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Abstract. This is a review of multiparameter families of contact transfor-
mations and their relationship with the generalized Hamiltonian system. We
derive the integrability conditions for the generalized Hamiltonian system
and show that when they are satisfied the solutions to this system determine
a family of multiparameter contact transformations of the initial conditions.
We prove a necessary and sufficient condition for a multiparameter family of
contact transformations to be a group and a characterization of the function
which describes the group multiplication rule.

1. Introduction

Let us begin by recalling a few facts about one parameter contact transformations.
Consider transformations of the (z,v, z, p, ¢)-space to the (X,Y, Z, P, Q)-space
defined by X = X(z,y,2,p,q9), Y = Y(z,y,2,p0,q9), Z = Z(x,y,2,p,q),
P = P(CE, Y,2, D, Q)v Q = Q(IE, Y, 2, D, Q)‘

Definition 1. Let T' be a one-to-one, onto, continuously differentiable transforma-
tion of the (x,y, z, p, q)-space to the (X,Y, Z, P, Q)-space with a nonzero Jaco-
bian. Then T is called a contact transformation if pdx + qdy — dz = 0 implies
PdX +QdY —dZ =0.

Theorem 1. The one-to-one, onto, continuously differentiable transformation T'
of the (z,y, z,p, q)-space to the (X,Y, Z, P,Q)-space with a nonzero Jacobian
is a contact transformation if and only if there exists a nonzero function p =
p(z,y,2,p,q) such that

PdX +QdY —dZ = p(pdx + qdy — dz). (1)
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Example 1. The Legendre transformation X = p, ¥ =¢q, P =z, Q = v,
Z =pz+ qy — zis a contact transformation. For it the function p in the previous
necessary and sufficient condition is p = —1.

Letnow z = (z1,...,2y), p = (p1,...,pn) and S; be a one-parameter family of
contact transformations

X = X(z,2,p,t)

Z =Z(x,z,p,t)

P = P(x,z,p,t)
where ¢ is the parameter, X = (X7,..., X,,) stands for the images of z1,...,z,
under Sy, Z is the image of z under S; and P = (P4, ..., P,) stands for the images
of p1,...,pn under S;. The summation convention on repeated indices is used for
the rest of the paper. For one-parameter families of contact transformations the
necessary and sufficient condition (1) for a contact transformation is replaced by

P;dX; —dZ = p(p;dz; — dz) + Hdt (2)
where ix 4z
H=p—_=2.
dt  dt

In the 1930-s Gustav Herglotz proposed a generalized variational principle with
one independent variable, which generalizes the classical variational principle by
defining the functional z, whose extrema are sought, by the differential equation

dz dz(t)
= = L(ta).572) (3)
where ¢ is the independent variable, and x(t) = (x1(t),...,x,(t)) stands for the

argument functions. In order for the equation (3) to define a functional z = z[x] of
x(t) equation (3) must be solved with the same fixed initial condition z(0) for all
argument functions x(¢), and the solution z(¢) must be evaluated at the same fixed
final time ¢ = T for all argument functions ().
The equations whose solutions produce the extrema of this functional are
oL d oL OLOL
8.%'k B &axk + %axk N
where & denotes dzy/dt. Herglotz called them generalized Euler-Lagrange
equations.

0, k=1,....n (4)

Remarkably, the solutions of the generalized Euler-Lagrange equations (4), when
written in terms of the dependent variables x; and the associated momenta p;, =
0L /0y, determine a family of contact transformations of the initial conditions.
In more detail, let’s write the defining equation (3) for the functional z and the
generalized Euler-Lagrange equations (4) in the following manner

Z=L(x1,. .., Tp, @1, ..., &, 2, 1)
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]ﬁj:Lj—l—szj, jzl,...,n (5)
where we have denoted
oL oL
oz, T oiy
Let (mo, 0, zo) be the initial condition for the system (5) of n + 1 ordinary differ-
ential equations for the functions z1(t), ...,z (t), z(t) . Then the solution of the

system (5) with this initial condition is
z=x(zY, 20, 29 1)
i = (20,20, 2%, t) (6)
z=2(29,i9, 20,1).

Theorem 2. Let L = L(x, &, z,t) be such that

7L
det(axgax‘j) 70

Then the solution (6) of the system (5) defines a one-parameter family of contact
transformations.

A proof of this theorem can be found in [2].

2. Multiparameter Families of Contact Transformations

Let z = (x1,...,2n), p = (p1,-..,pn) denote points in R,, so that (x, z,p) is a
point in a (2n + 1) — dimensional space. ¢ = (t1,...,t,) will denote a system
of r parameters and f = f(f1,..., fn), gand h = (hq,..., hy,) are functions of
(20, 20,0, ). We call
z = f(2%2%p%1)
z=g(a", 2% p% 1) (7)
p=h(a®2%,p° 1)
an r-parameter family of contact transformations if, for each fixed ¢, the functions
f, g and h satisfy the condition
pida; —dz = p(pf dzf —dz°%),  p#0.
It is often convenient to write the transformation (7) in the form
(x,2,p) = Si(2°,2°,p?) (8)
to bring out the fact that the point (20, 20, p°) is carried into the point (z, z, p). We
do not demand that the family of transformations {.S;} contains the identity, nor
that (2, 2%, p") represent initial values. Rather, (2°, 2, p°) is a generic point in
the (2n + 1) — dimensional space where the transformations are defined.
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Theorem 3. If {S;} is an r-parameter family of contact transformations, then
there exist functions

H; = Hj(z,z,p,t), j=1,...,r (9)
such that the (x, z, p) of (7) satisfy the total canonical system
OHj,
dz;, = ——dtg, j=1,...,n, k=1,...,r
J ap]
OHj,
dz = (p; 5" — Hy )t 10
z Dj apj k k ( )

B OH;, OHk
dp; = _(aazj TP 0z )dtk'

Proof: The transformations .S; must satisfy

pida; —dz = p (p? dz? — dzY), p#0 (11)
which is supposed to hold when the differentials are calculated only with resect to
the spatial variables. When z, z, p also depend on %1, . . ., t,, then

0z 0z 0z 0z
dz = —5daf + Z-d2 5dp) + ——dty, j=1,... k=1,...,r
z = 8$ + 8 0 a + at k’ J ) ’n7 ) 7/r

Similarly for dz;. Hence the condltlon (11) is replaced by

Oxr; 0z B 0
(ps dw; — dz) — <pZ 9. ot ) dty = p (p? dz? — dz2), p#0. (12)
From (7) we obtain
ox; 0 op; .
Tzzgik(xaz7pat)a 87;:(/6('%7271)775)7 872:7”/{:(37727p7t)7 7‘:17"'an'

Let us introduce the functions
Hy = Hi(z,z,p,t) = p; & (x, 2, p, t) — Ce(, 2, p, ), kE=1,...,r. (13)
Then the relation (12) takes the form analogous to (2), namely
pida; —dz = p(pY da?d — dz°) + H dty, p#0. (14)

Ifdty = 0,k = 1,...,r, equation (14) reduces to (11). Equation (14) repre-
sents a system of (2n + r + 1) equations relating the variables (z, z,p, t) with
(20,20, p°, ), which is obtained by expanding the differentials and comparing co-
efficients.

Differentiate (14) with respect to ¢; and note that the differential operator d com-
mutes with the operator 9/0t. This leads to

OH
ik day + pj déjp — AGy = pr, () da — d2°) + 8—; dt;. (15)
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From (15) and (14) we obtain

OH,
ik dl‘j + pj dfjk — de — 07;; dt; = %(pj d(L‘j —dz — H; dtl). (16)

From (13) we find

dHy, = & dpj + pj A€ — d(x, j=1...,n

so that (16) takes the form

0H,
AH, + mjp day — & dpy = P2 (py dey — d2) + (T2 = P2 ) an. (17)
p oty p
Expand d H, in the form
OHj, OHj, OHy, OHj,
dHy = —dzj+ —dz+ —dp; + —dt
ET o, I e Ty, BT g
insert it into (17) and compare coefficients to obtain the following system
0H, 0H,
k= e+ Py, =&k
O p Ipj (18)
Oy _  pu OHy _OH, _ piy
0z p’ ot Oty p

We now obtain expressions for £;, 75 and ;. From (18) by eliminating the quo-
tient p;, /p we get

o _ _OHy  OH
Tk = 8xj P 0z
0H,,
gjk 6pj

0H
G = —Hp +p; §p = —Hi + pj Tk
Pj

The functions H;(x,z,p,t) of (9) characterize the particular family of contact
transformations and are called characteristic or Hamiltonian functions. Although
they may be derived from (7) as indicated, in practical problems one is usually
faced with the converse problem of constructing the family (7) or (8) from (10)
given (9). In order to carry out the integrations, the H ;s must satisfy certain in-
tegrability conditions. To obtain them, it is convenient to rewrite the system (10)
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as
%:aHk7 :17 , 1, k:]-a , T
Oty Op;j
0z 8Hk
=2 2 H 1
Dtx Dj apj k (19)
% . _8Hk _ 8Hk
o, ~ om; oz

To formulate the integrability conditions, it is advantageous to introduce the bracket

symbol

oG oF
[F,Glazp = {F,G}azp + Fg — Ga (20)

where {F, G}, denotes the Mayer bracket of two functions F" and G. Recall that
the Mayer bracket of the functions f and g is
0 af\ o 0 dg\ 0
{fg}azp = (agj +pj8];>8§j - (&Egj pjag)agj'
When written out (20) becomes
@%_(BW(?G_’_@*F(M%_ )_%( OF F)
Ox; Op; Op; Ox; Oz Op; 0z
This bracket symbol also satisfies the Jacobi identity
[F,[G,H]|+ |G, [H, F]] + [H, [F,G]] = 0. (21)
Next let us define the symbols

[F, Glazp =

Di op

7

OH, OH,
ot oty
The integrability conditions require that the second mixed partials of the functions

xj, z, pj with respect to the ¢ variables are equal. A calculation making use of (19),
(21) and the definition (22) yields the relations

Hkl = [HlmHl]mzp + (22)

62 Xr; — 82 €T, = iH
atlatk / 8tk6tl 7 8pj ki
82 82 a a
G0t T Btan i T o, T T P i (23)

0? 0? 0
8t18tkz B 8tkat12 - pj@Hkl ~ Hu.
In order to force the right hand sides of (23) to be zero in these expressions, we see
that the H}; must vanish, which in view of (22) says
OH;, O0Hj
T

[Hy, Hi| = (24)
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which are the integrability conditions.
To prove the next theorem we need the following

Lemma 4. Let F = F(x,z,p,t) where (x, z, p) satisfy (10) or equivalently (19).
Then the differential

0H; OF
dF = ([F, I %)dti (25)
or in terms of components
oF 0H; OF
— =[F, H; - F - 26
Proof: Calculate the differential using (10) to obtain
OF oF OF OF OF OH;
dF = —dx; + —d —dp; + —dt; = — dt;
0z, T 3 T o, P T 90 T o ap
oOF / 0H; OF (0H; O0H; OF
S (ps 5t - H )t — 2 (S gt St
5 (1 op; )T gp \ag, TPigs )T
The formula for the differential follows after some rearranging. |
If we now use (26) to calculate the second derivatives, we find
0’F 0’F OHy,
— =|F, H - F . 27
o0t Ot,ot [ kl]pr 0z (27)

Next we state and prove the converse of Theorem 3.

Theorem 5. Suppose the total canonical system (10) is given where the char-
acteristic functions satisfy the integrability conditions (24). Then the family of
transformations { Sy} obtained by solving (10) subject to the initial conditions

0,0 .0
($,Z,p)|t:0:(l’ 2Ry 4 )
is an r-parameter family of contact transformations.

Proof: We define the linear differential form
w = p;jdr; —dz — H;dt;, j=1,....,n, i=1,...,r (28)

whent =0,ie.,t = (t1,...,t,) = (0,...,0), w goes over into
wongdx?—dzo, j=1,...n.
Define 9 5
T z
H,=p—L - == k=1,...,r.
k Dj atk atkv ) , T
Then using (19) and (28) we get
Ow op; ox; 0z O0Hy
d :—dt-:( I dz; +pjdd —q2% dt)dt-
W= M gy Gt Ry T Y T oy k)4
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= — dz; dp; d dty | dt;
<8xj it 8pj pit 0z e oty k)
OH; OH; O0H,
Yz = S pday + Sty )t
(32 ‘ 8zpj$]+8tk k
0H,; OH; O0H;
— —dH;dt; - St wdt + (S - SO H )db ds,
9z Ty, e M)
Next we calculate using (19)
OH; 0H; 0H;
dH;dt; = —dtpdt; = | — — Hy, ) dty dt;.
ot " (8tk 9z ’“) F
Thus, we obtain
H;
dw = —w 6@2 dt;, i=1,...,r (29)
This equation is integrable because it satisfies (27) by hypothesis, i.e.,
0w 0w

0
Dtp0t; 0.0ty W, Higlazp —w - Hi, = 0

by the integrability condition.

Now let ¢ be a permissible value for the functions in question. We determine the
function

p=p(x°,2°p% 1)

0H
lnp:—/ a—kdtk, k=1,...,r
rfo,] 9%

from the equation

where the integral is taken over a path I', connecting 0 and t. Because of the
integrability conditions, the integral is independent of the path. Exponentiate to
find for p the expression

p = exp ( — —— dtg
and set

w=pud. (30)

By carrying out the differentiations, it is easy to verify that w defined by (30)
satisfies the total differential equation (29). But (30) is simply

pjdxj—dz:p(p?dx?—dzo)—l—Hidti, j=1,....,n, i=1,...,r

which completes the proof of the assertion.
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3. Multiparameter Groups of Contact Transformations

In this section the letters ¢, s, etc., will denote the r—tuples (t1, ..., t), (s1,...Sr),
etc. The value ¢ = 0 will correspond to the identity transformation.

Definition 2. An r-parameter group of contact transformations is a family, {S;},
of contact transformations which satisfies the following conditions

1. The family includes an identity element, Sy, called the identity

2. There is an operation called multiplication such that if Sy and S are ele-
ments of the family, there exists an element, S, of the family, such that

Sy = 51 Ss.
This multiplication is determined by a smooth function
¢: (¢17"‘7¢7’)
of the variables (t, s).
3. StS() = S(]St = St, that is
o(t,0) = ¢(0,t) =t
and the Jacobi determinant

A(B1(t,5), ..., dr(t,s))
At .. 1)

fort, s near 0. In particular, $(0,0) # 0.
4. The associative law holds, that is

St(Ss SO') = (St SS)SO'
in other words, ¢ satisfies

¢(t7 ¢(S7 U)) = ¢(¢(t7 S)? U)'

The Condition 3 implies the existence of an inverse, because the equation

£0

Se St = So
or more precisely
¢(o,t) =0
is solvable for o in terms of ¢. In operator notation, let
Sy =St
denote that solution. We must show that also
SiSs = So.

For this calculation let S, be such that S;.S, = Sy . Then
StSe = So(StSe) = (5555)(StSs) = S5(S55t)Se = S5Ss = So
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so that S, = S, ! is both a right and a left inverse and the standard group axioms
hold. S, 1 is easily seen to be unique and moreover we find that

8((2((:)3)) #0 for ¢, s near 0.

After these preliminaries we state the main theorem of this section.
Theorem 6. In order that an r-parameter family, {S;}, of contact transformations

be a group, it is necessary and sufficient that the characteristic functions, Hy, have
the form

Hy = Hi(z,z,p,t) = Ki(x, z,p) wir (1), L,k=1,...,r (31)

Here the K; are independent of t and the w;i. depend only on t. Moreover the
functionsK1, . .., K, are linearly independent, and the determinant of the r X r
matrix (w;y) is nonzero.

Before giving a proof of this theorem, we first make a few observations.
Let us set

dw; = wji dtg, Lwk=1,...,r
so that (31) takes the form

Hy dty, = K; dw;, iLk=1,... 7
The differential form
H; diy, k=1,...,r
is integrable and by the (24) the integrability conditions are
OH, 1 OH, k-

Hyoy Hiloy = ot — =2F 39
[ k> l]aczp 8tk 8tl ( )
If the Hj, are given by (31) then (32) has the form
0 0
(K, Kilazp Wha wig = K ( kD wka), k=1...r (33)
Oty 8755

Since det(w;;) # 0, the matrix (w;;) has an inverse which we denote by (7;;).
Consequently,

Wik Mkj = 0ij 5, Mik Wiy = 04j, i, k=1,...,r (34)

where d;; is the Kronecker delta. Multiply (33) by 74, and 7)g,, sum over « and f3,
and use (34) to get

[KpaKa]:CpajKj> p,o,j=1,...,r (35)
where 5 5
Wi I ;
Cpoj = < 375]0( — at];>napngg, a, B=1...r7. (36)
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Now multiply (36) by w,x wsi, sum over p and o and use (34) to find

Ow il Ow ik

87152 — atjk = Cpoj Wpk Wol, p,o=1,...r (37)
The formulae (35) and (37) are the Maurer relations. The c,,; are independent
of (z,z,p) by their definition, but apparently may depend on ¢. In fact they are
all constant — the structure constants of the group. From their definition, c,,; are
antisymmetric in the first two indices

Cpoj + Copj = 0.
They also satisfy a Jacobi type identity
CikaCjam + CkjaCiam + CjiaClam = 0, a=1,...,r. (38)

The next theorem characterizes the function ¢ = ¢(¢, s), which describes the mul-
tiplication rule for the multiparameter group of transformations.

Theorem 7. The function describing the group operation
{ = o(t,s)
is determined by the Maurer-Cartan system of total differential equations
wij(t') dt’s = wi;(t) dt;, j=1...,m briefly dw, = dw;  (39)
which satisfy the initial conditions
t' =5 when t=0.

Proof: Let

Pt,s) (W) and  Q(t,5) = (W)

denote r X r matrices and consider the relations

¢i(0a¢(t’ 8)) = ¢i(¢(07t)75)’ t=1,...,m (40)
Differentiate (40) successively with respect to ¢, . . ., ¢, to obtain the relationship
Q(o, ¢(t,5)) P(t,s) = P(¢(0,t),s) Q(o,1) (41)
and then with respect to o1, ..., 0, to find
P(o,¢(t, s)) = P(¢(0,1), ) P(0, ). (42)
The matrices P and Q are invertible. Set
Qt,s) = P~\(0,4) Q(o1) (43)

and in the computation below let

t'=¢(t,s) and t" = ¢(o,t).
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Then by (41) and (42) and the definition (43)

Q' ¢) P(t,s) = P_l(a, ) Q(o,t') P(t,s) = P_l(o', tY P(t",s)Q(o,t)
-1

= (0,t") P(o,t') P71 (0,t) Q(o,t) = P (0,t) Q(o,t) = Q(t,0)

so that
Q' 0) P(t,s) = Q(t,0).
Set 0 = 0 and let
Q(t,0) = (wij(£))-

Then (44) becomes
0; .
wij(t') 7875; —wg(t), j=1,...,m
For s fixed
0,
dt, = L dt k=1,...
7 8tk k> 5 , T

so that if we multiply (45) by dt;, and sum over k, we get
w;(t') At = wj(t) dty, j=1,...,r

which was to be proven.

(44)

(45)

On the other hand, we can derive the associativity of the solution system, ¢(t, s),

from these differential equations. To see that, suppose
dw; = dwj
and let
t" = o(t', o), t'= ¢(t, s).

Then from what we have just proven,

" _ r )
dwj = dwj = dw; .

In particular, when ¢ = 0, t” = ¢(s, o). By the uniqueness of the solutions

t" = ¢(ta ¢(57 0))
and by the definition of ¢”
t" = ¢(¢(ta S)a U)

which proves the associativity of the system of functions ¢(t, s) which appear as

solutions to the Maurer-Cartan equations (39).

Proposition 8. The integrability conditions of the Maurer-Cartan equations (39)

are the equations (37).
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Proof: Rewrite the conditions dw] = dw;, where t' = ¢(t, s), as

0p; .
wij(t’) dt; = wij(t') afk dtk = wij(t) dtk, 75 k= 1, e, T
so that the integrability conditions are

O (2% _ o)) = 2 (i 2% _ _

61;1 <wl](t) atk wlk(t)) - atk» (wlj(t) 375; W'Ll(t)>7 .] - 1,...77"
that is

8wij(t’) 8¢m % _ awij(t/) 8¢m % _ awik . 8Wz‘l m ] — 1.

ot ot oty ot oty ot, 0t oty

by the chain rule. In the first part of the summation, sum first with respect to j and
then with respect to m, and in the second, sum first with respect to m and then with
respect to j. Rewriting as a single sum, now yields

Owi,  Owyy _ <8wij(t’) B Owim (1) ) 09; Odm,

m,j=1,...,7. (46)

ot Oty ot!, ot ot, ot
Now by (46), the 0¢; /Ot}, are the components of a matrix given by
_ a¢j(t7 S) O=1/y
P(t,s) = (Tk) — QL. 0)w(t, 0).

The matrix Q~1(#,0) is given by
Q7H(,0) = (n(t)).
Moreover, 2(t,0) = (w;;(t)) so that after inserting these expressions into (46) and

using the definition (36) of the structure constants, we see that (46) is precisely the
condition (37). |

Remark 9. If the function defining the group operation satisfies
o(t,s) = o(s,t)
then the group is abelian and we can show that
dwi(t):wij(t)dtj, jzl,...,T

is a total differential. The solution to the Maurer-Cartan equations is obtained by
a quadrature and one gets

wi(t') = wi(t) + wi(s).
If we introduce the parameter
Ti = wi(t)
then
Ti’ =T+ 0
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where
T; :wi(t’), ag; :wi(s)
which are

STSO' = PO7+40-
In the case r = 1, the possibility of introducing an additive parameter follows
from the associative law, but if r > 2, the commutativity condition on the group
multiplication must be required in addition to associativity.

We now take up the proof of Theorem 6.

Proof of Theorem 6: Let’s first prove that the condition
Hy(x,z,p,t) = Kj(x, 2,p) wjk(t), j=1,...,r

is necessary in order that the H; generate a group of contact transformations. We
assume, therefore, that the family of contact transformations generated by the H;
forms a group and denote the function, describing the group operation, by ¢ so that

Sy Sy =Sy where t' = ¢(t,s). (47)
Let (29, 29, p%) and s be fixed but arbitrary, and set
(2, 2,p) = Sp(2°,2°,p") = S, (a?, 2, p°).

Then

p,,dx,,—dz:Egzlﬂj(az,z,p,t)dt/, v=1,...,n
and also

pydr, —dz=X"_ Hj(z,2,p,t)dt, v=1,...,n
hence together with (47)

Hj(a:,z,p,t')a(bg(?dtl:Hldtl, jl=1,...r
and consequently
S Hy (02,600 5) 20 = i, p.0),
Set ¢ =0 to find
s (o 2,9) 2 = Hi(e,2,,0) (43)

Now let

Kl(l'a z,p) = Hl('rv %5 Py 0)
and (wjx(s)) denote the components of the matrix inverse of (0¢(0, s)/0t;). Then
(48) becomes with s now replaced by ¢

Hy(x,z,p,t) = Kj(x,2,p) wji(t). (49)
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The (w;(t)) obviously has a nonzero determinant. The linear independence of the
K follows immediately from that of the H;.

Now let us show that the condition (31) is sufficient. In that case we are assuming
that the canonical system generated by the [ is integrable. We have seen that this
implies the validity of the Maurer relations (37), that is the system

dw} = dw; (50)
is integrable. Let

th = ¢(t> 8)
be a solution to (50) satisfying

#(0,s) = s.

We must prove that
(:I:v Zap) = St’(xoa ZO’pO)
and
(.T*, Z*ap*) = St Ss(xoa ZO’pO)
are equal when t' = ¢(t, s). Let s be fixed and arbitrary. We consider Sg(t,s) and
Sy S, as functions of . Fort = 0,
(z,2,p) = (%, 2", p*) = Ss(°, 2%,0°).

Both the (x, z,p) and (z*, 2*, p*) satisfy the same canonical equations, i.e., z sat-
isfies

OH' oK ;
_ J 34 _ J / .
dl’y—apy dtj—dew], j—l,...,’f’
OH* ,
dz? = jdt-zaKdej, j=1,...,r

v py ! Opy
and by (50) these systems are the same, hence by the uniqueness, = and z* are
equal. The other cases are similar, which proves the theorem. |

Theorem 6 is Lie’s first fundamental theorem proven in the case of contact trans-
formations.
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