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Abstract. Quantization of the electromagnetic field in non-stationary media
(linear with respect to E, with negative differential conductivity) is inves-
tigated. The dynamical invariants and statistical properties of the field are
found in such media. It is shown that in the eigenstates of linear dynami-
cal invariant, the Schrodinger uncertainty relation is minimized. The time
evolution of the tree independent second-order statistical moments (quantum
fluctuations: covariance cov(q,p), var(q) and var(p) ) are found out.

1. Introduction

The increasing use of energy as a result of the Industrial Revolution has brought
a number of serious problems. Understanding the process of photosynthesis will
play key role to solve these problems and to develop alternative energy sources in
two asspects

- producing alternative fuels (such as H2, biofuel etc.)
- producing directly Electricity using artificial photosynthesis in Dye-sensitized

solar cells.

In the first processes (photosynthesis) the solar light is transformed into chemi-
cal energy, saved in molecule adenosine triphosphate (ATP). Thus a universal
accumulator of energy is formed for widdely distributed biological processes [22].
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During the process of photosynthesis [23], the ATP is formed from adenosine
diphosphate (ADP) and inorganic phosphate. Besides light this conversion re-
quires a donor of electrons as well as protons received from water.
The chemical energy stored in this “biological batery” (ATP) is used by plants to
synthesize carbohydrates from CO2 and H2O.
Similar and more simplified processes are observed at artificial photosynthesis
in Dye-Sensitized Solar Cells (DSSC), where the sun light energy absorbed by
Ruthenium-polypyridine dye and is transform in the electrical energy, like the
chlorophyll in green leaves. Absorbed photons create an excited state of the dye,
from which an electron is transported directly into the conduction band of the
porous TiO2 in the artificial cell (see also [7]).

2. Motivation for Our Approach

It is well known that electron transport in photosynthesis has Quantum Nature [15].
It is due to the tunneling effect of electron through the barrier, with the action of
light quanta. The electron is being tunneled from one carrier to another (starting
from chlorophyll molecule to acceptor molecule) with probability depending on
the width and height of the barrier. The probability decreases exponentially with
increasing the barrier’s size.
We are going to aproach only part of the photosynthesis problem, concerning the
creation of electrons and charge transport in photosensitive dyes (e.g., in chloro-
phyll and ruthenium-polypyridine dyes, at photosynthesis and artificial photosyn-
thesis respectively), using tools from quantum mechanics.
For this purpose we consider electron transport chain in thylakoid membrane (or
dye solution in DSSC) as a linear media with Negative Differential Conductivity
(NDC). The light interacts with dye molecule, excites electrons, which overcomes
the subsequent quantum potential barrier. This transfers electron from one mole-
cule carrier to an other carrier in the whole chain of electron transport.

3. Schrödinger Uncertainty Relation and Dynamical Invariants in
QM

The description of quantum systems is fundamental for understanding many prob-
lems in physics and particulary in chemistry. One of the most revolutionary conse-
quences that quantum mechanics bequeathed as a fundamental principle in physics
is the refusal of strong determinism. That is why the uncertainty relation plays fun-
damental role in this science. In 1930, a few years after Heisenberg, Schrödinger
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had generalized the famous Uncertainty Relation (UR) in quantum mechanics
(QM) [2, 16, 18]

(∆q)2(∆p)2 ≥ ~2

4
+ Cov2(q, p). (1)

The above inequality shows the general connection between all three independent
statistical moments of second order of two quantum variables q and p - the covari-
ance Cov(q, p)

Cov(q, p) =
1

2
⟨qp+ pq⟩ − ⟨q⟩⟨p⟩ (2)

and the variances (∆q)2 and (∆p)2 defined as particular case of covariance

(∆q)2 = Cov(q, q) respectively (∆p)2 = Cov(p, p). (3)

Canonical variables q̂ and p̂ satisfy the canonical commutation relations

[q̂, p̂] = i~ 1̂. (4)

In terms of the covariance matrix σM (q, p) [6], [10] the uncertainty relation (1)
takes the form

det[σM (q, p)] ≥ ~2

4
· (5)

Other important notions of QM are the dynamical invariants (integrals of motion)
Î . These are operators which do no depend on the time t. Using the definition of
total derivative in QM of certain quantum system with Hamiltonian Ĥ , the dynam-
ical invariants Î are defined as solutions to the equation [12]

dÎ

dt
=
∂Î

∂t
− i

~
[Î , Ĥ] = 0. (6)

The canonical commutation relations (4) show that quadratic in q̂ and p̂ Hamil-
tonians admit linear in q̂ and p̂ dynamical invariants. In [14] a family of (non-
Hermitian) invariants Â for the general nonstationary quadratic Hamiltonian

Ĥ = a(t)p̂2 + b(t)(p̂q̂ + q̂p̂) + c(t)q̂2 + d(t)p̂+ e(t)q̂ + f(t) (7)

have been constructed in the form

Â(t) =

√
a

~

[
ϵp̂+

1

a

(
ϵb− ϵ̇− ȧ

2a
ϵ

)
q̂

]
(8)

where ϵ is any solution of the second order equation (classical oscillator equation)

ϵ̈+Ω2(t)ϵ = 0. (9)

Actually Â†(t) and Â(t) are generalization of boson creation and annihilation oper-
ators â† and â of the stationary oscillator (with Ω = constant). The time-dependent
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coefficients a(t), b(t) and c(t) in (7) establish the connection between the Hamil-
tonian Ĥ and the frequency Ω(t) of classical non-stationary harmonic oscillator

Ω2 = 4ac+ 2b
ȧ

a
+

ä

2a
− 3ȧ2

4a2
− 4b2 − 2ḃ. (10)

The linear part in the Hamiltonian (7) is not essential for the classical non-stationary
harmonic oscillator, so it is assumed that d(t) = e(t) = f(t) = 0.

The commutator [Â, Â†] is presented by Wronsky determinant W

[Â, Â†] =
i

2
(ϵϵ̇∗ − ϵ∗ϵ̇) ≡ i

2
W (11)

so that [Â, Â†] = 1̂ iff

ϵ = |ϵ| e i
∫ t
0

dt′
|ϵ(t′)|2 . (12)

4. Quantization of EM Field in Linear Media with Negative
Differential Conductivity

The Maxwell equations in non-stationary linear media have the form

B(r, t) = µ(t)H(r, t), D(r, t) = ε(t)E(r, t), j = σ(t)E (13)

divD = 0, rotH =
∂

∂t
D + σ(t)E

divB = 0, rotE =− ∂

∂t
B.

(14)

Note that ε(t) = εr(t)ε0 is the dielectric permittivity, and differs from the solution
ϵ(t) of classical oscillator equation (9).
A scheme was proposed for quantizing the damped light in conducting media [3]
(see references therein). We are going to apply the quantization not only for non-
stationary media (ϵ(t), µ(t) and σ(t)), but for a case of negative differential con-
ductivity. For convenience we will consider one dimension case (in x direction).
A linear and homogenous media could have some resistivity R (which is a positive
constant). There are some special cases, when the resistivity (respectively - the
conductivity) vary with the applied voltage. For example, this is the case with tun-
nel diodes, which are represented as over-dopped semiconductors with very narrow
p − n-junction, playing a role of quantum mechanical potential barrier [4, 5] (see
Fig. 1). One analytical expression [5] for such I-V characteristic is shown here

I =
U

R0
exp

[
−(

U

U0
)m
]
+ Is exp

[
U

ηUth
− 1

]
(15)

where R0, U0, Is, η and Uth are appropriate constants.
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Fig. 1. I-U characteristic of Fig. 2. Idealized I-U characteristic
device with negative differential and the first derivative of σ,
conductivity. σdiff < 0 for U1 < U < U2.

To escape the problems with quantization in such media, we consider a hypothetic
one, consisted of three different voltage domains, presenting the I = I(U) with
strait lines, as is shown on Fig. 2. This point of view is reasonable, because as
is seen from Fig. 1, in all three domains there exists smaller sections, where the
currents I = I(U) could be presented approximately as strait lines. It is obvious
that in the first and in the third domains, the secondary quantization could be solved
in standard way (see for example [8,9,21]). Here we focus our attention mainly on
the interesting second domain, which is called the regime with negative differential
resistance (we do not take into account the transitions between domains, and leave
this problem for future investigations). For the domain with negative differential
conductivity around inflex point we always could apply linear approach. So, for
our simplified model we have

σ = const > 0 but σdiff =
dσ(U)

dU
< 0 for U1 < U < U2. (16)

For this domain, where the differential conductivity is negative, we are going to
find analytical solution for this quantum problem, when the condition (16) is satis-
fied also. Applying the Coulomb gauge, one can define vectors fields as

B = rotA, E = −∂A
∂t

(17)

and from Maxwell equations (14) we obtain the equation for A(r, t)

∇2A− µ(σ + ε̇)
∂A

∂t
− εµ

∂2A

∂t2
= 0 (18)
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As usual (see e.g. the books [11, 17, 24]) we expand vector potential A(r, t) in
terms of mode functions ul(r) = el,ξul,ξ(r)

A(r, t) =
∑
l,ξ

el,ξul,ξ(r)ql,ξ(t) (19)

which satisfy the Helmholtz equation(
∇2 +

ω2
0,l

c2

)
ul,ξ(r) = 0. (20)

From Maxwell equations (14) it follows that (in case of linear media (13)) the time-
dependent factors ql are to obey the following linear equation (furthermore, unless
otherwise stated, we suppress the polarization index ξ)

∂2ql
∂t2

+
σ(t) + ε̇(t)

ε(t)

∂ql
∂t

+ ω2
l (t)ql = 0, ω2

l (t) =
ω2
0,l

c2ε(t)µ(t)
· (21)

One can see that the equation (21) could be obtained from the classical Hamilton
equation with Hamilton function

Hl =
1

2

[
1

ε0
e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

p2l + ε0ω
2
l (t)e

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

q2l

]
(22)

Introducing the canonical operators q− > q̂l and p− > p̂l, which obey the com-
mutation relation (4) we receive for the total Hamiltonian of the EMF as a sum
over all modes [3]

Ĥ =
∑
l

[
1

2ε0
e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

p̂2l +
ε0ω

2
l (t)

2
e
∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

q̂2l

]
≡
∑
l

Ĥl. (23)

It can be seeing that time-dependent coefficients in equation (23) are

a(t) =
1

2ε0
e
−

∫ t
0

σ(t)+ε̇(t)
ε(t)

dt
, b(t) = 0, c(t) =

ε0ω
2
l (t)

2
e
∫ t
0

σ(t)+ε̇(t)
ε(t)

dt

(24)
and for the frequency Ωl(t) of the non-stationary harmonic oscillator (10) we get

Ω2
l (t) = ω2

l (t)−
1

2

d

dt

(
σ(t) + ε̇(t)

ε(t)

)
− 1

4

(
σ(t) + ε̇(t)

ε(t)

)2

. (25)

In this case the invariants that satisfy the canonical boson relation [Â, Â†] = 1̂ are

Âl =
1√
2~ε0

e
− 1

2

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

×
[
ϵlp̂l − ε0e

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

(
ϵ̇l −

1

2

σ(t) + ε̇(t)

ε(t)
ϵl

)
q̂l

]
. (26)
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The linear invariants Âl and the quadratic ones Â†
l Âl have the following eigen-

functions [14] (ψαl
(ql, t) = ⟨ql|αl; t⟩, ψnl

(ql, t) = ⟨ql|nl; t⟩

ψαl
(ql, t) = ψ0(ql, t) exp

[√
2

a~
αl

ϵl
ql −

ϵ∗l
2ϵl
α2
l −

1

2
|αl|2

]
(27)

ψnl
(ql, t) = ψ0(ql, t)

(ϵ∗l /2ϵl)
nl/2

√
nl!

Hnl
(xl), xl =

ql
|ϵl|

√
a

(28)

with eigenvalues αl and nl respectively. Here Hn(x) are Hermite polynomials and
ψ0(ql, t) are the ground state wave functions (Âlψ0 = 0)

ψ0(ql, t) =
(
ϵl(πa~)

1
2

)− 1
2
exp

[
i

2a~

(
ϵ̇l
ϵl

+
ȧ

2a

)
q2l

]
. (29)

These time-dependent wave functions are normalized solutions to the Schrödinger
equation with Hamiltonian Ĥl, equation (23). Since Â(t) and Â†

l (t)Âl(t) are dy-
namical invariant, the eigenvalues αl and nl are constant in time.
The system of |αl; t⟩ is overcomplete in the one mode Hilbert space Hl (the set of
|nl; t⟩ being complete)

1

π

∫
|αl; t⟩⟨t;αl|d2αl =

∑
nl

|nl; t⟩⟨t;nl| = 1̂l. (30)

These states |αl; t⟩ minimize the general uncertainty relation of Schrödinger

(∆q)2(∆p)2 =
~2

4
+ Cov2(q, p). (31)

According to the terminology of references [13,14] the states |αl; t⟩ may be called
generalized Coherent States (CS) of nonstationary system with Hamiltonian Ĥl,
equation (23). For the purpose of this paper and to make it more readable for
physicist-experimentalists, biologist etc. we will call the states minimizing relation
(31) Schrödinger Minimum Uncertainty States (SMUS) as it is done in [19].
Because the Hamiltonian Ĥ , equation (23), is a sum over l, the SMUS for EM
field with finite number of modes are product over l of one mode SMUS |αl; t⟩.
The vector potential operator takes the form

Â(r, t) =
∑
l

ul(r)q̂l. (32)

Note that it differs from linear invariants Â(t), and it is denoted here in bold face.
Replacing it in (17) one obtains the quantized electric and magnetic fields
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Ê(r, t) = − 1

ϵ0
e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

∑
l

ul(r)p̂l (33)

B̂(r, t) = e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

∑
l

∇× ul(r)q̂l. (34)

Using the time derivatives of operators q̂l, p̂l of the form

dôl
dt

= − i

~
[ôl, Ĥ] (35)

we check that all Maxwell equations (14) are satisfied by operator fields Ê, D̂ =

εÊ, Ĥ and B̂ = µĤ .
Evolution of second order statistical moments in SMUS. All three quantum-
mechanical statistical moments for canonical operators q̂l and p̂l are defined in the
evolved SMUS |αl; t⟩. Using the general formulae [20] we find the variances

(∆ql)
2
αl

=
~ε−1

0 e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

2
ρ2l , ρl = |ϵl(t)|

(36)

(∆pl)
2
αl

=
~

ε−1
0 e

−
∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

[
1

2ρ2l
+

(
ρ̇l(t)−

1

2

σ(t) + ε̇(t)

ε(t)
ρl

)2
]
.

From the general formula derived in [1], we obtain the covariance Cov(q, p) in
terms of the negative differential conductivity

Cov(ql, pl)αl
= −~

2
ρl

(
ρ̇l −

1

2

σ(t) + ε̇(t)

ε(t)
ρl

)
. (37)

Thus, we find the three statistical moments ((∆ql)2, (∆pl)2 and Cov(q, p)) in the
case of media with negative differential conductivity.

5. Vector Operators for EM Field and Their Statistical Properties

To express the statistical properties of vector operators Ê(r, t) and B̂(r, t) for
EM field, it is convenient to present the Hermitian operators q̂, p̂ in terms of the
invariants Â, Â†. Taking into account (26) we get the following expressions

q̂l =

(
~
2ε0

)1/2

e
− 1

2

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

(
−iϵl(t)Â

†
l (t) + iϵ∗l (t)Âl(t)

)
(38)
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p̂l =

(
~ε0
2

)1/2

e
1
2

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

×
(
−i(ϵ̇l −

1

2

σ(t) + ε̇(t)

ε(t)
ϵl)Â

†
l + i(ϵ̇∗l −

1

2

σ(t) + ε̇(t)

ε(t)
ϵ∗l )Âl

)
. (39)

We shall consider the case of periodic boundary conditions with complex mode
functions u(±)

l,ξ (r) = V −1/2el,ξ exp(±ikl · r) [24], where el,ξ is the polarization
vector of mode l, with wavevector kl. With these modes the vector potential oper-
ator, which obeys the equation (18) takes the following form

Â(r, t) =

√
~
2ε0

e
− 1

2

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

∑
l,ξ

el,ξ

[
u∗l,ξ(r)ϵlÂl,ξ(t) + h.c.

]
. (40)

Replacing the vector potential operator Â(r, t) in the relations (17) we receive
vector operator for EM field in the form

Ê(r, t) =

√
~
2ε0

e
− 1

2

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

×
∑
l,ξ

el,ξ

[(
1

2

σ(t) + ε̇(t)

ε(t)
ϵl − ϵ̇l

)
u∗l,ξ(r)Âl,ξ(t) + h.c.

]
(41)

B̂(r, t) = i

√
~
2ε0

e
− 1

2

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

∑
l,ξ

kl×el,ξ

[
u∗l,ξ(r)ϵlÂl,ξ(t)− h.c.

]
. (42)

The commutators between the j and m components of Êl(r, t) and B̂l(r, t) are
C-numbers, vanishing for j = m

[Êl,j(r, t), B̂l,m(r, t)] = i
~
ε0V

e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′ (43)

×
∑
ξ

el,ξ,j(kl × el,ξ)j Re

(
ϵ̇lϵ

∗
l − |ϵl|2

1

2

σ(t) + ε̇(t)

ε(t)

)
δjm.

The three second moments are found as

(∆El)
2
α =

~
2ε0V

e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

∣∣∣∣12 σ(t) + ε̇(t)

ε(t)
|ϵl|2 − ϵ̇l

∣∣∣∣2
(∆Bl)

2
α = k2l

~
2ε0V

e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′ |ϵl|2 (44)

Cov(El, Bl)α = −kl
~

2ε0V
e
−

∫ t
0

σ(t′)+ε̇(t′)
ε(t′) dt′

Im

(
σ(t) + ε̇(t)

2ε(t)
|ϵl|2 − ϵ̇lϵ

∗
l

)
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(note also the presence of conductivity σ(t) (with σdiff < 0, which may vary in
time also) in the expressions of all the above averages).
Schrödinger Uncertainty Relation for the j and m components of Êl(r, t) and
B̂l(r, t) in SMUS take the form

(∆El)
2
α (∆Bl)

2
α − Cov2(El, Bl)α =

~2

4
|⟨[El, Bl]⟩α|2 . (45)

Thus the time-evolved SMUS |αl; t⟩ in nonstationary and/or conductive media are
minimizing uncertainty states with respect to the photon ladder operator quadra-
tures q̂l, p̂l, and with respect to the electric and magnetic field components as
well. The time evolution of these states can exhibit ql-pl and El-Bl covariance
and squeezing.

Conclusion

Quantization of the electromagnetic field in non-stationary media (linear with re-
spect to E and arbitrary with respect to time t) is investigated. The model presented
here allow to be investigated and to perform secondary quantization in media with
negative differential conductivity also. The dynamical invariants and statistical
properties of the field are found in such media. It is shown that in the eigenstates of
linear dynamical invariant, the Schrodinger uncertainty relation is minimized. The
time evolution of the tree independent second-order statistical moments (quantum
fluctuations: covariance cov(q,p), var(q) and var(p) ) are found out. The model de-
veloped here, could be involved in quantum-mechanical explanation of electrons
transport, when the electron jumps from one dye molecule to an other, overcom-
ing the potential barrier between them. Thus, the tunnel effect, leading to negative
differential conductivity, play essential role not only in chlorophyll, but in electron
transport in ruthenium-polypyridine dyes at artificial photosynthesis, also.
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