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Abstract. In this paper, we have reintroduced a new approach to conformal
geometry developed and presented in two previous papers, in which we show
that all n-dimensional pseudo-Riemannian metrics are conformal to a flat n-
dimensional manifold as well as an n-dimensional manifold of constant cur-
vature when Riemannian normal coordinates are well-behaved in the origin
and in their neighborhood. This was based on an approach developed by
French mathematician Elie Cartan. As a consequence of geometry, we have
reintroduced the classical and quantum angular momenta of a particle and
present new interpretations. We also show that all n-dimensional pseudo-
Riemannian metrics can be embedded in a hyper-cone of a flat (n + 2)-
dimensional manifold.

1. Introduction

In this paper, we reintroduce a new approach to conformal geometry developed
and presented in two previous papers, [10, 11]. This was based on an approach
developed by French mathematician Elie Cartan [2, 8, 12]. Some classical and
quantum results are reintroduced from a new viewpoint.
This paper is organized as follows. In Section 2, we present normal coordinates
and elements of differential geometry. In Section 3, we show that, in normal co-
ordinates, all n-dimensional pseudo-Riemannian metrics that are well-behaved in
origin and in their neighborhood are conformal to a flat n-dimensional manifold
and an n-dimensional manifold of constant curvature. In Section 4, this result is
used in the Cartan solution for a space of constant curvature. In Section 5, we
present more differential geometry, introducing normal tensors to build the Cartan
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solution for a general pseudo-Riemannian metric. In Section 6, we make an em-
bedding of all n-dimensional pseudo-Riemannian manifolds of constant curvature
in a flat (n + 1)-dimensional manifold, obtaining the quantum angular momen-
tum operator of a particle as a consequence of geometry. In Section 7, a new
geometric postulate is announced and some new classical physical principles are
developed. In Section 8, we make an embedding of all n-dimensional pseudo-
Riemannian metrics that obey previously presented conditions into a hyper-cone
of a flat (n+ 2)-dimensional space.

2. Normal Coordinates

In this section, we briefly present normal coordinates and review some elements of
differential geometry for an n-dimensional pseudo-Riemannian manifold, [2,8,12].
Let us consider the line element

ds2 = GΛΠdu
ΛduΠ (1)

with

GΛΠ = E
(A)
Λ E

(B)
Π η(A)(B) (2)

in which η(A)(B) and E(A)
Λ are flat metric and vielbein components, respectively.

We choose each η(A)(B) as plus or minus Kronecker’s delta function. Let us give
the one-form ω(A) by

ω(A) = duΛE
(A)
Λ . (3)

We now define Riemannian normal coordinates by

uΛ = vΛt (4)

then

duΛ = vΛdt+ tdvΛ. (5)

Placing (5) in (3) leads to

ω(A) = tdvΛE
(A)
Λ + dtvΛE

(A)
Λ . (6)

Let us define

z(A) = vΛE
(A)
Λ (7)
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so that

ω(A) = dtz(A) + tdz(A) + tEΠ(A)∂EΠ(B)

∂z(C)
z(B)dz(C). (8)

We now make

A(A)(B)(C) = tEΠ(A)∂EΠ(B)

∂z(C)
(9)

then

ϖ(A) = tdz(A) +A(A)(B)(C)z(B)dz(C) (10)

with

ω(A) = dtz(A) +ϖ(A). (11)

At t = 0, we have

A(A)(B)(C)(t = 0, z(D)) = 0 (12)

ϖ(A)(t = 0, z(D)) = 0 (13)

and
ω(A)(t = 0, z(D)) = dtz(A). (14)

We conclude that ω(A) is the one-form associated to the normal coordinate uΛ, z(A)

is associated to the local coordinate vΛ of a local basis and ϖ(A) is the one-form
associated to the one-form dz(A).
In an n + 1-manifold, consider a coordinate system given by (t, z(A)). For each
value of t, we have a hyper-surface in which dt = 0 on each. We are interested
in the hyper-surface with t = 1. On this hyper-surface, we verify the following
equality

ω(A)(t = 1, z) = ϖ(A)(t = 1, z). (15)

Consider the following expression on a vielbein basis

dω(A) = −ω(A)
(B) ∧ ω

(B). (16)

The expression is invariant by coordinate transformations.
Now consider the map Φ between two manifolds M and N , and consider two
subsets, U of M and V of N . Then

Φ : U −→ V. (17)
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We now define pull-back as the map

Φ∗ : F p(V ) −→ F p(U) (18)

so that Φ∗ sends p-forms to other p-forms.
It is well known that the exterior derivative commutes with the pull-back, (cf [12])

Φ∗(dω
(A)
(B)) = dΦ∗(ω

(A)
(B)) (19)

and
Φ∗(dω(A)) = dΦ∗(ω(A)). (20)

We also have

Φ∗(ω
(A)
(B) ∧ ω

(B)) = Φ∗(ω
(A)
(B)) ∧ Φ∗(ω(B)). (21)

The equation (11) can be seen as a pull-back

Φ∗(ω(A)) = dtz(A) +ϖ(A). (22)

By a simple calculation, it can be shown that

Φ∗(ω
(A)
(B)) = ϖ

(A)
(B). (23)

Note that dt = 0 for ϖ(A) and ϖ(A)
(B).

By the exterior derivative of (22), we obtain

d(Φ∗(ω(A))) = d(dtz(A) +ϖ(A)) = dz(A) ∧ (dt) + dt ∧ ∂(ϖ(A))

∂(t)
(24)

+ terms not involving dt.
Making a pull-back of (16) and using (21), we have

Φ∗(dω(A)) = Φ∗(−ω(A)
(B) ∧ ω

(B)) = −Φ∗(ω
(A)
(B)) ∧ Φ∗(ω(B)). (25)

Using (20), (23), (24) and (25), we obtain

∂ϖ(A)

∂t
= dz(A) +ϖ

(A)
(B)z

(D). (26)

By a similar procedure to (19) and using Cartan’s second structure equation, we
obtain the following result

∂ϖ(A)(B)

∂t
= R(A)(B)(C)(D)z

(C)ϖ(A). (27)
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Making a new partial derivative of (26), two partial derivatives of (10), comparing
the results and using (27), we have the following equation

∂2A(A)(C)(D)

∂t2
= tz(B)R(A)(B)(C)(D)

+ z(L)z(M)R(A)(L)(M)(N)A(P )(C)(D)η
(N)(P ). (28)

Rewriting (28) with indices (C) and (D) permuted, we obtain the result

∂2A(A)(D)(C)

∂t2
= tz(B)R(A)(B)(D)(C)

+ z(L)z(M)R(A)(L)(M)(N)A(P )(D)(C)η
(N)(P ). (29)

Adding (28) and (29) and using the curvature symmetries, we have

A(A)(C)(D) +A(A)(D)(C) = 0 (30)

which is true for all t.
Then we get

A(A)(C)(D) = −A(A)(D)(C) (31)

which allows to rewrite (10) as

ϖ(A) = tdz(A) +
1

2
A(A)(B)(C)(z(B)dz(C) − z(C)dz(B)). (32)

Let us define

A(A)(C)(D) = z(B)B(A)(B)(C)(D). (33)

The following result is obtained by placing (33) in (28)

∂2B(A)(B)(C)(D)

∂t2
= tR(A)(B)(C)(D)

+ z(L)z(M)R(A)(B)(L)(N)B(P )(M)(C)(D)η
(N)(P ). (34)

We now rewrite (34) as

∂2B(B)(A)(C)(D)

∂t2
= tR(B)(A)(C)(D)

+ z(L)z(M)R(B)(A)(L)(N)B(P )(M)(C)(D)η
(N)(P ). (35)

Adding (34) and (35) and using the curvature symmetries, we obtain the solution

B(A)(B)(C)(D) +B(B)(A)(C)(D) = const (36)

for all t.
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We use (12) and (33) in (36) to obtain

B(A)(B)(C)(D) +B(B)(A)(C)(D) = 0. (37)

For future use, we present the line element on the hyper-surface

ds′2 = η(A)(B)ϖ
(A)ϖ(B). (38)

From (31), (33) and (37), we conclude thatB(A)(B)(C)(D) has the same symmetries
as the Riemann curvature tensor

B(A)(B)(C)(D) = −B(B)(A)(C)(D) = −B(A)(B)(D)(C). (39)

Using (31) and (33), we have

A(A)(C)(D)dz
(A)z(C)dz(D) =

1

4
B(A)(B)(C)(D).(z

(B)dz(A) − z(A)dz(B)).(z(C)dz(D) − z(D)dz(C)). (40)

We now construct the line element of the hyper-surface. With direct use of (32)
and (40) in (38), we have

ds′2 = t2η(A)(B)dz
(A)dz(B)

+
1

2
{1
2
tϵ(B)B(A)(B)(C)(D) + η(M)(N)A(M)(B)(A)A(N)(C)(D)}

.(z(B)dz(A) − z(A)dz(B))(z(C)dz(D) − z(D)dz(C)).

The line element of the manifold and the hyper-surface are equal at t = 1, where
uΛ = vΛ

ds2 = ds′2 (41)

and

ds2 = η(A)(B)dz
(A)dz(B)

+
1

2
{1
2
ϵ(B)B(A)(B)(C)(D) + η(M)(N)A(M)(B)(A)A(N)(C)(D)}

.(z(B)dz(A) − z(A)dz(B))(z(C)dz(D) − z(D)dz(C)). (42)

Note that (42) is not an approximation of (1) and actually these equations are iden-
tical.
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3. Conformal Form of Riemannian Metrics

Sometimes, it is possible to write the metric (42) in the particular form

ds2 = η(a)(b)dz
(a)dz(b)

+ {η(0)(0) +
1

2
[
1

2
ϵ(B)B(A)(B)(C)(D) + η(M)(N)A(M)(B)(A)A(N)(C)(D)]

.(z(B)dz
(A)

dτ
− z(A)dz

(B)

dτ
)(z(C)dz

(D)

dτ
− z(D)dz

(C)

dτ
)}dτ2 (43)

in which (a), (b) ̸= 0.
Defining

dρ2 = {η(0)(0) +
1

2
[
1

2
ϵ(B)B(A)(B)(C)(D) + η(M)(N)A(M)(B)(A)A(N)(C)(D)]

.(z(B)dz
(A)

dτ
− z(A)dz

(B)

dτ
)(z(C)dz

(D)

dτ
− z(D)dz

(C)

dτ
)}dτ2 (44)

then, (43) can be rewritten as

ds2 = dρ2 + η(a)(b)dz
(a)dz(b). (45)

We now write (42) as

ds2 = η(A)(B)dz
(A)dz(B)

+ {1
2
[
1

2
ϵ(B)B(A)(B)(C)(D) + η(M)(N)A(M)(B)(A)A(N)(C)(D)]}

.(z(B)dz
(A)

ds
− z(A)dz

(B)

ds
)(z(C)dz

(D)

ds
− z(D)dz

(C)

ds
)ds2. (46)

This can be written also in the following form

[1− 1

2
[
1

2
ϵ(B)B(A)(B)(C)(D)η

(M)(N)A(M)(B)(A)A(N)(C)(D)]

.(z(B)dz
(A)

ds
− z(A)dz

(B)

ds
)(z(C)dz

(D)

ds
− z(D)dz

(C)

ds
)]ds2

= η(A)(B)dz
(A)dz(B). (47)

We now define the function

L(B)(A) = (z(B)dz
(A)

ds
− z(A)dz

(B)

ds
) (48)

which is the classical angular momentum of a free particle.
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The line element (48) can assume the form

{1 + 1

2

(
1

2
(ϵ(B)B(A)(B)(C)(D)

+η(M)(N)A(M)(B)(A)A(N)(C)(D)

)
.(LA)(B)LC)(D))}ds2

= (η(A)(B)dz
(A)dz(B). (49)

We now define the function

exp(−2σ) = {1 + 1

2

(
1

2
(ϵ(B)B(A)(B)(C)(D)

+η(M)(N)A(M)(B)(A)A(N))(C)(D))
)
.L(A)(B)L(C)(D)} (50)

then, the line element assumes the form

ds2 = exp(2σ)η(A)(B)dz
(A)dz(B). (51)

Actually (46) is a flat metric with the time changed and is equivalent to the original
metric. In other words, (46) is the original line element of the curved manifold
written in a flat form.
The metric (51) is conformal to a flat manifold as well as a manifold of constant
curvature when the normal coordinate transformations are well-behaved in the ori-
gin and in their neighborhood. A Riemannian normal transformation and its inverse
are well-behaved in the region in which geodesics are not mixed. Points in which
geodesics approach each other or mix are known as conjugate points of Jacobi’s
fields. Jacobi’s fields can be used for this purpose. Although this is an important
problem, we do not make further considerations about the regions in which (46)
and (51) are valid.
In the next section, we present the Cartan solution for the case in which curvature
is constant. For the Cartan solution to a general metric, more geometric objects are
necessary, such as normal tensors. This will be presented in Section 5.

4. Cartan’s Solution for Constant Curvature

In this section, we present the Cartan solution for constant curvature. The calcu-
lation is very simple and was done in [2], and reproduced in detail in [12]. Our
objective in this section is only to place the Cartan solution in the forms (46) and
(51).
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Cartan has used the signature (+,+,+....,+) and obtained the line element

ds2 =
n∑

k=1

(ϖk)2 =
n∑

k=1

(dvk)2 − [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(vidvj − vjdvi)2

(52)
in which

S = sin(
√

|K|t), K > 0 (53)

and
S = sinh(

√
|K|t), K < 0. (54)

We write (52) in the form (43)

ds2 =

n∑
k=1

(ϖk)2 =

n∑
k=1

(dvk)2−[
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(vi
dvj

dτ
−vj dv

i

dτ
)2dτ2.

(55)
Consider the following function

lij =
∑
i<j

(vi
dvj

dτ
− vj

dvi

dτ
)2. (56)

Using (56) in (55), we have

ds2 =
n∑

k=1

(ϖk)2 =
n∑

k=1

(dvk)2 − [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(lij)2dτ2. (57)

Sometimes, we can put dv1 = dτ . In this case, (57) can be written in the form

ds2 =

n∑
k=1

(ϖk)2 =

n∑
k=2

(dvk)2 + {1− [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(lij)2}dτ2.

(58)
Defining

dρ2 = {1− [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(lij)2}dτ2 (59)

and placing it in (58), we obtain

ds2 = dρ2 +

n∑
k=2

(dvk)2 (60)

in which (60) has the same form as (46).
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We now write (52) in the form (51). For this, we change (52) as follows

ds2 =

n∑
k=1

(ϖk)2 =

n∑
k=1

(dvk)2

− [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(vi
dvj

ds
− vj

dvi

ds
)2ds2. (61)

Now we see that (61) has the form of (47).
Defining

L(i)(j) = (z(i)
dz(j)

ds
− z(j)

dz(i)

ds
). (62)

and placing it in (61), we obtain

ds2 =
n∑

k=1

(ϖk)2 =
n∑

k=1

(dvk)2 − [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(L(i)(j))2ds2 (63)

which is equivalent to

{1 + [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(L(i)(j))2}ds2 =
n∑

k=1

(dvk)2. (64)

We now define

exp(−2σ) = {1 + [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(L(i)(j))2}. (65)

By making use of (65), we obtain

ds2 = exp(2σ)
n∑

k=1

(dvk)2. (66)

We could have all equations in this section on a vielbein basis and the results would
be the same. This will be made at the end of the next section for the general
solution.
We rewrite (66) as

ds2 = {1 + [
|K|r2 − S2(r

√
|K|t)

|K|r4
]
∑
i<j

(ηijL
(i)(j))2}−1dvldvkηlk (67)

in which ηjk is a generic flat metric.
Through a coordinate transformation, we can put (67) in the well-known form

ds2 = {1 +
KΩjΩkηjk

4
}−2dΩjdΩkηjk. (68)
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Which make obvious that (68) is conformal to a flat metric. As (67) and (68)
are equivalent, (67) is also conformal to a flat metric. Therefore, there is a local
coordinate transformation between (67) and (68).
In the next section, we present some geometric objects in detail, such as normal
tensors. This is necessary for the Cartan solution of a general metric.

5. Normal Tensors

In this section, Taylor’s expansion will be built at the origin of normal coordinates
for the metric tensor components. Normal tensors are very important for this. For
the covariant derivative, we use the standard notation (;).
Consider the line element

ds2 = GΛΠdu
ΛduΠ. (69)

Its expansion has the general form at the origin of a normal coordinate system

Gλπ = Gλπ(0) +
∂Gλπ

∂uµ
vµt+

1

2

∂2Gλπ

∂uµ∂uν
vµvνt2 + . . . (70)

in which the derivatives are calculated at uπ = 0.
Some results are found in [13], [5], but these are not generally simple. Our results
are simpler because they are more specific.
Consider the covariant derivative of Gλπ in a normal coordinate system.
For a pseudo-Riemannian space, we have

Gλπ;µ = 0. (71)

From (71), we obtain
∂Gλπ

∂uµ
= Cρ

µλGρπ + Cρ
µπGλρ (72)

in which
Cρ
µλ(0) = 0 (73)

and
∂Gλπ

∂uµ
(0) = 0. (74)

In the limit u = 0, the partial derivatives of (72) supply all derivative terms for
the expansion (70). Each partial derivative of Cρ

µλ, calculated at the origin, is a
new tensor. These new tensors are denominated normal tensors. We designate the
following representation for these tensors

Dρ
µλαβ....γ =

∂nCρ
µλ

∂uα∂uβ...∂uγ
(0). (75)
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We conclude from (75) that normal tensors are symmetric in the first pair of inferior
indices and have a complete symmetry among other inferior indices.
It is simple to show that

S(Dρ
µλαβ....γ) = 0 (76)

in which S designates the sum of different normal tensor components.
With (72)–(76), we can calculate all terms of the expansion (70).
Deriving (73), calculating the limit and using (75), we have

∂2Gλπ

∂uµuν
= GλρD

ρ
µπν +GπρD

ρ
µλν . (77)

There is more than one way of associating the curvature tensor with normal tensors.
Next, we present the simplest way we know.
Let us define the components of the Riemannian curvature tensor in normal coor-
dinates

Rρ
µλν =

∂(Cρ
µλ)

∂uν
− ∂(Cρ

µν)

∂uλ
+ Cσ

µλC
ρ
σν − Cσ

µνC
ρ
σλ. (78)

The limit of (78) is
Rρ

µλν = Dρ
µλν −Dρ

µνλ (79)

in which we have used (73) and (75).
Using (75), (76), (79) and the symmetries of the Riemannian curvature tensor, we
can show that

Dρ
µλν =

1

3
(Rρ

µλν +Rρ
λµν). (80)

Using (77) and (80), we obtain

∂2Gαβ

∂uγuδ
uγuδ =

2

3
Rαγβδu

γuδ. (81)

Through a similar procedure, but a tedious calculation, we obtain

∂3Gαβ

∂uµuνuσ
uµuνuσ = Rαµβν;σu

µuνuσ. (82)

Fourth-order derivatives for metric tensors are easy, but very long.
So we will not present them here. We can now conclude Taylor’s expansion of the
metric tensor. First, we rewrite

Gλπ = Gλπ(0) +
1

2

∂2Gλπ

∂uµ∂uν
vµvνt2 +

1

6

∂3Gαβ

∂uµuνvσ
vµvνvσt3 + . . . (83)

Now we place (81) and (82) in (83), obtaining

Gλπdu
αduβ = Gαβ(0)du

αduβ+
1

3
[Rαγβδt

2+
1

2
vσRαµβν;σt

3+. . .]vγvδduαduβ.

(84)
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Using the symmetries of the curvature tensor, we have the following expansion

Gλπdu
αduβ = Gαβ(0)du

αduβ +
1

12
[Rαγβδt

2

+
1

2
vσRαγβδ;σt

3 + . . .][vγduα − vαduγ ][vβduδ − vδduβ]. (85)

On the hyper-surface t = 1, we have dt = 0 and

Gλπdu
αduβ = Gαβ(0)dv

αdvβ +
1

12
[Rαγβδ

+
1

2
vσRαγβδ;σ][v

γdvα − vαdvγ ][vβdvδ − vδdvβ] (86)

which is the same as Cartan’s result, although through a different way.
It is always possible to place a flat metric in a diagonal form.
This is the case of a metric at the origin of normal coordinates. In this case, we
have

E
(A)
Λ (0) = δ

(A)
Λ . (87)

We now present Taylor’s expansion of E(A)
Λ at the origin of a normal coordinate

E
(A)
Λ (u) = δ

(A)
Λ +

∂(E
(A)
Λ )

∂(uα)
duα + . . . (88)

Multiplying (86) by the vielbein components and their inverse, using (87) and (88),
we obtain

ds2 = η(A)(B)dz
(A)dz(B)

+
1

12
[R(A)(B)(C)(D) +

1

2
z(M)R(A)(B)(C)(D),(M)]

.(z(B)dz(A) − z(A)dz(B))(z(C)dz(D) − z(D)dz(C)) (89)

in which the calculation was made on the hyper-surface t = 1 and dt = 0.
Note that the expansion given by (89) is an approximated solution of (42). Using
a perturbation method, Cartan first solved the equations (28) and (34) and then
placed each solution in (42).
From an appropriate coordinate transformation, we can put a metric of an n-
dimensional manifold of constant curvature in the form

ds′2 = {1 +
KΩαΩβηαβ

4
}−2dΩρdΩσηϱσ. (90)

We can build an expression between dΩρ and dz(A), as follows

dΩΛ = EΛ
(A)dz

(A). (91)
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Then, placing (91) in (51), we have

ds2 = {1 + 1

2
[
1

2
(ϵβBαβγδ) + ηρσAραβAσγδ))].L

αβLγδ}−1ηαβdΩ
αdΩβ. (92)

Because (90) and (92) are conformal to a flat manifold, there is a conformal trans-
formation between them, with a conformal factor, exp 2ψ. Then

g′αβ = (exp 2ψ)gαβ . (93)

More specifically

{1+ 1

2
[
1

2
(ϵβBαβγδ)+η

ρσAραβAσγδ))]L
αβLγδ} = (exp 2ψ){1+

KΩαΩβηαβ
4

}2.
(94)

This is an important result with some consequences, as we will see later.
If we make the Lie derivative of (93) in relation to ξ, we obtain

Lξg
′ = (2ξ(ψ)g + Lξg) exp 2ψ. (95)

We now consider the condition

2ξ(ψ)g + Lξg = 0 (96)

which implies
Lξg

′ = 0 (97)

and this is exactly the definition of a Killing vector. The solution to (97) is well
known, obtaining each of the Killing vectors ξ. We conclude that each ξ is a
Killing vector in (90) and a conformal Killing vector in (92). The equations (96)
and (97) show how a Killing vector in (90) will be a conformal Killing vector in
(92). Notice that a pseudo-Riemannian metric can be put in the form (92) by a
Riemannian normal transformation. In (92), we have a conformal Killing vector,
which is a Killing vector in (90).

6. Embedding Manifolds of Constant Curvature in Flat Manifolds

There are many procedures for defining or introducing functions, fields and geo-
metric objects in an n-sphere. From a different point of view, Dirac [3] embed-
ded the de Sitter space in a flat five-dimensional manifold. The author considered
functions and fields as residing in a flat five-dimensional manifold and constructed
a procedure to project these functions and fields in the de Sitter space. The Dirac
procedure implies a need for the quantum momentum and quantum angular mo-
mentum postulates. Other authors have used Dirac’s ideas or variants of these
ideas, as in [1], where an (n+1)-dimensional stereographic projection is used in a
way in which the quantum angular momentum remains in the n-sphere. This does
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not happen in our approach, because the quantum angular momentum resides on
an (n+ 1)-dimensional pseudo-sphere, as we shall see.
In this section, we embed the n-dimensional manifold (90) in a flat (n + 1)-
dimensional manifold, obtaining the quantum angular momentum of a free particle
as the geometric result.
We now consider a manifold (90) designated by S embedded in a flat (n + 1)-
dimensional manifold. The following constraint is obeyed [14]

ηαβx
αxβ = K = ϵ

1

R2
(98)

in which K is the scalar curvature of the n-dimensional manifold (90) and α, β =
(1, 2, ..., n+ 1) and ϵ = (+1,−1). It is suitable to use a local basis Xβ = ∂

∂(xβ)
·

We consider a constant vector C in a flat (n+ 1)-dimensional manifold given by

ηαβC
αXβ = ηαβCαXβ = C (99)

in which Cα are constant and N is an orthonormal vector to S. We use the symbol
< ,> for the inner product in the flat (n+ 1)-dimensional manifold and < ,>′ for
S.
A constant vector C can be decomposed into two parts, one on S and the other
outside, as follows

C = C̄+ <C,N > N. (100)

From the definition of N and (98), we obtain

Nα =
xα

R
(101)

Let us construct the covariant derivative ofC. We have a local basis and a diagonal,
unitary metric tensor, so that the Christoffel symbols are null. Thus, the covariant
derivative of C in the Y direction is given by

∇Y C = 0. (102)

It is easy to show that

∇YN =
Y

R
· (103)

The Lie derivative of the metric tensor in S is given by [14]

LŪg
′ = 2λUg

′ (104)

in which U is a constant vector in the flat manifold and λU is the characteristic
function. For S, the characteristic function is given by

λU = − 1

R
<U,N > . (105)
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Placing (105) in (104), we have

LŪg
′ = −2

1

R
<U,N > g′. (106)

In the region of S in which < U,N > is not vanished, Ū is a conformal Killing
vector and in the region in which <U,N > is vanished, Ū is a Killing vector.
We now consider another constant vector V in the flat space. The Lie derivative of
its projection on S is given by

LV̄ g
′ = −2

1

R
<V,N > g′. (107)

As we consider a local basis and constant vectors U and V , the commutator is
given by

[U, V ] = 0. (108)

Then

L[Ū ,V̄ ]g
′ = −2

1

R
< [U, V ], N > g′ = 0. (109)

Regardless of Ū and V̄ being Killing or conformal Killing vectors, their commu-
tator is a Killing object. We will now show that the commutator [Ū , V̄ ] is propor-
tional to the quantum angular momentum of a particle.
Using (100) in the commutator of elements of the basis, we obtain

[Ū , V̄ ] = UαV β[Xα− <Xα, N > N,Xβ− <Xβ, N > N ] = UαV β[X̄α, X̄β].
(110)

We now calculate the commutator of elements of the basis by parts.
We have by a simple calculation

<Xα, N >=
1

R
ηαβx

β. (111)

Placing (111) in (110), we obtain

[X̄α, X̄β] = [Xα, Xβ]

− [Xα,
1

R
ηβσx

σN ] + [Xβ,
1

R
ηασx

σN ] +
1

R2
[ηασx

σN, ηβσx
σN ]. (112)

On a local basis, we have
[Xα, Xβ] = 0 (113)

[ηασx
σN, ηβσx

σN ] = 0. (114)
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Placing (113) and (114) in (112), we obtain

[X̄α, X̄β] =
1

R2
(ηασx

σ ∂

∂(xβ)
− ηβσx

σ ∂

∂(xα)
)

=
1

R2
(xα

∂

∂(xβ)
− xβ

∂

∂(xα)
) = −i

1

~R2
Lαβ . (115)

Multiplying Lαβ by a vielbein basis, we obtain

L(A)(B) = (i~)(R2)R(A)(B)(C)(D)x
(D)η(C)(M) ∂

∂(xM)
. (116)

in which

p̂(M) = (i~)
∂

∂(xM)
(117)

is the quantum momentum operator of a particle and

R(A)(B)(C)(D) =
1

R2
[η(A)(D)η(B)(C) − η(A)(C)η(B)(D)] (118)

is the curvature of S on the vielbein basis and η(A)(C) is diagonal.
We have used the embedding of an n-dimensional manifold S in a flat (n + 1)-
dimensional manifold only to obtain the quantum angular momentum operator of
a particle.
We can rewrite (116) as follows

L(A)(B) = (i~)[η(A)(D)η(B)(C) − η(A)(C)η(B)(D)].x(D)η
(C)(M) ∂

∂(xM)
· (119)

Racah has shown that the Casimir operators of semisimple Lie groups can be con-
structed from the quantum angular momentum (116). Each multiplet of a semisim-
ple Lie group can be uniquely characterized by the eigenvalues of the Casimir op-
erators.
Although we have built the quantum angular momentum from classical geomet-
ric considerations, we can write the usual expression for an eigenstate of Casimir
operator as follows

Ĉ | ... >= C | ... > . (120)

Next, we calculate the Lie derivative of the so(p, n− p) algebra. For the Lie group
SO(p,q), we choose the signature (p, q) = (p, n− p) = (−,−,−, ...−,+,+, ..+)
with the algebra

[L(A)(B), L(C)(D)] = −i(η(A)(C)L(B)(D) + η(A)(D)L(C)(B)

+ η(B)(C)L(D)(A) + η(B)(D)L(A)(C)). (121)
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Considering the Lie derivative

L[L(A)(B),L(C)(D)]g
′

= −R4 < [[X(A), X(B)], [X(C), X(D)]], N > g′ = 0. (122)

The vielbein for orthogonal Cartesian coordinates is given by

E
(A)
Λ = δ

(A)
Λ . (123)

We then have
[X(A), X(B)] = [Xα, Xβ] = 0. (124)

Notice that g′ in S is form-invariant in relation to the Killing vector ξ [5] and the
algebra of SO(p,n-p). We conclude that the algebra of SO(p,n-p) is a Killing object.
The same is true for the algebra of the Lie group SO(n), in which we could choose
the signature (+,+,+...,+,+) for SO(n).
The constraint (98) is invariant for many classical groups. For such groups, it is
possible to build operators from the combination of the quantum angular momen-
tum operators, which are Killing objects in relation to g′. Therefore, the metric is
form-invariant in relation to this algebra. Some of these groups are discussed in
[6], and Cartan’s list of irreducible Riemannian globally symmetric spaces in [8].
Notice that we start from a normal coordinate transformation. In other words, in
the region in which the transformation (4) is well-behaved, we can build (51) and
we have (90) by a conformal transformation, which was essential to obtaining the
quantum angular momentum operator from geometry.
The coordinates XΠ of the orthonormal Cartesian coordinate frame, which ap-
pear in (6.1), reside in the flat (n + 1)-dimensional manifold and describe an
n-dimensional pseudo-sphere. A free classical particle, which resides on an n-
dimensional pseudo-sphere, obeys the same classical angular momentum expres-
sion (48), which appears in (50) and (51), obtained in a different context, and
obeys Lλα ⊂ S, with α, λ = (1, 2, ...., n). This is not true for the quantum
angular momentum L(A)(B) given by (116), because in R(A)(B)(C)(D) we have
(A), (B), (C), (D) = (1, 2, ...., n, n+1). This is not easily or always noticed. We
now present a detailed explanation. To avoid a confusing notation, we rewrite (98)
as follows [6]

ḠΠΛX
ΠXΛ = Kηαβx

αxβ + z2 = 1 (125)

in which K is the scalar curvature of the n-dimensional manifold (5.22), α, β =
(1, 2, ..., n) and Λ,Π = (1, 2, ..., n+ 1).

The line element of the flat (n+ 1)-dimensional manifold is given by

ds2 = G̃ΠΛdX
ΠdXΛ = ηαβdx

αdxβ +K−1dz2 (126)
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After a simple calculation, we have the metric of the n-dimensional pseudo-sphere

gµν = ηµν +
K

(1−Kηρσxρxσ)
ηµαx

αηνβx
β (127)

in which we have chosen a diagonal metric with each ηµν = ϵµδµν as plus or
minus Kronecker’s delta function. After a long, but simple consideration of (126)
and (127), we put the line element (126) in the form

ds2 =
ds̄2

(1−Kx2)[1 +K
∑

α>λ ηλρηασL
λαLρσ}] (128)

for which, in (128), we have α = (2, 3, ......, n)

x2 = ηρσx
ρxσ (129)

Lλα = xλ
dxα

ds
− xα

dxλ

ds
(130)

and
ds̄2 = ηρσdx

ρdxσ. (131)

The line element of the n-dimensional pseudo-sphere given by (127) is in the con-
formal form and a particle in free motion described by the classical angular mo-
mentum (130) resides on this n-dimensional pseudo-sphere. We are going to build
Riemann’s tensor components for the metric (127). Placing (127) in Christoffel’s
symbols, after some calculation, we have

Γη
µν = Kxηgµν . (132)

Now consider Riemann’s tensor components

Rα
µσν = ∂νΓ

α
µσ − ∂σΓ

α
µν + Γη

µσΓ
α
nν − Γη

µνΓ
α
ση. (133)

Placing (132) in (133), we obtain

Rλπσρ = K(gλρgπσ − gλσgπρ). (134)

In the origin, xµ = 0, Riemann’s tensor components are given by

Rλπσρ = K(ηλρηπσ − ηλσηπρ). (135)

Notice that an n-dimensional pseudo-sphere is an isotropic, homogeneous man-
ifold. All points on the n-dimensional pseudo-sphere are equivalent. Through
continuous coordinate transformations, we switch from (135) to (134). Now con-
sider the quantum angular momentum given by (116). Multiplying R(A)(B)(C)(D)

by an appropriate vielbein basis E(A)
Λ E

(B)
Π E

(C)
Θ E

(D)
Ξ , and using

GΛΠ = E
(A)
Λ E

(B)
Π η(A)(B) (136)
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we have

RΛΠΩΘ = K(GΛΘGΠΩ −GΛΩGΠΘ)

in which (Λ,Π,Θ,Ω) = (1, 2, 3, ...., n, n+ 1).

Also consider (118) as follows

R(A)(B)(C)(D) = K[η(A)(D)η(B)(C) − η(A)(C)η(B)(D)]

in which ((A), (B), (C), (D)) = (1, 2, 3, ....., n, n + 1). As all points on the
(n + 1)-dimensional pseudo-sphere are geometrically equivalent, we conclude
that a free classical massive particle in an n-dimensional pseudo-sphere has clas-
sical motion and classical angular momentum constrained to the n-dimensional
pseudo-sphere, but has quantum momentum and quantum angular momentum in
an (n+1)-dimensional pseudo-sphere. An isotropic, homogeneous n-dimensional
pseudo-sphere has an infinite number of Ricci directions. Thus, from the classical
point of view, there is uncertainty in the particle position as well as in relation to
the classical angular momentum. It is always possible to go back to the classi-
cal original metric, removing the classical particle uncertainty. From the quantum
point of view, there is an extra dimension, increasing the particle uncertainty in
position, quantum momentum and quantum angular momentum.

From the geometric point of view, some operations with the quantum angular mo-
mentum, such as sums and products, suggest the same operations with curvature.
We define some procedures in differential geometry by operations with quantum
angular momentum. For example, consider the algebra of the group SO(p,n-p)
given by (121), in which

[L(A)(B), L(C)(D)] = −i(η(A)(C)L(B)(D) + η(A)(D)L(C)(B)

+ η(B)(C)L(D)(A) + η(B)(D)L(A)(C)).

We can place (116) in (121), obtaining a representation of the algebra in terms
of curvature operators. Placing (116) in (122), in terms of the curvature opera-
tors, we have the form-invariance of the metric tensor g′ in relation to the algebra
so(p, n − p). Any other possible operation among quantum angular momenta de-
fined herein can be placed in terms of curvature. This offers some curious proce-
dures in differential geometry by simple operations with quantum angular momen-
tum, which may not be possible or are very difficult using geometric methods. The
association between the quantum angular momentum and differential geometry can
be useful in both geometry and physics.
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7. Physical Principles Based on Geometric Properties

In this section, a new postulate is announced and some physical principles are
developed. However, we must first to make some considerations regarding the
electromagnetic field on an n-dimensional pseudo-sphere.
Consider the anti-symmetric electromagnetic of second rank tensor Fασ. In rela-
tion to a Killing vector ξ, the Lie derivative of g′αβFασ = 0 is given by

Lξ(g
′αβFαβ) = g′αβLξ(Fαβ) = 0. (137)

or, more explicitly

Lξ(g
′αβFαβ) = g′µν [

∂ξρ

∂xµ
Fρν +

∂ξρ

∂xµ
Fµρ + ξλ

∂Fµν

∂ξλ
] = 0. (138)

Using the symmetry of g′µν , we have

Lξ(g
′αβFαβ) =

1

2
g′µν [ξλ(

∂Fµν

∂ξλ
+
∂Fνµ

∂ξλ
)] = 0 (139)

or

Lξ(g
′αβFαβ) = g′µν [ξλ

∂(0)

∂ξλ
] = 0. (140)

From (7.1) and (7.4), we have

Lξ(Fαβ) = 0. (141)

Then, in relation to a Killing vector ξ, Fαβ is maximally form-invariant.
A Killing vector ξ obeys

ξµ;ν + ξν;µ = 0. (142)

After some considerations, placing (142) in (141) we have [15]

(n− 2)Fαβ = 0 (143)

which, for n > 2, implies
Fαβ = 0. (144)

Thus, electric and magnetic fields vanish on an n-dimensional pseudo-sphere.
From the usual expressions of electric and magnetic fields, such as functions of
scalar and vector potentials, we have

Aµ = 0. (145)

Consider a density of electrical charges on an n-dimensional pseudo-sphere. As
all points of the sphere are geometrically equivalent, a density of electrical charges
has the same value at all points. Thus, it is a constant.
From Maxwell’s equations, we have

F ρσ
;ρ = −Jσ. (146)
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Placing (144) in (146), we obtain

Jσ = 0. (147)

By (147), we conclude that the sum of all charges is zero and the sum of all currents
is also zero.
Consider, on an n-dimensional pseudo-sphere, a maximally form-invariant second
rank tensor Bασ as given in (141), with non-defined symmetry

Lξ(Bαβ) = 0. (148)

After some considerations, we have [15]

(n− 2)(Bαβ −Bβα) = 0 (149)

which, for n > 2, implies

Bαβ = Bβα = const.gβα. (150)

The only maximally form-invariant tensor of second rank different from zero is the
metric tensor times a constant [6].
To obtain the quantum angular momentum from geometric considerations, we have
considered only constant vectors in a flat (n + 1)-dimensional manifold. We now
reconsider the qualitative analyses of (106) made in Section 6. In the region in
which <U,N> does not vanish, Ū is a conformal Killing vector and, in the region
in which it vanishes, Ū is a Killing vector. In other words, we have Killing and
conformal Killing vectors residing on an n-dimensional pseudo-sphere. For our
purposes, we need only Killing objects as the quantum angular momentum. Next,
we present the following postulate: Nature always chooses Killing objects.
Based on this postulate, we build four classical principles, one of which is iden-
tified as a classical version of Heisenberg’s uncertainty principle and another is
identified as a classical version of Bohr’s non-radiation postulate. The third princi-
ple is not new and is associated to the electrical neutrality of a stable system. The
fourth can be interpreted as an equivalence between two descriptions of the motion
of the particle: The first as motion due to the presence of forces and the second
as a consequence of geometry, as in Einstein’s gravitation. For such, we assume
only constant vectors in an (n + 1)-dimensional flat manifold, in which (90) is
embedded.
Equations (28) and (34) tell us that the curvature is null at the points in which
A(A)(C)(D) and B(A)(B)(C)(D) are null. In this case, the classical angular momenta
are unspecified. We conclude that any free particle in a curved manifold is al-
ways in motion, with angular momentum not null, regardless of whether or not we
consider a physical theory.
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Equation (92) tells us that ds2 is conformal to a flat manifold and to (90). An
observer in (90) will see the space as being homogeneous and isotropic in the
small region in which the transformation (4) is well-behaved. Under this condition,
Ricci principal directions of space are indeterminate; so that the position of the
particle in this region is uncertain. In the conjugate points of Jacobi’s fields, the
transformation (4) fails because geodesics cross, mix or come into contact one
other. Therefore, close to a conjugate point, we will not have indetermination in
the Ricci principal directions and the uncertainty in the particle position disappears.
If (90) is valid at all points of the space, there will be an indetermination of Ricci
principal directions at each point and, consequently, a total uncertainty regarding
the position of the particle. This resembles a property of Heisenberg’s uncertainty
principle and could be seen as a classical version.
The metric (90) is form-invariant for a displacement ξ, which is a Killing vector.
From the postulate above, there are only Killing vectors. In this metric, a physical
scalar field is constant or zero and anti-symmetric second rank tensors, such as the
electromagnetic tensor, are null. Under these conditions, electromagnetic fields
are trivial and there is no radiation. In the neighborhood of the conjugate points,
normal coordinate transformations fail and there is no indetermination of the Ricci
principal directions. Moreover, the electromagnetic fields are not trivial, being a
radiative field. This is similar to Bohr’s postulate for radiation and could be seen
as a classical version.
In the region in which the transformation (4) is well-behaved, the metric can be put
in the form (90) and particles are in free motion without forces.
We can consider this a principle, creating an equivalence between two descriptions
of motion that are possible through normal transformations. The first description,
in local coordinates, is related to the conception of force. The second is related to
the conception of motion without force.
We believe that this principle moves in the direction of Einstein’s dream, as it points
to the possibility of thinking in physics without forces, as in Einstein’s gravity.
We notice that the conjugate points of Jacobi’s fields may be a consequence of geo-
metric singularities, as in the origin of Schwarzschild’s geometry [9], in which the
curvature diverges. However, it may be due to the construction of the coordinates,
as in the case of a maximally symmetric space, in which the curvature is finite at
all points. In the latter case, we have an indetermination of the Ricci principal
directions, whereas there is no indetermination in the former.
We recall that, in the region in which there are no conjugate points of Jacobi’s
fields, it is possible to build a transformation (4) between the ordinary metric and
(92) as well as a conformal transformation between (92) and (90). Because g′ is
form-invariant in the region in which (90) is defined, there are no fields or radiation.
The quantum angular momentum, which is just a Killing object and resides in
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an (n + 1)-dimensional pseudo-sphere, appears as a geometric consequence of
embedding (90) in a flat (n + 1)-dimensional manifold. Particles will be in a free
motion, but, from the classical point of view, confined on an n-dimensional pseudo-
sphere, and, from a quantum point of view, confined on an (n + 1)-dimensional
pseudo-sphere. In this context, in which forces do not exist, particle confinement is
due to the manifold geometry. This resembles Einstein’s geometric vision as well
as Heisenberg’s uncertainty principle in quantum mechanics.

8. Local Embedding of Riemannian Manifolds in Flat Manifolds

In Section 3, we presented considerations on the regions in which coordinate trans-
formations are well-defined.
Let us rewrite (51)

ds2 = exp(2σ)η(A)(B)dz
(A)dz(B). (151)

Defining the transformation of coordinates [9]

y(A) = exp(σ)z(A) (152)

with (A) = (1, 2, 3, ...., n)

yn+1 = exp(σ)(η(A)(B)z
(A)z(B) − 1

4
) (153)

and

yn+2 = exp(σ)(η(A)(B)z
(A)z(B) +

1

4
). (154)

It is easy to determine that
ηABy

AyB = 0 (155)

in which
ηAB = (η(A)(B), η(n+1),(n+1), η(n+2),(n+2)) (156)

with
η(n+1),(n+1) = 1 (157)

and
η(n+2),(n+2)=−1. (158)

By a simple calculation, we find that the line element is given by

ds2 = exp(2σ)η(A)(B)dz
(A)dz(B) = ηABdy

AdyB. (159)

Equation (155) is a hyper-cone in the (n+2)-dimensional flat manifold. The metric
(151) was embedded in the hyper-cone (155) of the (n+2)-dimensional flat mani-
fold.
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