
Fourteenth International Conference on
Geometry, Integrability and Quantization
June 8–13, 2012, Varna, Bulgaria
Ivaïlo M. Mladenov, Andrei Ludu
and Akira Yoshioka, Editors
Avangard Prima, Sofia 2013, pp 61–73
doi: 10.7546/giq-14-2013-61-73

HARMONIC ANALYSIS ON LAGRANGIAN MANIFOLDS
OF INTEGRABLE HAMILTONIAN SYSTEMS

JULIA BERNATSKA and PETRO HOLOD

Department for Mathematical and Physical Sciences, National University of
Kyiv-Mohyla Academy 2, Skovorody Str., Kyiv 04655, Ukraine

Abstract. For an integrable Hamiltonian system we construct a representa-
tion of the phase space symmetry algebra over the space of functions on a
Lagrangian manifold. The representation is a result of the canonical quanti-
zation of the integrable system using separating variables. The variables are
chosen in such way that half of them parameterizes the Lagrangian mani-
fold, which coincides with the Liouville torus of the integrable system. The
obtained representation is indecomposable and non-exponentiated.

1. Introduction

The problem of quantization on a Lagrangian manifold has arisen from the theory
of geometric quantization [4]. But the question how to choose a proper Lagrangian
manifold remains open. Dealing with a dynamical system we use its Liuoville torus
as a Lagrangian manifold. This choice guarantees that the representation space
consists of holomorphic functions - functions on the special Lagrangian manifold
whose complexification serves as a phase space of the system.
According to the orbit method one can construct an integrable soliton hierarchy
(hierarchy of equations of soliton type) on the orbits of a loop group [3]. Finite
gap phase spaces for the integrable hierarchy appeared to consist of orbits of finite
quotient algebras corresponding to the loop group. On such phase spaces one can
introduce canonical separating variables (Darboux coordinates), which represent
points of a spectral curve [2]. The curve is hyperelliptic for many interesting in-
tegrable systems. A half of the separating variables parametrizes the Lagrangian
manifold which is the Liouville torus for the integrable system in question, and the
complexified Lagrangian manifold serves as a generalized Jacobian of the spectral
curve.
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Canonical quantization in terms of the variables of separation gives rise to a rep-
resentation for the symmetry group of the phase space. We construct such repre-
sentation in the space of holomorphic functions on the complexified Lagrangian
manifold, and perform a harmonic analysis of the representation for the system of
isotropic Landau-Lifshits equation (for a finite gap phase space).

2. Preliminaries

We deal with systems on orbits of the loop algebra g̃= sl(2,C)×P(z, z−1). In
particular, on these orbits one can construct the integrable heirarchies of modi-
fied Korteweg-de Vries equation, sin(sh)-Gordon equation, nonlinear Schrödinger
equation, and isotropic Landau-Lifshits equation, for more details see [2]. The
systems obey the Lax equation

dL(z)

dt
= [A(z), L(z)], g̃∗ ∋ L(z) =

(
α(z) β(z)
γ(z) −α(z)

)
α(z) =

N∑
j=0

αjz
j , β(z) =

N∑
j=0

βjz
j , γ(z) =

N∑
j=0

γjz
j

where αN , βN , γN are constant. The matrix A∈ g̃ defines a heirarchy. For ex-
ample, the hierarchy of the Landau-Lifshits equation is obtained by means of the
matrix

A(z) = −1

z

(
α1 β1
γ1 −α1

)
− 1

z2

(
α0 β0
γ0 −α0

)
.

2.1. Phase Space of the Integrable System

According to the Kostant-Adler scheme, the coadjoint action of finite quotient al-
gebra g×P(zν , . . . , zν+N−1) over the finite subspace MN ≡ g∗×P(1, z, . . . ,
zN ) of g̃∗ produces a set of orbits ON ∈MN , which serves as an N -gap phase
space of an integrable system. Choosing different ν, one can construct different
Hamiltonian systems generated by a series of Poisson structures.
The Lax equation guarantees that evolution of a system preserves the spectrum of
matrix L. Thus the quantities TrLk are automatically constants of motion, and one
gets as many as the order of L. A half of these constants defines an orbit ON , the
rest forms a complete set of integrals of motion, which we call Hamiltonians.
All such systems are algebraic integrable, that is integrable in Kowalewska sense:
every solution of the system admits a holomorphic continuation in time. So every
solution is associated with a Riemannian surface R. The constant spectrum of L
provides existence of a spectral curve, which is usually defined by the equation

det(L(z)− w) = 0.
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The spectral curve serves as the Riemannian surface R from the definition of inte-
grability in Kowalewska sense.

As mentioned above, the orbits ON form the phase space of an integrable system.
On the other hand, the phase space is the Abelian torus arising as a complexi-
fication of the Liouville torus of the system. The complexified Liouville torus
coincides with a generalized Jacobian of the mentioned Reimannian surface R

J̃ac(R) = SymmN R×R× · · · × R︸ ︷︷ ︸
N

, N > g

where g is the genus of R. The necessity of generalization arises in hierarchies of
soliton type equations because the number N of gaps is usually greater than g, see
[7] for finite gap systems of the nonlinear Schrödinger hierarchy.

2.2. Separation of Variables and Quantization

Original variables in the phase space are coefficients of the polynomials γ, β, α
which are the entries of the matrix L. The set of coefficients {γj ; j=0, . . . , N}
are eliminated by means of orbit equations. So {βj , αj ; j=0, . . . , N − 1} serve
as independent variables, and normally they are not canonically conjugate.

In order to construct a Lagrangian manifold, it is suitable to find conjugate vari-
ables. We use the scheme from [2] and the idea is the following. Let {zk, wk ;
k=1, . . . , N} be a set of separation variables. If one requires every conjugate pair
(zk, wk) to be a point of the spectral curve, then {zk} should be the roots of the
polynomial β.

The proposed scheme enables to construct variables of separation. Then we define
a Lagrangian manifold as the submanifold parameterized by {zk ; k=1, . . . , N}
(all wk are fixed), it coincides with the Liouville torus of the system in question.

Quantization in the Schrödinger picture

zk 7→ ẑk, wk 7→ ŵk =−i
∂

∂zk
, {zk, wl}= δkl 7→ [ẑk, ŵl] = iδkl I

in a very natural way gives a representation of the algebra corresponding to the
phase space symmetry group, which we call the phase space symmetry algebra.
The obtained algebra representation is realized by differential operators of high
order (higher than one), and so can not be exponentiated to a group. This happens
because we restrict the domain of functions from the phase space to a Lagrangian
manifold. This is the difference from the standard geometric quantization.
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3. The Integrable System of Isotropic Landau-Lifshits Equation

Here we consider the two-gap system from the hierarchy of isotropic Landau-
Lifshits equation, also called the continuous Heisenberg magnetic chain

∂µ

∂t
=

1

2c0

[
µ,

∂2µ

∂x2

]
+

c1
2c0

∂µ

∂x
(1)

where the vector µ describes the magnetization and c0, c1 are constants and [., .]
denotes the cross product.

3.1. The Phase Space and its e(3) Structure

The Lax matrix L looks as follows

L(z) =

(
iµ3(z) µ1(z)− iµ2(z)

−µ1(z)− iµ2(z) −iµ3(z)

)
µ1,2(z) =

N−1∑
j=0

µ
(j)
1,2z

j , µ3(z) =
1

2
zN +

N−1∑
j=0

µ
(j)
3 zj .

The vector
(
µ
(0)
1 , µ

(0)
2 , µ

(0)
3

)
=µ obeys the Landau-Lifshits equation (1). In the

case of two-gap system (N =2) one has

µ1(z) = µ
(0)
1 + µ

(1)
1 z

µ2(z) = µ
(0)
2 + µ

(1)
2 z

µ3(z) = µ
(0)
3 + µ

(1)
3 z + z2/2.

The coefficients {µ(0)
1,2,3, µ

(1)
1,2,3} serve as dynamical variables, they form a phase

space, which we equip with the Poisson structure

{µ(0)
k , µ

(0)
l } = 0, {µ(0)

k , µ
(1)
l } = εkljµ

(0)
j , {µ(1)

k , µ
(1)
l } = εkljµ

(1)
j . (2)

This is e(3) algebra structure, therefore the Euclidian group E(3) serves as a phase
space symmetry group of the system. We also call e(3) the phase space symme-
try algebra.
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The invariance of the spectrum of the matrix L spectrum provides constants of
motion: h0, h1, h2, h3 obtained from the equation

z4/4 + h3z
3 + h2z

2 + h1z + h0 = −TrL2(z) = const

h0 = (µ(0),µ(0)) µ(0) ≡ (µ
(0)
1 , µ

(0)
2 , µ

(0)
3 )

h1 = 2(µ(1),µ(0)) µ(1) ≡ (µ
(1)
1 , µ

(1)
2 , µ

(1)
3 )

h2 = (µ(1),µ(1)) + µ
(0)
3

h3 = µ
(1)
3 .

The functions h0, h1 annihilate the Lie-Poisson bracket, they define an orbit O

h0 = c0, h1 = c1

where c0 and c1 are arbitrary constants. The functions h2, h3 serve as integrals of
motion called Hamiltonians.
The spectral curve, which is the Riemannian surface R, is of genus two

z4w2 = z4/4 + h3z
3 + h2z

2 + c1z + c0.

In what follows we change notations from µ(0) and µ(1) to p and L vectors

µ(0) ≡ p, µ(1) ≡ L.

Then the orbit equations get the form

p2 = c0, (p,L) = c1/2. (3)

Evidently, the orbit is a bundle of the planes specified by the second equation in
(3), over the sphere given by the first equation. Using different values of c0 and
c1 one obtains a set of orbits. All such orbits form the phase space of the system.
There exists a degenerate orbit collapsed into the point p=0, that corresponds to
the case c0=0, c1=0.
In the new notations the Hamiltonians look as follows

h2 = L2 + p3, h3 = L3.

3.2. Canonical Quantization

In order to obtain a representation of the phase space symmetry algebra we use
the canonical quantization (see Preliminaries). By separation of variables we pre-
pare the system for quantization, which gives a representation over the space of
functions on the Lagrangian manifold formed by a half of conjugate variables.
Separating variables are obtained in the following way, for more details see [2].
According to the scheme, the variables z1, z2 are roots of the polynomial β. But



66 Julia Bernatska and Petro Holod

this is a polynomial of degree one in our case. The situation is improved by means
of the similarity transformation

P−1L(z)P =

(
iµ2(z) µ1(z) + iµ3(z)

−µ1(z) + iµ3(z) −iµ2(z)

)
, P =

1√
2

(
1 −1
1 1

)
.

Now the polynomial µ1(z)+ iµ3(z) has two roots - z1 and z2. The conjugate
variables are calculated by the formula wk = iµ2(zk)/z

2
k. Explicit expressions for

all dynamic variables are given by the formulas

p1 = i

(
z1z2
4

− c0
z1z2

− z1z2(z1w1 − z2w2)
2

(z1 − z2)2

)
p2 = iz1z2

z1w1 − z2w2

z1 − z2

p3 =
z1z2
4

+
c0
z1z2

+
z1z2(z1w1 − z2w2)

2

(z1 − z2)2

L1 = i

(
−z1 + z2

4
− c1

z1z2
− c0(z1 + z2)

z21z
2
2

+
z21w

2
1 − z22w

2
2

z1 − z2

)
L2 = −i

z21w1 − z22w2

z1 − z2

L3 = −z1 + z2
4

+
c1
z1z2

+
c0(z1 + z2)

z21z
2
2

− z21w
2
1 − z22w

2
2

z1 − z2
·

After the canonical quantization: zk 7→ ẑk, wk 7→ ŵk =−i∂/∂zk and checking com-
mutation relations we come to a representation of the Lie algebra e(3). We write
the algebra in the form

e(3) = {L̂3, L̂± = L̂1 ± iL̂2, p̂3, p̂± = p̂1 ± ip̂2}

[L̂3, L̂±] = ±L̂±, [L̂+, L̂−] = 2L̂3, [p̂3, p̂±] = 0, [p̂+, p̂−] = 0

[L̂3, p̂±] = [p̂3, L̂±] = ±p̂±, [L̂+, p̂−] = [p̂+, L̂−] = 2p̂3.
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The representation of e(3) is the following

L̂3 =
z21

z1 − z2

(
∂2

∂z21
− 1

4
− c1

z31
− c0

z41

)
− z22

z1 − z2

(
∂2

∂z22
− 1

4
− c1

z32
− c0

z42

)

L̂± =
iz21

z1 − z2

(
− ∂2

∂z21
− 1

4
+

c1
z31

+
c0
z41

∓ ∂

∂z1

)
iz22

z1 − z2

(
− ∂2

∂z22
− 1

4
+

c1
z32

+
c0
z42

∓ ∂

∂z2

)

p̂3 = − z1z2
(z1 − z2)2

(
z21

∂2

∂z21
+ z22

∂2

∂z22
− 2z1z2

∂2

∂z1∂z2

)
+

z1z2
4

+
c0
z1z2

+
2z21z

2
2

(z1 − z2)3

(
∂

∂z1
− ∂

∂z2

)

p̂± = i

[
z1z2

(z1 − z2)2

(
z21

∂2

∂z21
+ z22

∂2

∂z22
− 2z1z2

∂2

∂z1∂z2

)
+

z1z2
4

− c0
z1z2

− 2z21z
2
2

(z1 − z2)3

(
∂

∂z1
− ∂

∂z2

)
± z1z2

z1 − z2

(
z1

∂

∂z1
− z2

∂

∂z2

)]
.

One can easily see that L± and L3 admit separation of variables, but p± and p3
have not a good structure for separation.
Then we calculate the Hamiltonians, which also allow separation of variables

ĥ2 = − z21z2
z1 − z2

(
∂2

∂z21
− 1

4
− c0

z41
− c1

z31

)
+

z1z
2
2

z1 − z2

(
∂2

∂z22
− 1

4
− c0

z42
− c1

z32

)

ĥ3 =
z21

z1 − z2

(
∂2

∂z21
− 1

4
− c0

z41
− c1

z31

)
− z22

z1 − z2

(
∂2

∂z22
− 1

4
− c0

z42
− c1

z32

)
.

The obtained representation of e(3) is realized by differential operators of the sec-
ond order, therefore it can not be exponentiated to a group. This is a representation
over the space of smooth symmetric functions on the Lagrangian manifold.

4. Degenerate Orbit

Now we come to the harmonic analysis, which we develop with respect to the
subalgebra sl(2)⊂ e(3). Firstly we consider the simplest case of degenerate orbit,
collapsed into a point

p2 = 0, (p,L) = 0.
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Its spectral curve R is reduced to genus one: z2w2= z2/4+h3z+h2. As a re-
sult the operators L̂3, L̂± can be decomposed to one-particle operators. Then we
investigate the case of a generic orbit

p2 = c0, (p,L) = c1/2.

We construct a representation space and obtain quantization conditions.

4.1. Representation Space

We start from an action of sl(2)= {L̂+, L̂−, L̂3}. Thus, we solve the equation

L̂3f(z1, z2) = mf(z1, z2) (4)

by the method of separation of variables: f(z1, z2)=W1(z1)W2(z2). Both func-
tions W1, W2 obey the same equation

W ′′ +

(
−1

4
− m

z
− C

z2

)
W = 0

which is the Whittaker equation with C =µ2− 1/4 and solutions W−m,µ. If
C =m(m+1), the function f also serves as an eigenfunction of L̂2. We fix a value
of m and denote it by J , then µ=±(J +1/2). At µ=−(J +1/2) the Whittaker
function has a very simple form: W−J,−J−1/2(z)= z−Je−z/2. This brings to the
function

fJJ(z1, z2) = (z1z2)
−Je−(z1+z2)/2 (5)

L̂3fJJ = JfJJ , L̂2fJJ = J(J + 1)fJJ

which is annihilated by L̂+. We obtain the highest weight vector of the sl(2)

Verma module MJ produced by the action of L̂−

fJm(z1, z2) = iJ−m(J −m)!(z1z2)
−Je−(z1+z2)/2L−2J−1

J−m (z1 + z2)

where Lα
n denotes the associated Laguerre polynomial [10] and m = J, J−1, . . . .

Using the well known formula

Lα
n(z1)Lα

n(z2) =

n∑
k=0

(α+ k + 1) · · · (α+ n)
(z1z2)

k

k!
Lα+2k
n−k (z1 + z2) (6)

one can expand every function fJm into a sum of products W−m,µ(z1)W−m,µ(z2)
over µ from −(J +1/2) to −(m+1/2), in accordance with the variable separa-
tion method. The algebra {L̂+, L̂−, L̂3} acts in the following way

L̂3fJm = mfJm, L̂−fJm = fJ,m−1, L̂+fJm = (J −m)(J +m+ 1)fJ,m+1.
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The obtained Verma module has the invariant subspace M−J−1 with the highest
weight vector fJ,−J−1. Thus, a representation over the quotient V =MJ/M−J−1

is irreducible.

4.2. ‘Unitarization’ of sl(2) Representation

The obtained representation is not canonical. Reduction to a canonical represen-
tation we call ‘unitarization’, because normally this procedure brings to a unitary
group. On account of inability to exponentiate the proposed representation we use
quotation marks.
A canonical representation can be constructed by means of the intertwining opera-
tor Â defined as follows

f̃Jm≡ÂfJm =

√
Γ(J +m+ 1)

Γ(J −m+ 1)
fJm

= iJ−m
√

Γ(J +m+ 1)Γ(J −m+ 1)(z1z2)
−Je−(z1+z2)/2L−2J−1

J−m (z1 + z2).

Indeed, one easily checks that sl(2) algebra acts in canonical way

L̂±f̃Jm =
√

(J ∓m)(J ±m+ 1) f̃J,m±1, L̂3f̃Jm = mf̃Jm.

Also we make the basis {f̃Jm ;−J 6m6 J, J =0, 1, . . . } orthonormal by intro-
ducing the inner product

⟨f̃Jm, f̃Jn⟩ =
∫ ∞

0

∫ ∞

0

f̃∗
Jm(z1, z2)f̃Jn(z1, z2)

Γ(J −m+ 1)Γ(J +m+ 1)

× dz1dz2

z−J+1
1 z−J+1

2

∑J−n
i=0

Γ(−J+i)
i!

Γ(−n−i)
(J−n−i)!

= δnm.

Here we use the summation theorem and the orthogonal relation from [1]. One can
observe that ‘unitarization’ by means of the intertwining operator is equivalent to
the Shapovalov formula [8].

4.3. Action of p̂3, p̂±

With respect to the canonical representation one gets the following action of the
operators p̂3, p̂±

p̂+f̃Jm = −i
√
(J −m)(J −m− 1) f̃J−1,m+1

p̂3f̃Jm = −i
√

(J −m)(J +m) f̃J−1,m

p̂−f̃Jm = i
√

(J +m)(J +m− 1) f̃J−1,m−1
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in agreement with the abstract action formulas for e(3).

5. Generic Orbit

5.1. Representation Space

In the similar way we deal with a generic orbit. Again we start with the equation
(4), and come to a more complicate equation for the functions W1, W2

W ′′ +

(
−1

4
− m

z
− C

z2
− c1

z3
− c0

z4

)
W = 0. (7)

Requiring L̂+W (z1)W (z2)= 0, we find the following solution of (7)

W (z) = z−me−z/2+a/z

with an arbitrary a. In order to make this function an eigenfunction of L̂2 we
should assign C = J(J +1)+ a, c0= a2, c1=2a(J +1), we again use J for the
highest value of m. Then the highest weight vector has the form

fJJ(z1, z2) = (z1z2)
−Je−(z1+z2)/2+a/z1+a/z2 .

By the action of L̂− we produce the sl(2) Verma module MJ

fJm(z1, z2) = iJ−m(J −m)!(z1z2)
−Je−(z1+z2)/2+a/z1+a/z2L−2J−1

J−m (z1 + z2)

Being applied to the function fJm the formula (6) does not lead to a separation
variable expansion, because the function z−Je−z/2+a/zL−2J−1

J−m with m<J does
not obey (7).
Nevertheless, we obtain a proper representation of the algebra sl(2). Indeed, one
can easily check

L̂3fJm = mfJm, L̂−fJm = fJ,m−1, L̂+fJm = (J −m)(J +m+ 1)fJ,m+1

that coincides with the action formulas in the case of degenerate orbit (a=0).

5.2. Quantization

As shown above, one can quantize only certain orbits:
with an arbitrary value c0= a2 one should take the fixed
value c1=2a(J +1). The latter means that a projection
of L along p quantizes

prpL = J + 1.
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This result agrees with [5], where it is proven that a phase space admits quantiza-
tion if its symplectic form is integer

1

4π

∫
S2

ω ∈ Z .

Indeed, after restriction to the orbit (3) the Poisson bracket (2) becomes nonsin-
gular, and the restricting two-form ω is symplectic. Moreover, it is shown in [6]
that

1

4π

∫
S2

ω =
c1

2
√
c0

= J + 1

for the same Poisson structure on the same orbit as we consider.

5.3. ‘Unitarization’ of sl(2) Representation

Again we need to reduce the obtained representation to the canonical form, for this
purpose we use the same intertwining operator Â

f̃Jm≡ ÂfJm =

√
Γ(J +m+ 1)

Γ(J −m+ 1)
fJm = iJ−m

√
Γ(J +m+ 1)×

×
√

Γ(J −m+ 1)(z1z2)
−Je−(z1+z2)/2+a/z1+a/z2L−2J−1

J−m (z1 + z2).

The representation space becomes a Hilbert one after introducing the inner product

⟨f̃Jm, f̃Jn⟩ =
∫ ∞

0

∫ ∞

0

f̃∗
Jm(z1, z2)f̃Jn(z1, z2)

Γ(J −m+ 1)Γ(J +m+ 1)

× e−2a/z1−2a/z2 dz1dz2

z−J+1
1 z−J+1

2

∑J−n
i=0

Γ(−J+i)
i!

Γ(−n−i)
(J−n−i)!

= δnm.
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5.4. Action of p̂3, p̂±

With respect to the canonical representation one obtains the action of p̂3, p̂±

p̂+f̃Jm = −i

(
1 +

a(z1 + z2)

Jz1z2

)√
(J −m)(J −m− 1) f̃J−1,m+1+

+
a

J

√
(J −m)(J +m+ 1) f̃J,m+1

p̂3f̃Jm = −i

(
1 +

a(z1 + z2)

Jz1z2

)√
(J −m)(J +m) f̃J−1,m +

a

J
mf̃J,m

p̂−f̃Jm = i

(
1 +

a(z1 + z2)

Jz1z2

)√
(J +m)(J +m− 1) f̃J−1,m−1+

+
a

J

√
(J +m)(J −m+ 1) f̃J,m−1

which does not match with the abstract action formulas for e(3). This situation is
probably caused by the mentioned absence of a separation variable expansion.

6. Conclusion

A combination of algebraic geometry and Lie algebras representation theory meth-
ods applied to integrable Hamiltonian systems gives a new approach to harmonic
analysis on Lagrangian manifolds. Dealing with an integrable system we have a
definite rule how to chose a Lagrangian manifold - it should coincides with the
Liouville torus of the system. This provides holomorphic functions as a represen-
tation space. Restriction of the function domain to the Lagrangian manifold entails
that the phase space symmetry algebra is represented by differential operators of
order higher than one and so it can not be exponentiated to a group. Nevertheless,
there are a lot of integrable systems, among them Gaudin’s model [9], where the
proposed scheme gives a good basis in the phase space.
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