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Abstract. This is a review of multiparameter families of contact transfor-
mations and their relationship with the generalized Hamiltonian system. We
derive the integrability conditions for the generalized Hamiltonian system
and show that when they are satisfied the solutions to this system determine
a family of multiparameter contact transformations of the initial conditions.
We prove a necessary and sufficient condition for a multiparameter family of
contact transformations to be a group and a characterization of the function
which describes the group multiplication rule.

1. Introduction

Let us begin by recalling a few facts about one parameter contact transformations.
Consider transformations of the (x, y, z, p, q)-space to the (X,Y, Z, P,Q)-space
defined by X = X(x, y, z, p, q), Y = Y (x, y, z, p, q), Z = Z(x, y, z, p, q),
P = P (x, y, z, p, q), Q = Q(x, y, z, p, q).

Definition 1. Let T be a one-to-one, onto, continuously differentiable transforma-
tion of the (x, y, z, p, q)-space to the (X,Y, Z, P,Q)-space with a nonzero Jaco-
bian. Then T is called a contact transformation if pdx + q dy − dz = 0 implies
P dX +Q dY − dZ = 0.

Theorem 1. The one-to-one, onto, continuously differentiable transformation T
of the (x, y, z, p, q)-space to the (X,Y, Z, P,Q)-space with a nonzero Jacobian
is a contact transformation if and only if there exists a nonzero function ρ =
ρ(x, y, z, p, q) such that

P dX +QdY − dZ = ρ(pdx+ q dy − dz). (1)
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Example 1. The Legendre transformation X = p, Y = q, P = x, Q = y,
Z = p x+ q y− z is a contact transformation. For it the function ρ in the previous
necessary and sufficient condition is ρ = −1.

Let now x = (x1, . . . , xn), p = (p1, . . . , pn) and St be a one-parameter family of
contact transformations

X = X(x, z, p, t)

Z = Z(x, z, p, t)

P = P (x, z, p, t)

where t is the parameter, X = (X1, . . . , Xn) stands for the images of x1, . . . , xn
under St, Z is the image of z under St and P = (P1, . . . , Pn) stands for the images
of p1, . . . , pn under St. The summation convention on repeated indices is used for
the rest of the paper. For one-parameter families of contact transformations the
necessary and sufficient condition (1) for a contact transformation is replaced by

Pi dXi − dZ = ρ
(
pi dxi − dz

)
+Hdt (2)

where
H = Pi

dXi

dt
− dZ

dt
·

In the 1930-s Gustav Herglotz proposed a generalized variational principle with
one independent variable, which generalizes the classical variational principle by
defining the functional z, whose extrema are sought, by the differential equation

dz

dt
= L

(
t, x(t),

dx(t)

dt
, z
)

(3)

where t is the independent variable, and x(t) ≡ (x1(t), . . . , xn(t)) stands for the
argument functions. In order for the equation (3) to define a functional z = z[x] of
x(t) equation (3) must be solved with the same fixed initial condition z(0) for all
argument functions x(t), and the solution z(t) must be evaluated at the same fixed
final time t = T for all argument functions x(t).
The equations whose solutions produce the extrema of this functional are

∂L

∂xk
− d

dt

∂L

∂ẋk
+

∂L

∂z

∂L

∂ẋk
= 0, k = 1, . . . , n (4)

where ẋk denotes dxk/dt. Herglotz called them generalized Euler-Lagrange
equations.
Remarkably, the solutions of the generalized Euler-Lagrange equations (4), when
written in terms of the dependent variables xk and the associated momenta pk =
∂L/∂ẋk, determine a family of contact transformations of the initial conditions.
In more detail, let’s write the defining equation (3) for the functional z and the
generalized Euler-Lagrange equations (4) in the following manner

ż = L(x1, . . . , xn, ẋ1, . . . , ẋn, z, t)
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ṗj = Lj + Lzpj , j = 1, . . . , n (5)

where we have denoted
∂L

∂xj
= Lj ,

∂L

∂ẋj
= pj .

Let (x0, ẋ0, z0) be the initial condition for the system (5) of n+ 1 ordinary differ-
ential equations for the functions x1(t), . . . , xn(t), z(t) . Then the solution of the
system (5) with this initial condition is

x = x(x0, ẋ0, z0, t)

ẋ = ẋ(x0, ẋ0, z0, t) (6)

z = z(x0, ẋ0, z0, t).

Theorem 2. Let L = L(x, ẋ, z, t) be such that

det

(
∂2L

∂ẋi∂ẋj

)
̸= 0.

Then the solution (6) of the system (5) defines a one-parameter family of contact
transformations.

A proof of this theorem can be found in [2].

2. Multiparameter Families of Contact Transformations

Let x = (x1, . . . , xn), p = (p1, . . . , pn) denote points in Rn so that (x, z, p) is a
point in a (2n + 1) – dimensional space. t = (t1, . . . , tr) will denote a system
of r parameters and f = f(f1, . . . , fn), g and h = (h1, . . . , hn) are functions of
(x0, z0, p0, t). We call

x = f(x0, z0, p0, t)

z = g(x0, z0, p0, t) (7)

p = h(x0, z0, p0, t)

an r-parameter family of contact transformations if, for each fixed t, the functions
f, g and h satisfy the condition

pi dxi − dz = ρ (p0i dx
0
i − dz0), ρ ̸= 0.

It is often convenient to write the transformation (7) in the form

(x, z, p) = St(x
0, z0, p0) (8)

to bring out the fact that the point (x0, z0, p0) is carried into the point (x, z, p). We
do not demand that the family of transformations {St} contains the identity, nor
that (x0, z0, p0) represent initial values. Rather, (x0, z0, p0) is a generic point in
the (2n+ 1) – dimensional space where the transformations are defined.
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Theorem 3. If {St} is an r-parameter family of contact transformations, then
there exist functions

Hj = Hj(x, z, p, t), j = 1, . . . , r (9)

such that the (x, z, p) of (7) satisfy the total canonical system

dxj =
∂Hk

∂pj
dtk, j = 1, . . . , n, k = 1, . . . , r

dz =
(
pj

∂Hk

∂pj
−Hk

)
dtk (10)

dpj = −
(∂Hk

∂xj
+ pj

∂Hk

∂z

)
dtk.

Proof: The transformations St must satisfy

pi dxi − dz = ρ (p0i dx
0
i − dz0), ρ ̸= 0 (11)

which is supposed to hold when the differentials are calculated only with resect to
the spatial variables. When x, z, p also depend on t1, . . . , tr, then

dz =
∂z

∂x0j
dx0j +

∂z

∂z0
dz0

∂z

∂p0j
dp0j +

∂z

∂tk
dtk, j = 1, . . . , n, k = 1, . . . , r.

Similarly for dxi. Hence the condition (11) is replaced by(
pi dxi − dz

)
−

(
pi
∂xi
∂tk

− ∂z

∂tk

)
dtk = ρ (p0i dx

0
i − dz0), ρ ̸= 0. (12)

From (7) we obtain
∂xi
∂tk

= ξik(x, z, p, t),
∂z

∂tk
= ζk(x, z, p, t),

∂pi
∂tk

= πik(x, z, p, t), i = 1, . . . , n.

Let us introduce the functions

Hk ≡ Hk(x, z, p, t) ≡ pi ξik(x, z, p, t)− ζk(x, z, p, t), k = 1, . . . , r. (13)

Then the relation (12) takes the form analogous to (2), namely

pi dxi − dz = ρ (p0i dx
0
i − dz0) +Hk dtk, ρ ̸= 0. (14)

If dtk = 0, k = 1, . . . , r, equation (14) reduces to (11). Equation (14) repre-
sents a system of (2n + r + 1) equations relating the variables (x, z, p, t) with
(x0, z0, p0, t), which is obtained by expanding the differentials and comparing co-
efficients.
Differentiate (14) with respect to tk and note that the differential operator d com-
mutes with the operator ∂/∂tk. This leads to

πjk dxj + pj dξjk − dζk = ρtk(p
0
j dx

0
j − dz0) +

∂Hl

∂tk
dtl. (15)
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From (15) and (14) we obtain

πjk dxj + pj dξjk − dζk −
∂Hl

∂tk
dtl =

ρtk
ρ
(pj dxj − dz −Hl dtl). (16)

From (13) we find

dHk = ξjk dpj + pj dξjk − dζk, j = 1, . . . , n

so that (16) takes the form

dHk + πjk dxj − ξjk dpj =
ρtk
ρ
(pj dxj − dz) +

(∂Hl

∂tk
− ρtk

ρ
Hl

)
dtl. (17)

Expand dHk in the form

dHk =
∂Hk

∂xj
dxj +

∂Hk

∂z
dz +

∂Hk

∂pj
dpj +

∂Hk

∂tl
dtl

insert it into (17) and compare coefficients to obtain the following system

∂Hk

∂xj
=− πjk +

ρtk
ρ

pj ,
∂Hk

∂pj
= ξjk

∂Hk

∂z
=− ρtk

ρ
,

∂Hk

∂tl
=
∂Hl

∂tk
− ρtk

ρ
Hl.

(18)

We now obtain expressions for ξjk, πjk and ζk. From (18) by eliminating the quo-
tient ρtk/ρ we get

πjk = −∂Hk

∂xj
− pj

∂Hk

∂z

ξjk =
∂Hk

∂pj

ζk = −Hk + pj ξjk = −Hk + pj
∂Hk

∂pj
·

�

The functions Hj(x, z, p, t) of (9) characterize the particular family of contact
transformations and are called characteristic or Hamiltonian functions. Although
they may be derived from (7) as indicated, in practical problems one is usually
faced with the converse problem of constructing the family (7) or (8) from (10)
given (9). In order to carry out the integrations, the Hjs must satisfy certain in-
tegrability conditions. To obtain them, it is convenient to rewrite the system (10)
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as
∂xj
∂tk

=
∂Hk

∂pj
, j = 1, . . . , n, k = 1, . . . , r

∂z

∂tk
= pj

∂Hk

∂pj
−Hk (19)

∂pj
∂tk

= −∂Hk

∂xj
− pj

∂Hk

∂z
·

To formulate the integrability conditions, it is advantageous to introduce the bracket
symbol

[F,G]xzp = {F,G}xzp + F
∂G

∂z
−G

∂F

∂z
(20)

where {F,G}xzp denotes the Mayer bracket of two functions F and G. Recall that
the Mayer bracket of the functions f and g is

{f, g}xzp =
( ∂f

∂xj
+ pj

∂f

∂z

) ∂g

∂pj
−
( ∂g

∂xj
+ pj

∂g

∂z

) ∂f

∂pj
·

When written out (20) becomes

[F,G]xzp =
∂F

∂xi

∂G

∂pi
− ∂F

∂pi

∂G

∂xi
+

∂F

∂z

(
pi
∂G

∂pi
−G

)
− ∂G

∂z

(
pi
∂F

∂pi
− F

)
.

This bracket symbol also satisfies the Jacobi identity

[F, [G,H]] + [G, [H,F ]] + [H, [F,G]] = 0. (21)

Next let us define the symbols

Hkl ≡ [Hk, Hl]xzp +
∂Hk

∂tl
− ∂Hl

∂tk
· (22)

The integrability conditions require that the second mixed partials of the functions
xj , z, pj with respect to the t variables are equal. A calculation making use of (19),
(21) and the definition (22) yields the relations

∂2

∂tl∂tk
xj −

∂2

∂tk∂tl
xj =

∂

∂pj
Hkl

∂2

∂tl∂tk
pj −

∂2

∂tk∂tl
pj = − ∂

∂xj
Hkl + pj

∂

∂z
Hkl (23)

∂2

∂tl∂tk
z − ∂2

∂tk∂tl
z = pj

∂

∂pj
Hkl −Hkl.

In order to force the right hand sides of (23) to be zero in these expressions, we see
that the Hkl must vanish, which in view of (22) says

[Hk,Hl] =
∂Hl

∂tk
− ∂Hk

∂tl
(24)
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which are the integrability conditions.
To prove the next theorem we need the following

Lemma 4. Let F = F (x, z, p, t) where (x, z, p) satisfy (10) or equivalently (19).
Then the differential

dF =
(
[F,Hi]xzp − F

∂Hi

∂z
+

∂F

∂ti

)
dti (25)

or in terms of components
∂F

∂ti
= [F,Hi]xzp − F

∂Hi

∂z
+

∂F

∂ti
· (26)

Proof: Calculate the differential using (10) to obtain

dF =
∂F

∂xj
dxj +

∂F

∂z
dz +

∂F

∂pj
dpj +

∂F

∂ti
dti =

∂F

∂xj

∂Hi

∂pj
dti

+
∂F

∂z

(
pj

∂Hi

∂pj
−Hi

)
dti −

∂F

∂pj

(∂Hi

∂xj
+ pj

∂Hi

∂z

)
dti +

∂F

∂ti
dti.

The formula for the differential follows after some rearranging. �

If we now use (26) to calculate the second derivatives, we find

∂2F

∂tl∂tk
− ∂2F

∂tk∂tl
= [F,Hkl]xzp − F

∂Hkl

∂z
· (27)

Next we state and prove the converse of Theorem 3.

Theorem 5. Suppose the total canonical system (10) is given where the char-
acteristic functions satisfy the integrability conditions (24). Then the family of
transformations {St} obtained by solving (10) subject to the initial conditions

(x, z, p)|t=0 = (x0, z0, p0)

is an r-parameter family of contact transformations.

Proof: We define the linear differential form

ω = pj dxj − dz −Hi dti, j = 1, . . . , n, i = 1, . . . , r (28)

when t = 0, i.e., t = (t1, . . . , tn) = (0, . . . , 0), ω goes over into

ω0 = p0j dx
0
j − dz0, j = 1, . . . n.

Define
Hk = pj

∂xj
∂tk

− ∂z

∂tk
, k = 1, . . . , r.

Then using (19) and (28) we get

dω =
∂ω

∂ti
dti =

(∂pj
∂ti

dxj + pj d
∂xj
∂ti

− d
∂z

∂ti
− ∂Hk

∂ti
dtk

)
dti
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= −
(∂Hi

∂xj
dxj +

∂Hi

∂pj
dpj +

∂Hi

∂z
dz +

∂Hi

∂tk
dtk

)
dti

+
(∂Hi

∂z
dz − ∂Hi

∂z
pjdxj +

∂Hi

∂tk
dtk

)
dti

= −dHi dti −
∂Hi

∂z
ω dti +

(∂Hi

∂tk
− ∂Hi

∂z
Hk

)
dtk dti.

Next we calculate using (19)

dHi dti =
∂Hi

∂tk
dtkdti =

(∂Hi

∂tk
− ∂Hi

∂z
Hk

)
dtk dti.

Thus, we obtain

dω = −ω
∂Hi

∂z
dti, i = 1, . . . , r. (29)

This equation is integrable because it satisfies (27) by hypothesis, i.e.,

∂2ω

∂tk∂ti
− ∂2ω

∂ti∂tk
= [ω,Hik]xzp − ω

∂

∂z
Hik = 0

by the integrability condition.
Now let t be a permissible value for the functions in question. We determine the
function

ρ = ρ(x0, z0, p0, t)

from the equation

ln ρ = −
∫
Γ[0,t]

∂Hk

∂z
dtk, k = 1, . . . , r

where the integral is taken over a path Γ, connecting 0 and t. Because of the
integrability conditions, the integral is independent of the path. Exponentiate to
find for ρ the expression

ρ = exp
(
−

∫
Γ[0,t]

∂Hk

∂z
dtk

)
, k = 1, . . . , r

and set
ω = ρω0. (30)

By carrying out the differentiations, it is easy to verify that ω defined by (30)
satisfies the total differential equation (29). But (30) is simply

pj dxj − dz = ρ (p0j dx
0
j − dz0) +Hi dti, j = 1, . . . , n, i = 1, . . . , r

which completes the proof of the assertion.
�



Multiparameter Contact Transformations 95

3. Multiparameter Groups of Contact Transformations

In this section the letters t, s, etc., will denote the r−tuples (t1, . . . , tr), (s1, . . . sr),
etc. The value t = 0 will correspond to the identity transformation.

Definition 2. An r-parameter group of contact transformations is a family, {St},
of contact transformations which satisfies the following conditions

1. The family includes an identity element, S0, called the identity
2. There is an operation called multiplication such that if St and Ss are ele-

ments of the family, there exists an element, Sσ, of the family, such that

Sσ = StSs.

This multiplication is determined by a smooth function

ϕ = (ϕ1, . . . , ϕr)

of the variables (t, s).
3. StS0 = S0St = St, that is

ϕ(t, 0) = ϕ(0, t) = t

and the Jacobi determinant
∂(ϕ1(t, s), . . . , ϕr(t, s))

∂(t1, . . . , tr)
̸= 0

for t, s near 0. In particular, ϕ(0, 0) ̸= 0.
4. The associative law holds, that is

St(Ss Sσ) = (St Ss)Sσ

in other words, ϕ satisfies

ϕ(t, ϕ(s, σ)) = ϕ(ϕ(t, s), σ).

The Condition 3 implies the existence of an inverse, because the equation

Sσ St = S0

or more precisely
ϕ(σ, t) = 0

is solvable for σ in terms of t. In operator notation, let

Sσ = S−1
t

denote that solution. We must show that also

StSσ = S0.

For this calculation let S∗
σ be such that S∗

σSσ = S0 . Then

StSσ = S0(StSσ) = (S∗
σSσ)(StSσ) = S∗

σ(SσSt)Sσ = S∗
σSσ = S0
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so that Sσ = S−1
t is both a right and a left inverse and the standard group axioms

hold. S−1
t is easily seen to be unique and moreover we find that

∂(ϕ(t, s))

∂(s)
̸= 0 for t, s near 0.

After these preliminaries we state the main theorem of this section.

Theorem 6. In order that an r-parameter family, {St}, of contact transformations
be a group, it is necessary and sufficient that the characteristic functions, Hk, have
the form

Hk = Hk(x, z, p, t) = Ki(x, z, p)ωik(t), i, k = 1, . . . , r. (31)

Here the Ki are independent of t and the ωik depend only on t. Moreover the
functionsK1, . . . ,Kr are linearly independent, and the determinant of the r × r
matrix (ωik) is nonzero.

Before giving a proof of this theorem, we first make a few observations.
Let us set

dωi = ωik dtk, i, k = 1, . . . , r

so that (31) takes the form

Hk dtk = Ki dωi, i, k = 1, . . . , r.

The differential form
Hk dtk, k = 1, . . . , r

is integrable and by the (24) the integrability conditions are

[Hk,Hl]xzp =
∂Hl

∂tk
− ∂Hk

∂tl
· (32)

If the Hk are given by (31) then (32) has the form

[Kk,Kl]xzp ωkα ωlβ = Kk

(∂ωkβ

∂tα
− ∂ωkα

∂tβ

)
, k, l = 1 . . . r. (33)

Since det(ωij) ̸= 0, the matrix (ωij) has an inverse which we denote by (ηij).
Consequently,

ωik ηkj = δij , ηik ωkj = δij , i, j, k = 1, . . . , r (34)

where δij is the Kronecker delta. Multiply (33) by ηαρ and ηβσ, sum over α and β,
and use (34) to get

[Kρ,Kσ] = cρσj Kj , ρ, σ, j = 1, . . . , r (35)

where

cρσj =
(∂ωjβ

∂tα
− ∂ωjα

∂tβ

)
ηαρηβσ, α, β = 1 . . . r. (36)
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Now multiply (36) by ωρk ωσl, sum over ρ and σ and use (34) to find

∂ωjl

∂tk
−

∂ωjk

∂tk
= cρσj ωρk ωσl, ρ, σ = 1, . . . , r. (37)

The formulae (35) and (37) are the Maurer relations. The cρσj are independent
of (x, z, p) by their definition, but apparently may depend on t. In fact they are
all constant – the structure constants of the group. From their definition, cρσj are
antisymmetric in the first two indices

cρσj + cσρj = 0.

They also satisfy a Jacobi type identity

cikαcjαm + ckjαciαm + cjiαckαm = 0, α = 1, . . . , r. (38)

The next theorem characterizes the function ϕ = ϕ(t, s), which describes the mul-
tiplication rule for the multiparameter group of transformations.

Theorem 7. The function describing the group operation

t′ = ϕ(t, s)

is determined by the Maurer-Cartan system of total differential equations

ωij(t
′) dt′j = ωij(t) dtj , j = 1, . . . , r, briefly dω′

i = dωi (39)

which satisfy the initial conditions

t′ = s when t = 0.

Proof: Let

P (t, s) =
(∂ϕi(t, s)

∂tj

)
and Q(t, s) =

(∂ϕi(t, s)

∂sj

)
denote r × r matrices and consider the relations

ϕi(σ, ϕ(t, s)) = ϕi(ϕ(σ, t), s), i = 1, . . . , r. (40)

Differentiate (40) successively with respect to t1, . . . , tr to obtain the relationship

Q(σ, ϕ(t, s))P (t, s) = P (ϕ(σ, t), s)Q(σ, t) (41)

and then with respect to σ1, . . . , σr to find

P (σ, ϕ(t, s)) = P (ϕ(σ, t), s)P (σ, t). (42)

The matrices P and Q are invertible. Set

Ω(t, s) = P−1(σ, t)Q(σ, t) (43)

and in the computation below let

t′ = ϕ(t, s) and t′′ = ϕ(σ, t).
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Then by (41) and (42) and the definition (43)

Ω(t′, ϕ)P (t, s) = P−1(σ, t′)Q(σ, t′)P (t, s) = P−1(σ, t′)P (t′′, s)Q(σ, t)

= P−1(σ, t′)P (σ, t′)P−1(σ, t)Q(σ, t) = P−1(σ, t)Q(σ, t) = Ω(t, σ)

so that
Ω(t′, σ)P (t, s) = Ω(t, σ). (44)

Set σ = 0 and let
Ω(t, 0) = (ωij(t)).

Then (44) becomes

ωij(t
′)
∂ϕi

∂tk
= ωik(t), j = 1, . . . , r. (45)

For s fixed

dt′j =
∂ϕj

∂tk
dtk, k = 1, . . . , r

so that if we multiply (45) by dtk and sum over k, we get

ωj(t
′) dt′j = ωj(t) dtj , j = 1, . . . , r

which was to be proven. �

On the other hand, we can derive the associativity of the solution system, ϕ(t, s),
from these differential equations. To see that, suppose

dω′
j = dωj

and let
t′′ = ϕ(t′, σ), t′ = ϕ(t, s).

Then from what we have just proven,

dω′′
j = dω′

j = dωj .

In particular, when t = 0, t′′ = ϕ(s, σ). By the uniqueness of the solutions

t′′ = ϕ(t, ϕ(s, σ))

and by the definition of t′′

t′′ = ϕ(ϕ(t, s), σ)

which proves the associativity of the system of functions ϕ(t, s) which appear as
solutions to the Maurer-Cartan equations (39).

Proposition 8. The integrability conditions of the Maurer-Cartan equations (39)
are the equations (37).
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Proof: Rewrite the conditions dω′
i = dωi, where t′ = ϕ(t, s), as

ωij(t
′) dt′j = ωij(t

′)
∂ϕi

∂tk
dtk = ωij(t) dtk, j, k = 1, . . . , r

so that the integrability conditions are

∂

∂tl

(
ωij(t

′)
∂ϕj

∂tk
− ωik(t)

)
=

∂

∂tk

(
ωij(t

′)
∂ϕj

∂tl
− ωil(t)

)
, j = 1, . . . , r

that is
∂ωij(t

′)

∂t′m

∂ϕm

∂tl

∂ϕj

∂tk
− ∂ωij(t

′)

∂t′m

∂ϕm

∂tk

∂ϕj

∂tl
=

∂ωik

∂tl
− ∂ωil

∂tk
, m, j = 1, . . . , r

by the chain rule. In the first part of the summation, sum first with respect to j and
then with respect to m, and in the second, sum first with respect to m and then with
respect to j. Rewriting as a single sum, now yields

∂ωik

∂tl
− ∂ωil

∂tk
=

(∂ωij(t
′)

∂t′m
− ∂ωim(t′)

∂t′j

) ∂ϕj

∂tk

∂ϕm

∂tl
, m, j = 1, . . . , r. (46)

Now by (46), the ∂ϕj/∂tk are the components of a matrix given by

P (t, s) =
(∂ϕj(t, s)

∂tk

)
= Ω−1(t′, 0)ω(t, 0).

The matrix Ω−1(t′, 0) is given by

Ω−1(t′, 0) = (ηij(t
′)).

Moreover, Ω(t, 0) = (ωij(t)) so that after inserting these expressions into (46) and
using the definition (36) of the structure constants, we see that (46) is precisely the
condition (37). �

Remark 9. If the function defining the group operation satisfies

ϕ(t, s) = ϕ(s, t)

then the group is abelian and we can show that

dωi(t) = ωij(t) dtj , j = 1, . . . , r

is a total differential. The solution to the Maurer-Cartan equations is obtained by
a quadrature and one gets

ωi(t
′) = ωi(t) + ωi(s).

If we introduce the parameter
τi = ωi(t)

then
τ ′i = τi + σi
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where
τ ′i = ωi(t

′), σi = ωi(s)

which are
SτSσ = Sτ+σ.

In the case r = 1, the possibility of introducing an additive parameter follows
from the associative law, but if r ≥ 2, the commutativity condition on the group
multiplication must be required in addition to associativity.

We now take up the proof of Theorem 6.

Proof of Theorem 6: Let’s first prove that the condition

Hk(x, z, p, t) = Kj(x, z, p)ωjk(t), j = 1, . . . , r

is necessary in order that the Hj generate a group of contact transformations. We
assume, therefore, that the family of contact transformations generated by the Hj

forms a group and denote the function, describing the group operation, by ϕ so that

St Ss = St′ where t′ = ϕ(t, s). (47)

Let (x0, z0, p0) and s be fixed but arbitrary, and set

(x, z, p) = St′(x
0, z0, p0) = StSs(x

0, z0, p0).

Then
pν dxν − dz = Σr

j=1Hj(x, z, p, t) dt
′, ν = 1, . . . , n

and also

pν dxν − dz = Σr
j=1Hj(x, z, p, t) dt, ν = 1, . . . , n

hence together with (47)

Hj(x, z, p, t
′)
∂ϕj(t, s)

∂tl
dtl = Hl dtl, j, l = 1, . . . , r

and consequently

Σr
j=1Hj(x, z, p, ϕ(t, s))

∂ϕ(t, s)

∂tl
= Hl(x, z, p, t).

Set t = 0 to find

Σr
j=1Hj(x, z, p, s)

∂ϕ(0, s)

∂tl
= Hl(x, z, p, 0). (48)

Now let
Kl(x, z, p) = Hl(x, z, p, 0)

and (ωjk(s)) denote the components of the matrix inverse of (∂ϕ(0, s)/∂tl). Then
(48) becomes with s now replaced by t

Hk(x, z, p, t) = Kj(x, z, p)ωjk(t). (49)
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The (ωjk(t)) obviously has a nonzero determinant. The linear independence of the
Kj follows immediately from that of the Hj .
Now let us show that the condition (31) is sufficient. In that case we are assuming
that the canonical system generated by the Hj is integrable. We have seen that this
implies the validity of the Maurer relations (37), that is the system

dω′
j = dωj (50)

is integrable. Let
t′ = ϕ(t, s)

be a solution to (50) satisfying

ϕ(0, s) = s.

We must prove that
(x, z, p) = St′(x

0, z0, p0)

and
(x∗, z∗, p∗) = St Ss(x

0, z0, p0)

are equal when t′ = ϕ(t, s). Let s be fixed and arbitrary. We consider Sϕ(t,s) and
St Ss as functions of t. For t = 0,

(x, z, p) = (x∗, z∗, p∗) = Ss(x
0, z0, p0).

Both the (x, z, p) and (x∗, z∗, p∗) satisfy the same canonical equations, i.e., x sat-
isfies

dxν =
∂H ′

j

∂pν
dt′j =

∂Kj

∂pν
dω′

j , j = 1, . . . , r

dx∗ν =
∂H∗

j

∂pν
dtj =

∂Kj

∂pν
dωj , j = 1, . . . , r

and by (50) these systems are the same, hence by the uniqueness, x and x∗ are
equal. The other cases are similar, which proves the theorem. �

Theorem 6 is Lie’s first fundamental theorem proven in the case of contact trans-
formations.
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