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Abstract. In this paper we review certain Lusternik-Schnirelmann categor-
ical notions that pertain especially to Eilenberg-Mac Lane spaces. Further,
we introduce a new categorical invariant that allows a refined estimate for
category. Finally, we mention some results about topological complexity and
relate these to category.
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1. Introduction to LS Category

1.1. Definition and Basic Properties of LS Category

Definition 1. The Lusternik-Schnirelmann category of a space X , denoted catpXq,
is the smallest integer k so that X can be covered by pk`1q open sets U0, U1, . . . ,
Uk, each of which is contractible to a point in X . Such a covering is called a
categorical covering.

LS category is an important numerical invariant in algebraic topology, critical point
theory and symplectic geometry (see [5, 12, 15]). Furthermore, various “forms” of
category are now finding use in areas ranging from differential geometry [17] to
robotics and motion planning [9–11]. In this paper, which is in part a survey, we
concentrate on how LS category and its offshoots interact with the fundamental
group. In particular, we will recall and reformulate in modern terms the approach
to computing the LS category of Eilenberg-Mac Lane spaces. Although category
may be defined quite easily, this belies the difficulty of its computation. Because
it cannot be computed explicitly in most cases, we typically give lower and upper
bounds in terms of other homotopy invariants that we hope are more computable.
Therefore, in this spirit, we shall also introduce a new invariant called universal
cover category and show that it, together with an older type of category, gives a
new (and sharp) upper bound for category. In the final section we will discuss a
newer problem that has roots in LS category and has implications for robotics.
The first calculations of category use some rather simple properties that, never-
theless, require fairly sophisticated algebraic-topological notions. Since we are
interested in applications, we shall list these properties here without proof. Later
we shall see how to build on these properties to derive new estimates of category.

Properties 2. The basic properties of LS category that we shall use are the follow-
ing (see [5] for instance).

1. Category is a homotopy type invariant. This means that spaces X and Y
with X » Y have catpXq “ catpY q.

2. The cuplength of a space X is the largest integer k such that there exists
a product x1 ¨ ¨ ¨xk ­“ 0, with xi P H˚pX;Aq. Here we use the fact that
cohomology supports a product structure for a coefficient ring A. The coef-
ficient ring A may vary and the cuplength may be considered for any (local)
coefficients. The fundamental relation between cup length and category is
cuppXq ď catpXq.

3. An upper bound for category is given by catpXq ď dimpXq (where, for
paracompact spaces more general than manifolds, dimpXq denotes the cov-
ering dimension of X). In fact, it is possible to show that, if πkpXq “ 0 for
0 ď k ď n ´ 1, then catpXq ď dimpXq{n.
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4. Fundamental Estimate. Combining the previous two results gives

cuppXq ď catpXq ď
dimpXq

n

where πjpXq “ 0 for j “ 1, . . . , n ´ 1.

Example 3. Here are some simple LS category calculations.

1. catpSkq “ 1 for any k. This follows because a sphere can be covered by
(slightly fattened, so open) upper and lower hemispheres which are home-
omorphic to disks and are thus contractible. Having two such sets means
that category is equal to one. pThe same proof shows that any space that is
the suspension of another space has category one.q

2. catpT kq “ k. This follows because a k-torus is a product of k circles,
T k “ S1 ˆ ¨ ¨ ¨ ˆ S1 and this means that the cohomology H˚pT k;Zq is
an exterior algebra on k generators. There is then a product of length k,
so cuppT kq “ k. Since dimpT kq “ k as well, the Fundamental Estimate
gives the result.

3. catpRPnq “ n. Recall that H˚pRPn;Z2q “ Z2rx1s{pxn`1
1 q, a truncated

polynomial algebra on a degree one generator x1. Hence, cuppRPnq “ n
and we have, by the Fundamental Estimate, Property 2 (4)

n “ cuppRPnq ď catpRPnq ď dimpRPnq “ n

so catpRPnq “ n.
4. catpCPkq “ k. This follows because the cohomology of complex pro-

jective space is known to be H˚pCPk;Zq “ Zrx2s{pxk`1
2 q, a truncated

polynomial algebra on a degree two generator x2. Thus, cuppCPkq “ k.
Now, π1pCPkq “ 0, so the upper bound in the Fundamental Estimate is
dimpCPkq{2 “ 2k{2 “ k, so we obtain the result.

2. A Reformulation of Category

We have seen that the definition of LS category and the simple cuplength-dimension
estimate is sufficient to obtain some simple results. In order to apply category fur-
ther, however, it is necessary to provide a homotopically more friendly, but more
complicated equivalent definition due to T. Ganea. For details, see [5, Chapter 1].

2.1. The Reformulation Diagram

Let PX “ tγ : I Ñ X ; γp0q “ x0u be the contractible space of based paths
with path fibration p0 : PX Ñ X given by γ ÞÑ γp1q. We inductively construct a
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diagram of fibrations

ΩX Ñ F1pXq Ñ ¨ ¨ ¨ Ñ FkpXq Ñ ¨ ¨ ¨

Ó Ó ¨ ¨ ¨ Ó

PX Ñ G1pXq Ñ ¨ ¨ ¨ Ñ GkpXq Ñ ¨ ¨ ¨

p0 Ó p1 Ó ¨ ¨ ¨ pk Ó

X
1X
Ñ X

1X
Ñ ¨ ¨ ¨ Ñ X Ñ ¨ ¨ ¨ .

where Gj`1pXq “ GjpXq Y CpFjpXqq » GjpXq{FjpXq is the mapping cone
of the previous fibre inclusion. For instance, consider the first fibration ΩX Ñ

PX Ñ X . Take the mapping cone on the fibre inclusion ΩX Ñ PX to obtain
G1pXq. There is still a map to X and we replace this map by a homotopically
equivalent fibration (which we still denote by) G1pXq Ñ X . Iterate this pro-
cess to obtain the diagram above. Through a rather long sequence of equivalences
(delineated in [5]), we end up with the following characterization of LS category.

Theorem 4 (Definition-Theorem). catpXq ď n if and only if there is a phomotopyq

section s : X Ñ GnpXq. That is, in the diagram above, pn ˝ s » 1X .

Note that, in cohomology, we have s˚ ˝ p˚
n “ 1H˚ , so p˚

n is injective. Also, it can
be shown that each fibre FnpXq is a join of copies of the loop space ΩpXq

FnpXq “ ˚n`1ΩpXq.

Since taking joins increases connectivity (i.e., homotopy groups vanish up to higher
and higher degrees with increasing n), the long exact sequence for the homotopy
groups of a fibration gives isomorphisms between the homotopy groups of X and
GkpXq through higher and higher degrees. This means that the GnpXq become
more and more like X as n increases.
The notion of LS category can be extended from spaces to maps as follows.

Definition 5. For f : Y Ñ X , the category of the map f , catpfq is the least integer
n such that there is a map s : Y Ñ GnpXq such that pn ˝ s » f .

Properties 6. There are several properties of the reformulation diagram that will
be important for us later.

1. G1pXq » ΣΩpXq, where ΣY denotes the suspension of the space Y . This
follows since

G1pXq “ G0pXq Y CpΩXq » ˚ Y CpΩXq

and attaching the cone CpΩXq to a point crushes ΩX and gives the suspen-
sion of ΩpXq.

2. catpfq ď catpXq. This is immediate from the definitions. It is also true
that catpfq ď catpY q since f induces Gkpfq : GkpY q Ñ GkpXq with
pXk ˝ Gkpfq “ f ˝ pYk .
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3. If we have a commutative diagram

Y
f //

g   A
AA

AA
AA

X

Z

h

>>}}}}}}}}

then catpfq ď mintcatpgq, catphqu. This follows from Definition 5 once
we note that a map q : A Ñ B induces maps GkpAq Ñ GkpBq compatible
with the projections to A and B respectively.

2.2. Sectional Category

The notion of category can be extended in the following way (see [5] for instance).

Definition 7. Suppose F Ñ E
p

Ñ B is a fibration. Then the sectional category of
p, denoted secatppq, is the least integer n such that there exists an open covering,
U0, . . . , Un, of B and, for each Ui, a map si : Ui Ñ E having p ˝ si “ inclUi .
pThat is, si is a local section of pq.

Note that, in the reformulation fibration ΩpXq Ñ G0pXq “ PX
p0
Ñ X , the

total space PX is contractible. Therefore, if we have an open set U Ă X in the
definition of sectional category, then because it factors through PX , the inclusion
U ãÑ X is nullhomotopic. That is, U contracts to a point in X . Hence, catpXq ď

secatpp0q. Since a basic property is that sectional category is always bounded
above by the category of the base space (see (1) below), we actually have catpXq “

secatpp0q. This is what we mean by extending the notion of category.

Properties 8. Consider a fibration F Ñ E
p

Ñ B. Here are some properties of
secatppq.

1. secatppq ď catpBq. This follows since if U ãÑ B is nullhomotopic, then
the Homotopy Lifting Property gives a local section of p over U .

2. If E is contractible, then secatppq “ catpBq. (This is the case we discussed
above for G0pXq.)

3. If there are x1, . . . , xk P rH˚pB;Rq (any coefficient ring R) with

p˚x1 “ . . . “ p˚xk “ 0 and x1 Y ¨ ¨ ¨ Y xk ‰ 0

then secatppq ě k. This is an analogue of the cuplength estimate for ordi-
nary category.

4. If F i
Ñ E

p
Ñ B arises as a pullback of a fibration pp : pE Ñ pB along a map

f : B Ñ pB, then
secatppq ď secatpppq.
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This follows because an open set pU Ă pB with a local section ps : pU Ñ pE

has an open inverse image U “ f´1p pUq Ă B and a map ps ˝ f : U Ñ pE
with pp ˝ ps ˝ f “ f . The pullback property then gives a map s : U Ñ E with
p ˝ s “ inclU .
If it is also the case that pE is contractible (such as for a principal bundle),
then secatppq “ catpfq. This says, for example, that the sectional category
of principal bundles is precisely the category of the classifying map. (We
will use this to characterize cat1 below.)

There is a type of sectional category that will important to us when we discuss
categorical estimates (see [16] for instance).

Definition 9. The 1-category of a space X , denoted cat1pXq, is the least inte-
ger n so that X may be covered by open sets U0, . . . , Un having the property
that, for each Ui, there is a local section si : Ui Ñ rX , where p : rX Ñ X is
the universal cover (so p ˝ si is homotopic to the inclusion Ui ãÑ X). Thus,
cat1pXq “ secatpp : rX Ñ Xq.

Before we can list properties of cat1, we need to remind the reader about a certain
construction. Assume X is a CW complex. That is, X is inductively constructed
by attaching cells in a certain allowed fashion. Now, if π2pXq ­“ 0, then we may
attach more 3-cells to X to obtain X2 with π2pX2q “ 0. Similarly, we may attach
4-cells to obtain X3 with π3pX3q “ 0. Continuing in this manner produces an
Eilenberg-Mac Lane space with a fundamental group π and zero higher homotopy
groups. This space is denoted by Kpπ, 1q with π “ π1pXq. Note that the con-
struction produces an inclusion j1 : X ãÑ Kpπ, 1q that induces an isomorphism
on fundamental groups. This map j1 classifies the universal cover of X , denoted
rX Ñ X , in the sense that the universal cover is the pullback over j1 of the path

fibration PKpπ, 1q Ñ Kpπ, 1q.

Properties 10. Here are some properties of cat1 that prove useful.

1. cat1pXq “ 0 if X is simply connected. This is clear from the definition or
from the next property.

2. cat1pXq “ catpj1 : X Ñ Kpπ1X, 1qq. This follows because the universal
cover rX Ñ X is a pullback by the classifying map j1 of the path fibra-
tion PKpπ1X, 1qq Ñ Kpπ1X, 1qq. Since PKpπ1X, 1qq is contractible,
Property 8 (4) applies. It also then follows that cat1pXq ď catpXq.

3. If j˚
1 : H

kpKpπ1pXq, 1q;Aq Ñ HkpX;Aq is non-trivial (for some local
coefficients A), then

k ď cat1pXq.

The proof of this follows from the properties of an invariant called category
weight derived from the reformulation diagram. See [5, 17] for example.



Aspects of Lusternik-Schnirelmann Category 19

4. cat1pX ˆ Y q ď cat1pXq ` cat1pY q. This property is, more or less, a
general property of category-like invariants. For cat1, see [16, 17].

Example 11. We have cat1pTn ˆ Xq “ n if X is simply connected. To see this,
we use Property 10. First, note that j1 : Tn ˆX Ñ Tn is the classifying map since
Tn “ KpZn, 1q. But then, because the map on cohomology is injective, we have
n ď cat1pTn ˆ Xq. But we also have cat1pTn ˆ Xq ď cat1pTnq ˆ cat1pXq

and cat1pXq “ 0. Further, because Tn “ KpZn, 1q, we know cat1pTnq “

dimpTnq “ n. Thus, we have the result.

3. LS Category and Eilenberg-Mac Lane Spaces

3.1. Group Cohomology

A discrete group π may be looked at both algebraically and geometrically. We
have already seen that we may construct an Eilenberg-Mac Lane space Kpπ, 1q

from any complex X with fundamental group π (together with a “classifying”
map j1 : X Ñ Kpπ, 1q). Therefore, any homotopy invariant qualities of Kpπ, 1q

translate into algebraic properties of the group π. On the other hand, we can study
π algebraically directly by understanding its “representation theory”. Much of the
following is from the beautiful book [2].
Recall that if R is a ring and M is an R-module, then projdimRpMq ď n if there
is a projective resolution of M of length n

0 Ñ Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ M Ñ 0

where at the right end we mean H0pP q “ P0{impP1 Ñ P0q “ M . Of course, the
word “resolution” means that HipP q “ 0 for i ě 1. If π is a discrete group, then
the ring we take is the group ring Zπ and the module we take is Z with the trivial
module structure.

Definition 12. Define the cohomological dimension of π to be

cdpπq “ projdimZπpZq

“ inftn ; Z admits a resolution as a Zπ´module of length nu.

Given such a resolution 0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 Ñ Z Ñ 0, we can take
any Zπ-module A and form the complex (where the subscript π denotes “as Zπ-
modules”)

HomπpZ,Aq Ñ ¨ ¨ ¨ Ñ HomπpPi,Aq Ñ HomπpPi`1,Aq Ñ ¨ ¨ ¨ .

The homology of this complex then defines the cohomology of π with coefficients
in A

H ipπ;Aq “ HipHompP,Aqq.
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It can be shown that the cohomological dimension is independent of the particular
resolution P chosen. Furthermore, we have the following.

Proposition 13.

cdpπq “ inftn ; H ipπ;Aq “ 0 for i ą n and all Au

“ suptn ; Hnpπ;Aq ­“ 0 for some Au.

The process of constructing a Kpπ, 1q that we gave before Properties 10 is not
the only way that Kpπ, 1q’s arise. In geometry, for instance, Hadamard’s theorem
says that a compact manifold of negative sectional curvature is a Kpπ, 1q. Also,
any compact surface except for the sphere S2 and the projective space RP2 is a
Kpπ, 1q. Higher dimensional examples often appear as quotients of Lie groups.
For instance, it is known that a nilpotent Lie group N is diffeomorphic to some
Euclidean space Rn. This means that the quotient N{π of N by any co-compact
discrete subgroup π has universal cover the contractible space Rn and, hence, is a
Kpπ, 1q. All of these examples are Kpπ, 1q’s of finite dimension as manifolds and
as CW complexes.

Definition 14. Define the geometric dimension of the group π, denoted dimpπq,
to be the smallest integer n such that there is a Kpπ, 1q of dimension n pas a CW
complexq.

Now let X “ Kpπ, 1q and note that the universal cover rX is contractible. The
projection p : rX Ñ X may be chosen to preserve cell structures, so in particular,
the inverse image of a k-skeleton is the k-skeleton. This has the following algebraic
consequences. First, since rX is path-connected, we can take it to have a single 0-
cell, so the zero chain module is C0p rXq “ Z. Secondly, each i-chain module
Cip rXq is a free Zπ-module generated by the lift of an i-cell in X . Therefore, we
have a free Zπ-complex

¨ ¨ ¨ Ñ Cnp rXq
Bn
Ñ Cn´1p rXq Ñ ¨ ¨ ¨ Ñ C1p rXq Ñ Z Ñ 0.

Now, because rX is contractible, this complex is a Zπ-resolution of Z (as a trivial
Zπ-module). Therefore, we can compute the cohomology of π with any coeffi-
cients A as

H ipπ;Aq “ HipHomπpC˚p rXq,Aqq.

Properties 15. The following are immediate.

1. If A “ Zπ, then H ipπ;Zπq “ H˚
c p rX;Zq, where the subscript c denotes

“cohomology with compact supports”.

2. If A “ Z (as a trivial Zπ-module), then H ipπ;Zq “ H˚pX;Zq.
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3. If dimpXq “ n, then Cip rXq “ 0 for i ą n, so H ipπ;Aq “ 0 for i ą n and
all Zπ-modules A. Therefore, we have

cdpπq ď dimpπq.

Here is a sample calculation (see [2]).

Proposition 16.

H ipZ{pZ;Zq “

#

Z{pZ for i even

0 for i odd .

Corollary 17. If X “ Kpπ, 1q is finite dimensional, then π is torsionfree.

Proof: If π is not torsionfree, then there exists an element of order p for some
prime. The subgroup Z{pZ Ď π gives a covering space KpZ{pZ, 1q Ñ X . Now,
because X is finite dimensional, the same is true for rX and every covering space
of X . But H˚pKpZ{pZ, 1q;Zq “ H˚pZ{pZ;Zq is non-zero in an infinite number
of degrees, so KpZ{pZ, 1q cannot be finite dimensional. This contradiction proves
the result. �

A natural question arises when cdpπq “ n. Namely, how much cohomology does
π have. An answer is provided in the following result from [6].

Proposition 18. If cdpπq “ n, then there exist coefficients Aj , j “ 0, ..., n ´ 1,
such that Hn´jpπ;Ajq ­“ 0.

Proof: Because cdpπq “ n, there exists some A0 such that Hnpπ;A0q ­“ 0. Now
it is a standard result of homological algebra that any module can be embedded in
an injective module, so take A0 ãÑ I0 with I0 injective. Let the quotient module
be A1. Because Homp´, Iq is an exact functor when I is injective, this means
that H˚pπ; Iq “ 0 for any injective module. But now the long exact cohomology
sequence associated to the exact sequence 0 Ñ A0 Ñ I0 Ñ A1 Ñ 0 of Zπ-
modules shows that

H ipπ;A1q – H i`1pπ;A0q.

Hence, since Hnpπ;A0q ­“ 0, we see that Hn´1pπ;A1q ­“ 0 as well. Continue in
this manner to obtain the result. �

Corollary 19 ([7]). Suppose Mn and Nn are closed oriented n-manifolds and
π1pMq is a free group. If there exists a map of degree one, f : M Ñ N , then
π1pNq is also a free group.

Proof: Suppose π1pNq is not free. By [21, 22], we then have that cdpπ1pNqq “

n ą 1. By Proposition 18, H2pπ1pNq;Aq ­“ 0 for some Zπ1pNq-module A.
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Consider the following homotopy commutative diagram.

M
f //

jM1
��

N

jN1
��

Kpπ1pMq, 1q
f# // Kpπ1pNq, 1q.

By our construction of Kpπ, 1q’s, we see that CjpNq “ CjpKpπ1pNq, 1qq for
j “ 1, 2. This leads to the fact that, for any coefficients A, H2pπ1pNq;Aq Ñ

H2pN ;Aq is injective. But, by Poincaré duality with local coefficients, we also
have that f˚ : H2pN ;Aq Ñ H2pM ;Aq is injective for all A since f is degree 1.
The homotopy commutativity of the diagram then shows that

pf#q˚ : H2pπ1pNq;Aq Ñ H2pπ1pMq;Aq

is non-zero. This contradicts the fact that π1pMq is free since then cdpπ1pMqq “ 1.
�

3.2. Geometry of Kpπ, 1q’s

Now let us try to connect the algebraic results above with geometric ones gleaned
from LS category. First, let us note two facts.

Properties 20. The following hold.

1. If X “ Kpπ, 1q, then in the reformulation diagram G1pXq » _S1. This
follows because πkpΩpXqq – πk`1pXq for all k ě 0, so πkpΩpXqq “ 0
for all k ě 1 and π0pΩpXqq is in bijection with π1pXq “ π. So, up to
homotopy, ΩpXq is a set of discrete points. But then what is the suspension?
The discrete set of points gives a set of disjoint intervals and these are then
all smashed to a point at the top and bottom. The result, homotopically, is a
set of circles all touching at a single point (i.e., a wedge of circles) _S1.

2. Similarly, for X “ Kpπ, 1q, then GkpXq is homotopy k-dimensional. The
proof here is much the same using the properties of the join. For instance,
we have seen that G1pXq » _S1. But F1pXq “ ΩpXq ˚ ΩpXq is the join
of a discrete set of points with itself and this also is a wedge of circles. The
mapping cone of F1pXq ãÑ G1pXq then attaches two-cells to G1pXq to
obtain G2pXq which is then homotopy two-dimensional.

Now let us prove a result of Eilenberg and Ganea from this modern viewpoint.

Theorem 21 (Eilenberg-Ganea [8]). Let X be a CW complex pwhich is not neces-
sarily a Kpπ, 1qq. Then cat1pXq ď n if and only if there exists an n-dimensional
complex L such that there is a map f : X Ñ L inducing an isomorphism
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f˚ : π1pXq
–
Ñ π1pLq.

Proof: Let us suppose that cat1pXq “ k ď n. Because cat1pXq “ catpj1 : X Ñ

Kpπ1X, 1qq by Properties 10, we have a lifting X Ñ GkpKpπ1X, 1qq by Prop-
erties 6. If k “ 1, then since G1pKpπ1X, 1qq » _S1 by Properties 20, it’s fun-
damental group is a free group F . But the lifting induces maps on fundamental
groups π1pXq Ñ F Ñ π1pXq whose composition is the identity. This then dis-
plays π1pXq as a retract of F and hence it is free. Thus Kpπ1X, 1q » _S1 “ L.
If k ě 2, then because GkpKpπ1X, 1qq is homotopy k-dimensional by Properties 20,
we may take L “ GkpKpπ1X, 1qq. Because ˚k`1ΩKpπ1X, 1q is pk´1q-connected
and k ě 2, then X Ñ L “ GkpKpπ1X, 1qq induces an isomorphism of funda-
mental groups.
In the other direction, for an L as in the condition, there is a commutative triangle

X
j1 //

g
��?

??
??

??
? Kpπ1X, 1qq

L
h

99tttttttttt

where all maps induce isomorphisms on fundamental groups. But then, by Proper-
ties 6) we have

catpj1q ď mintcatpgq, catphqu ď mintdimpXq, dimpLqu ď dimpLq.

�

Notice that the first part of the proof shows the following.

Corollary 22. π1pXq is free if and only if cat1pXq “ 1.

Now, by [21, 22], we know that a group π is free if and only if cdpπq “ 1. This is
our first hint that category and cohomological dimension are linked. Before we see
more connections, let us understand the relationship between catpXq and cat1pXq

when X “ Kpπ, 1q.

Proposition 23. If X “ Kpπ, 1q, then catpXq “ cat1pXq.

Proof: By Properties 10, we know cat1pXq ď catpXq. Let cat1pXq “ k. Hence,
there is an open cover of X , tU0, . . . , Uku such that the inclusion of each Uj into
X has a lifting to the universal cover rX . But rX is contractible, so each inclusion
Uj ãÑ X is nullhomotopic. Hence, the cover is categorical and catpXq ď k “

cat1pXq. �
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Finally, we come to the LS-categorical connection between the algebra and geom-
etry of discrete groups.

Proposition 24. If X “ Kpπ, 1q, then catpXq “ cdpπq.

Proof: Suppose catpXq “ n. Then there is a map s : X Ñ GnpXq with pn ˝ s “

1X . Hence, p˚
n : H

˚pX;Aq Ñ H˚pGnpXq;Aq is injective for any coefficients A.
Because GnpXq is homotopy n-dimensional, we must have H ipGnpXq;Aq “ 0
for i ą n. Hence, H ipX;Aq “ 0 for i ą n for all A, so cdpπq ď n “ catpXq.
Now suppose that cdpπq “ n. Consider the fibration

˚n`1ΩX Ñ GnpXq Ñ X.

Now, the obstructions to finding a section X Ñ GnpXq lie in the cohomology
groups H i`1pX;πip˚n`1ΩXqq. But these groups are all trivial because ˚n`1ΩX
is pn ´ 1q-connected and HjpX;Aq “ 0 for all A and all j ą n. Hence, a section
exists and this means catpXq ď n “ cdpπq. �

3.3. The Eilenberg-Gamea Theorem and Conjecture

Now, both catpXq and cdpπq are bounded above by geometric dimension dimpXq.
The exact relationship is given by the following beautiful result (see [8] or [2] for
a detailed proof).

Theorem 25. Let π be a discrete group and let n “ maxtcdpπq, 3u. Then there
exists an n-dimensional Kpπ, 1q. That is, for cdpπq ě 3, it is always the case that
dimpπq “ cdpπq.

Note that the Stallings-Swan theorem [21,22] says that a group has cd “ 1 exactly
when it is free and any free group has a one-dimensional Eilenberg-Mac Lane
complex given by a wedge of circles. Therefore, only the case cd “ 2 is still
unknown. We have the following.

Conjecture 26 (Eilenberg-Ganea Conjecture). If cdpπq “ 2, then there is a two-
dimensional Kpπ, 1q.

In fact, this conjecture is part of a larger one. In [23], C. T. C. Wall proved the
following result.

Theorem 27. For n ­“ 2, a finite CW complex X is homotopic to a finite n-
dimensional complex if and only if

1. Hip rX;Zq “ 0 for i ą n, where rX is the universal cover of X
2. Hn`1pX;Aq “ 0 for all local coefficients A.

Notice that the case n “ 2 is explicitly omitted. In fact, we have the following.
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Conjecture 28 (Wall Conjecture). The theorem holds for n “ 2 as well.

Proposition 29. If π has a finite Kpπ, 1q, then the Wall Conjecture holds if and
only if the Eilenberg-Ganea Conjecture holds.

Proof: Suppose Wall’s Conjecture holds, cdpπq “ 2 and X “ Kpπ, 1q is finite.
Then rX » ˚, so Hip rX;Zq “ 0 for i ą 0. Furthermore, H3pX,Aq “ 0 for all
A because cdpπq “ 2. Therefore, Wall’s conditions are satisfied for n “ 2 and X
may be taken to be two-dimensional.
Now suppose the Eilenberg-Ganea Conjecture holds and X “ Kpπ, 1q is finite. If
Wall’s second condition holds for n “ 2, then H3pπ;Aq “ H3pX;Aq “ 0 for all
A. But the definition of cohomological dimension then says that cdpπq “ 2. The
Eilenberg-Ganea Conjecture then gives a two-dimensional Kpπ, 1q. �

There is another famous conjecture about dimension two which is related to the
two conjectures above. A Kpπ, 1q is sometimes known as an aspherical space.

Conjecture 30 (Whitehead Conjecture). Every connected subcomplex of a two-
dimensional aspherical CW complex is also aspherical.

On the face of it, it is hard to see the relation between this conjecture and the others.
However, using a clever argument together with a general Morse-type theory for
complexes, Bestvina and Brady were able to show the following sobering result.

Theorem 31 ([1]). Either the Eilenberg-Ganea Conjecture or the Whitehead Con-
jecture por both!q are false.

Now let us move away from algebra and back to topology.

4. Universal Cover Category

In this section, we define a new numerical homotopy invariant which, together with
cat1, can be used to obtain an upper bound for LS category.

4.1. Basics

Definition 32. Let p : rX Ñ X denote the universal covering of X . The universal
covering Lusternik-Schnirelmann category of a space X , denoted ĂcatpXq, is the
smallest integer k so that X can be covered by open sets U0, U1, . . . , Uk, such that
each pullback p´1pUjq is contractible to a point in rX . Such a covering is called a
uc-categorical covering.

We will need the following lemma from [16] in order to “mix” two notions of
category to obtain our upper bound.
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Lemma 33 ([16]). Let X be a normal space with two open covers

U “ tU0, U1, . . . , Uku and V “ tV0, V1, . . . , Vmu

such that each set of U satisfies Property (A), and each set of V satisfies Property
(B). Assume that Properties (A) and (B) are preserved under taking open subsets
and disjoint unions. Then X has an open cover

W “ tW0,W1, . . . ,Wk`mu

by open sets satisfying both Property (A) and Property (B).

Now let us turn to another “dimensional” version of category. As a particular-
ization of the general definition of A-category due to Clapp and Puppe [3], de-
fine catnpXq to be the least integer k such that there exists an open cover U “

tU0, U1, ¨ ¨ ¨ , Uku of X where each inclusion ij : Uj ãÑ X factors through the n-
skeleton of X up to homotopy. Note that catmpXq ď catnpXq if m ě n since it is
easier to deform into a larger skeleton. These notions of category were combined
in [16] to produce the following estimate of category.

Theorem 34. If X is a normal space, then

catpXq ď cat1pXq ` cat1pXq.

Our goal here is to improve this estimate. Before we prove the main theorem, let
us prove some simple, but important, properties of ĂcatpXq. First, we need to know
that Ăcat is a homotopy invariant.

Proposition 35. Universal cover category is a based homotopy invariant.

As in the case of ordinary category, this proposition follows from a domination
lemma. Recall that f : Y Ñ X is a based domination if there exists a based map
g : X Ñ Y such that fg is based homotopic to 1X .

Lemma 36. Suppose f : Y Ñ X is a based domination. Then ĂcatpXq ď ĂcatpY q.

Proof: Suppose ĂcatpY q “ n with corresponding cover of Y , U0, . . . , Un. Then
X has a cover tVi “ g´1pUiqu. Let pY : rY Ñ Y , pX : rX Ñ X denote the
respective universal coverings. Choose basepoints in the covers with pY pỹ0q “ y0
and pXpx̃0q “ x0. Once these points have been chosen, there are unique lifts

f̃ : rY Ñ rX, g̃ : rX Ñ rY

with f̃pỹ0q “ x̃0 and g̃px̃0q “ ỹ0 and pX f̃ “ fpY and py g̃ “ gpX . We claim
that f̃ is also a domination. To see this, let H : X ˆ I Ñ X be a homotopy with
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H0 “ fg and H1 “ 1X . Now consider the following diagram

rX ˆ 0 Y x̃0 ˆ I
f̃ g̃ //

��

rX

pX

��
rX ˆ I

pXˆ1 //

G

44iiiiiiiiiiiiiiiiiiiiiii
X ˆ I

H // X

in which G exists by the homotopy lifting property and G1px̃0q “ x̃0. Moreover,
G0 “ f̃ g̃ and pXG1 “ pX . But then G1 covers 1X and agrees with 1

rX
at the

point x̃0. Therefore, by uniqueness of lifts, G1 “ 1
rX

. Of course, G1 is also based
homotopic to G0 “ f̃ g̃, so f̃ is a based domination.

Now consider the composition p´1
X pViq ãÑ rX

g̃
Ñ p´1

Y pUiq ãÑ rY . Let K : p´1
Y pUiqˆ

I Ñ rY denote the contraction of p´1
Y pUiq to a point: K0pũ, 0q “ ũ, K1pũ, 1qỹ0.

Let L : p´1
X pViq ˆ I Ñ rX be defined by L “ f̃ ˝ K ˝ pg̃ ˆ 1Iq. Then we have

L0pṽq “ f̃pK0pg̃pṽqqq “ f̃pg̃pṽqq

L1pṽq “ f̃pK1pg̃pṽqqq “ f̃pỹ0q “ x̃0.

Therefore, since L0 “ f̃ g̃ » 1
rX

, we see that Vi contracts to a point in rX . Hence,
ĂcatpXq ď n “ ĂcatpY q. �

Now, with a view toward improving Theorem 34, let us compare cat1pXq and
ĂcatpXq.

Proposition 37. ĂcatpXq ď cat1pXq.

Proof: Let U Ă X be a cat1-open set. Therefore, U deforms into the one-skeleton
of X . Now, since p : rX Ñ X is a covering, we can always arrange cell struc-
tures so that p´1pX1q Ď rX1, where the subscript 1 denotes the one-skeleton.
Let H : Uj ˆ I Ñ X be the homotopy that deforms Uj into the one-skeleton
X1 and compose with p to obtain a homotopy G : p´1pUjq ˆ I Ñ X . The ho-
motopy lifting theorem then lifts this homotopy to rG : p´1pUjq ˆ I Ñ rX with
rG1pp´1pUjqq Ă rX1. But rX is simply connected, so rX1 is contractible in rX .
Therefore p´1pUjq is contractible in rX and we see that a cat1-open cover is a
Ăcat-open cover. �

In fact, we also have a result for catn.

Proposition 38. Suppose π1pXq ­“ 0 and πjpXq “ 0 for 1 ă j ď n. Then
ĂcatpXq ď catnpXq.
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Proof: Let U Ă X be a catn-open set. Therefore, U deforms into the n-skeleton
of X . As above, we arrange cell structures so that p´1pXnq Ď rXn, where the
subscript n denotes the n-skeleton. Let H : Uj ˆ I Ñ X be the homotopy that
deforms Uj into the n-skeleton X1 and compose with p to obtain a homotopy
G : p´1pUjq ˆ I Ñ X . The homotopy lifting theorem then lifts this homotopy
to rG : p´1pUjq ˆ I Ñ rX with rG1pp´1pUjqq Ă rXn. But rX is n-connected, so
rXn is contractible in rX . Therefore p´1pUjq is contractible in rX and we see that a
catn-open cover is a Ăcat-open cover. �

The next result is immediate, but gives a link to the fundamental result Theorem 25.

Proposition 39. Suppose X has the homotopy type of a CW complex. Then X “

Kpπ, 1q if and only if ĂcatpXq “ 0.

Proof: If X “ Kpπ, 1q, then the universal cover rX is contractible. Hence we
see that p´1pXq “ rX is contractible and ĂcatpXq “ 0. Conversely, if ĂcatpXq “

0, then, by definition, p´1pXq is contractible. But the covering p : rX Ñ X is
surjective, so p´1pXq “ rX , so X “ Kpπ, 1q. �

4.2. A New Estimate for Category

We now wish to apply our results about open covers to obtain an estimate for LS
category which, by Proposition 37, improves the estimate Theorem 34.

Theorem 40. If X is a normal space, then

catpXq ď cat1pXq ` ĂcatpXq.

Proof: Suppose cat1pXq “ k and ĂcatpXq “ m. Let U “ tU0, . . . , Uku be
a cat1-open cover of X and let V “ tV0, . . . , Vmu be a Ăcat-open cover of X .
Thus, each inclusion Uj ãÑ X lifts through the universal cover rX , while each
Vj gives a categorical open set p´1pVjq in rX . By Lemma 33, we have an open
cover W “ tW0, . . . ,Wk`mu such that each inclusion Wj ãÑ X satisfies both
properties.

We claim that any open subset of X that is both a cat1-set and a Ăcat-set is actually
categorical. Consider the inclusion ij : Wj ãÑ X and note that a partial section
sj : Wj Ñ rX must have image in p´1pWjq since psj “ ij . However, the inclusion
k : p´1pWjq ãÑ rX is nullhomotopic, so ij “ psj “ pksj » ˚. Hence ij is
nullhomotopic and, thus, Wj is categorical. Because W “ tW0, . . . ,Wk`mu is a
categorical open cover, we then have

catpXq ď k ` m “ cat1pXq ` ĂcatpXq.
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�

Now, by Proposition 37, we see that we have given another proof of Theorem 34.
Furthermore, Proposition 38 also gives the following.

Corollary 41. Suppose π1pXq ­“ 0 and πjpXq “ 0 for 1 ă j ď n. Then

catpXq ď cat1pXq ` catnpXq.

Remark 42. In [16], the “geography” of categories was proposed to be the set of
pm,nq with catpXq ď catmpXq ` catnpXq. While elementary results were ob-
tained, a general result was harder to come by. Here we see that natural homotopy
conditions lead to a geographic point p1, nq.

Now let us focus on three crucial examples that will illustrate the strengths and
weaknesses of Theorem 40.

Example 43. First, let us give an example where the inequality of Theorem 40
is actually an equality. By the cuplength and product inequalities for category, it
is easy to see that catpS2 ˆ T 2q “ 3. As shown in [17], cat1pS2 ˆ T 2q “ 2.
Now, observe that, if H denotes either the northern or southern hemisphere of S2

union a small open collar, then for the covering map p : S2 ˆ R2 Ñ S2 ˆ T 2,
p´1pH ˆ T 2q “ H ˆ R2 is contractible. Thus, ĂcatpS2 ˆ T 2q “ 1 and

catpS2 ˆ T 2q “ 3 “ cat1pS2 ˆ T 2q ` ĂcatpS2 ˆ T 2q

Hence the estimate of Theorem 40 is sharp.

Remark 44. The argument above generalizes to the case of X “ Kpπ, 1q ˆ S2,
but requires some extra ingredients such as category weight. The result is that

catpXq “ cdpπq ` 1 “ cat1pXq ` ĂcatpXq

while cat1pXq “ cdpπq.

Example 45. This example provides another proof of the Eilenberg-Ganea identi-
fication of catpXq with cat1pXq for X “ Kpπ, 1q. We have

cat1pXq ď catpXq ď cat1pXq ` ĂcatpXq.

By Proposition 39, we also have that ĂcatpXq “ 0 and the result follows. This is a
case where cat1 “ cat with Ăcat “ 0.

Example 46. Here we shall describe a case where cat1 “ cat with Ăcat “ 1. Con-
sider a quotient X “ Sn{G where G is a finite group acting freely and preserving
orientation pwith n oddq. In fact, we can reduce to the case where G “ Z{pZ,
so we only consider this situation. We can see that cat1pXq “ n as follows. By
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[5, Lemma 9.30], we know that the classifying map X Ñ KpG, 1q induces a sur-
jection H˚pKpG, 1q;Gq Ñ H˚pX;Gq. Therefore, because dimpXq “ n, the
estimate of Properties 10 shows that we have n ď cat1pXq. But we also have

cat1pXq ď catpXq ď dimpXq “ n

so cat1pXq “ n. The inequality above also shows that catpXq “ n. Now, to see
what ĂcatpXq is, remove a small disk D from X , so that the inverse image under
p : Sn Ñ Sn{G consists of disjoint disks homeomorphic to D. This set is then
contractible in the universal cover Sn. Now, the inverse image of X ´ D misses a
point of Sn, so p´1pX ´ Dq is contractible in Sn. Therefore, ĂcatpXq “ 1.

5. Topological Complexity

5.1. Introduction

In this section, we describe a relatively recent addition to the family of LS category-
type invariants. We will prove only elementary facts here and rather refer to works
such as [9–11, 13, 14] for harder results and details.
A mechanical system S is described by its totality of states X “ XpSq, this is the
configuration space of S .

Example 47. A planar robot arm with n links has configuration space the n-torus
Tn since the relevant parameters of the system are the n angles between consecu-
tive links.

In robotics, the fundamental problem is how to control a robot from any one con-
figuration to any other configuration. Formally, we write the following.

Problem 48. Let X be the configuration space of a system S . The motion planning
problem is to algorithmically determine a continuous path γ : I Ñ X with γp0q “

A and γp1q “ B for any A,B P X .

A precise mathematical formulation of the problem is the following (see [9]). Let
ev : XI Ñ X ˆ X be the evaluation fibration evpγq “ pγp0q, γp1qq, where XI

is the space of all paths γ : I Ñ X . A motion planning algorithm is a continuous
section

s : X ˆ X Ñ XI , ev ˝ s “ 1XˆX .

Unfortunately, we have the following sobering result.

Proposition 49. A motion planning algorithm s : X ˆ X Ñ XI exists if and only
if X is contractible pi.e., deformable to a pointq.
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Proof: If X » ˚, then there is a homotopy H : X ˆ I Ñ X with Hpx, 0q “ x
and Hpx, 1q “ B0, for fixed B0. Given A,B, define

γptq “

#

HpA, 2tq 0 ď t ď 1{2

HpB, 2 ´ 2tq 1{2 ď t ď 1.

Since this continuously determines a path γptq for each pair pA,Bq, we obtain a
motion planning algorithm. On the other hand, if a motion planning algorithm
s : X ˆX Ñ XI exists, define H : X ˆ I Ñ X by HpA, tq “ spA,B0qptq. Then
HpA, 0q “ A and HpA, 1q “ B0 because s is a section of ev. �

So what can be done for more general spaces if motion planning algorithms only
exist for contractible configuration spaces? Well, this is precisely the LS category
approach to a space’s complexity.

Definition 50. The Topological Complexity of the motion planning algorithm prob-
lem for X is

TCpXq “ secatpev : XI Ñ X ˆ Xq.

The idea behind this definition is that we decompose X ˆ X into open sets U for
which there is a motion planning algorithm in X .
The relation between LS category and topological complexity is expressed by the
following inequalities.

Proposition 51. Topological complexity is a homotopy invariant and the following
estimates hold:

catpXq ď TCpXq ď catpX ˆ Xq ď 2 catpXq.

For the proof of homotopy invariance, see [9]. The estimate TCpXq ď catpXˆXq

is simply (1) of Property 8 while the estimate catpXq ď TCpXq follows from (5)
of Property 8 when we recognize that the (based) path fibration PX Ñ X is a
pullback of the evaluation fibration ev : XI Ñ X ˆ X by the mapping X Ñ

X ˆ X , x ÞÑ px0, xq for a fixed basepoint x0 P X . Here is the fundamental
example (see [9]).

Proposition 52.

TCpSnq “

#

1 n odd

2 n even.

Proof: Case n odd. let us break Sn ˆ Sn into two open sets.

U “ tpx, yq ; y ­“ ´xu, V “ tpx, yq ; y “ ´xu.

(Note that the second set is not open, but we can take a small deformable neigh-
borhood around the anti-diagonal to “make it open”.) We need to define local
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sections on these sets. This means specifying a path from x to y in an algorith-
mic continuous fashion. For U , simply take the path that is the unique minimizing
geodesic between x and y. This makes sense precisely because y ­“ ´x. For
V this definition would be a problem since there are two minimizing geodesics.
However, here we can use the fact that, since the Euler characteristic of an odd
sphere is zero, there is a non-vanishing vector field on Sn. So, at x, take the vector
field vector as the initial condition of a geodesic and take this path to y “ ´x.
(Here we use the fact that geodesics are great circles.) Since we have local sec-
tions on U and V , we see that TCpSnq ď 1. By Proposition 51, we also see that
1 “ catpSnq ď TCpSnq ď 1, so TCpSnq “ 1.
Case n even. So what is the only difference from the case n even? It is simply that
the Euler characteristic of an even sphere is 2, not 0. So we cannot use the method
on V to find an algorithmic path. However, we do know that there is a vector field
on Sn with only a single zero x0, say. So if we define U as above and

V “ tpx, yq ; y “ ´x, x ­“ x0u, W “ tpx0,´x0qu

then we can use the vector field on V as before. Again, we can take a small
contractible neighborhood around px0,´x0q that deforms to px0,´x0q, so we need
only define a path for this single point. For this we can take any path from x0 to
´x0. Therefore, since we cover with three sets U, V, W , TCpSnq ď 2. To get a
good lower bound, we use (3) of Property 8 by considering the element

χ “ x b 1 ´ 1 b x

P pHnpSn;Qq b H0pSn;Qqq ‘ pH0pSn;Qq b HnpSn;Qqq

– HnpSn ˆ Sn;Qq

where x ­“ 0 in HnpSn;Qq. Now, ev˚pχq “ 0 because XI » X and ev˚pxb 1 “

x “ ev˚p1 b xq. Also, χ2 ­“ 0 since graded commutativity of cohomology gives

χ2 “ ´x b x ´ p´1qn
2
x b x

and n is even. (Note that this argument would not work for n odd.) Hence, by (3)
of Property 8, TCpSnq ě 2. Thus, TCpSnq “ 2. �

Proposition 52 begs the question of determining spaces with low topological com-
plexity. In [13], these spaces were identified.

Theorem 53 (Grant-Lupton-Oprea). If TCpXq “ 1, then X is homotopy equiva-
lent to some sphere of odd dimension. Moreover, if X is also a closed manifold,
then X is homeomorphic to an odd sphere.

This result has a rather complicated proof, but the starting point is the recognition
that the inequality catpXq ď TCpXq “ 1 implies that X is a co-H-space (i.e.,
a space with co-multiplication) since catpXq “ 1 identifies these spaces. Now,
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there are co-H-spaces that are not spheres. In fact, every suspension ΣX is a co-
H-space and catpΣXq “ 1 as can be seen by decomposing ΣX into its top and
bottom cones. So Theorem 53 is giving yet another indication that TC is a more
complicated invariant than LS category.
From our discussion of LS category and Kpπ, 1q’s, it should not be surprising that
the following is a major problem in the subject.

Problem 54. Determine the topological complexity of a Kpπ, 1q.

As we have seen, Eilenberg and Ganea showed that, when cdpπq ą 2, then

cdpπq “ catpKpπ, 1qq “ dimpKpπ, 1qq.

The problem for topological complexity, however, is much more delicate and at the
moment no general answer is known. There are some determinations of TC for
Kpπ, 1q’s which often use some type of auxiliary structure associated to the group
π that enables an application of Property 83 (e.g. see [4]). Here is a more general
result that centers on the subgroup structure of π [14].

Theorem 55 (Grant-Lupton-Oprea). If A and B are complementary subgroups of
π pi.e., AB “ π and A X B “ Hq, then

cdpA ˆ Bq ď TCpKpπ, 1qq.

Using this result, we can recover lower bounds for TC for various types of Kpπ, 1q’s
such as right-angled Artin groups and braid groups. Furthermore, using much
harder arguments, we obtain the following result.

Corollary 56. Let H denote the Higman group with presentation

xx, y, z, w ; xyx´1y´2, yzy´1z´2, zwz´1w´2, wxw´1x´2y.

Then TCpHq “ 4.

It is known that the group H is acyclic (it has the same integer homology as a triv-
ial group), and so H˚pH; kq “ 0 (in positive degrees) for every abelian group
k. Moreover, H has no non-trivial finite quotients, so it has no non-trivial fi-
nite dimensional representations over any field. It then follows that if M is any
coefficient ZrHs-module which is finitely generated as an abelian group, then
H˚pH;Mq “ 0. Thus the group H is difficult to distinguish from a trivial group
using cohomological invariants.
On the other hand, since H is not a free group we have cdpHq ě 2. The two-
dimensional complex associated to the presentation P is known to be aspherical
and it follows that catpHq “ cdpHq “ 2. Thus the topological complexity of
Higman’s group satisfies 2 ď TCpHq ď 4. A nontrivial argument using Bass-
Serre theory shows the result that TCpHq “ 4.
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