢) is ix and ¢(Z(t)) is a solution to the
equation of motion of U(1) Kepler problem at level n with magnetic charge p,

moreover, since ¢(Z(t)) and x(t) have the same initial condition at ¢y, we have
x(t) = q(Z(t)). u

The analysis in Section 3, when combined with Proposition 7 here, yields all solu-
tions to the equation of motion of the U(1)-Kepler problem at level n with magnetic
charge p, though the dependence on time ¢ is only implicitly given. Moreover, for
any solution Z(t) to the equation of motion of the complex conformal Kepler prob-
lem we have obtained in Section 3, one can check that the total trace of q(Z(t)),
i.e., the trajectory of the motion represented by ¢(Z(t)), always lies inside a real
plane inside H,,(C). Therefore, results in Section 3 and Proposition 7 together
imply

Theorem 8. For the U(1)-Kepler problem at level n with magnetic charge p, the

followings are true.

1) A trajectory is always the intersection of the space C1 with a real plane inside
H,,(C), and it is bounded or unbounded according as the total energy F is negative
or not.

2) A bounded trajectory can be parametrized as (1) = q(cosTu + sinTv) for
some u € C} and v € C™ with

2
=,/ ——— Im(u - v).
= o )

Moreover, any parametrized curve of this form is a bounded trajectory with nega-

tive total energy F = ——————-
2 ul? 4 Jof?

3) An unbounded trajectory with zero total energy can be parametrized as o(T) =
q(u+ v7) for some u € C and v € C™ with |v|? = 3 and
w=2Im(a-v).

Moreover, any parametrized curve of this form is a trajectory with zero total energy.

4) An unbounded trajectory with positive total energy can be parametrized as
a(7) = q(cosh7u + sinh7v) for some u € C? and v € C"™ with |[v]* > |ul?
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2
= _— I U - .
p=y] ol — Jul? m(a - v)

Moreover, any parametrized curve of this form is a trajectory with positive total

and

T

5. Non-Colliding Trajectories

The interesting trajectories are the non-colliding ones, i.e., the ones such that in
their parametrization «(7) given in Theorem 8, o(7) # 0 € H,,(C) for any 7 € R.
It is evident that if v is a complex scalar multiple of « in theorem 8, then o(7) = 0
for some finite value of 7 and it is not hard to check that the converse is also true.
Therefore, being applied to non-colliding trajectories, Theorem 8 becomes

Theorem 9. For a non-colliding trajectory of a U(1)-Kepler problem at level n,
the followings are true.

1) It is an ellipse, a parabola or a branch of hyperbola according as the total
energy E is negative, zero or positive.

(We assume in the next three statements that the variable T runs over the entire R.)

2) If it is an ellipse then it can be parametrized as o(T) = q(cos T u + sin T v) for
some complex linearly independent u,v € C™ with

2
= 71111’(1'[)
= o )

Moreover, any parametrized curve of this form is an elliptic trajectory with nega-

tive total energy £l = ———————-
? ul? 4 Jof?

3) If it is a parabola then it can be parametrized as o) = q(u + vT) for some
complex linearly independent u,v € C" with

V2 o
w= Tl Im(a - v).
Moreover, any parametrized curve of this form is a parabolic trajectory with zero
total energy.
4) If it is a branch of hyperbola then it can be parametrized as o(T) = q(cosh T u+
sinh 7 v) for some complex linearly independent u,v € C" with |v|* > |u|? and

2
= Im(a-v).
= o = )
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Moreover, any parametrized curve of this form is a hyperbolic trajectory with pos-

itive total energy E = m

Note that, in statement 3) of Theorem 9 the condition |v|? = % is no longer needed
because one can rescale v due to the fact that 7 € R. Let GL(n,C)/U(1) be the
quotient group of GL(n,C) by the image of the diagonal imbedding of U(1) into
U(1) x --- x U(1). Since the standard linear action of GL(n,C) on C" (n > 2)

n
acts transitively on the set of complex linearly independent pairs of vectors in C",
Theorem 9 implies the following

Corollary 10. For the U(1)-Kepler problems at level n, the group GL(n,C)/U(1)
acts transitively on both set of elliptic trajectories and the set of parabolic trajec-
fories.

Since
SL(2,C) x Ry — GL(2,C)/U(1), (A, c) — [cA]

is a two-to-one covering map, and SL(2, C) is the double cover of the identity com-
ponent of the Lorentz group O(3, 1), this corollary for n = 2 is just a restatement
of parts 3) and 4) in Theorem 2 in [15].

Finally we note that GL(n, C)/U(1) is the orientation-preserving linear automor-
phism group of C”.
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