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Abstract. We study a relation between harmonic spheres in loop spaces of
compact Lie groups and Yang–Mills fields on the Euclidean four-space R4.
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1. Introduction

In the paper we study a relation between two classes of objects, arising in theo-
retical physics, which from the first glance seem to be very far from each other.
The first class is formed by harmonic spheres, i.e., harmonic maps of the Riemann
sphere into Riemannian manifolds, coinciding with the classical solutions of the
sigma-model theory in theoretical physics. The second class consists of Yang–
Mills fields on the Euclidean four-space R4.
Harmonic spheres in a given oriented Riemannian manifold are the smooth maps
of the Riemann sphere into this manifolds which are the extremals of the energy
functional given by the Dirichlet integral. They satisfy nonlinear second order el-
liptic equations, generalizing Laplace–Beltrami equation. If the target Riemannian
manifold is Kähler then holomorphic and anti-holomorphic spheres realize local
minima of the energy. However, this functional usually have also non-minimal
critical points.
On the other hand, Yang–Mills fields are the extremals of Yang–Mills action func-
tional. Local minima of this functional are called instantons and anti-instantons. It
was believed that they exhaust all critical points of Yang–Mills action on R4, until
examples of non-minimal Yang–Mills fields were constructed.
There is an evident formal similarity between Yang–Mills fields and harmonic
maps and after Atiyah’s paper [2] it became clear that there is a deep reason for
such a similarity. Namely, Atiyah has proved that the moduli space ofG-instantons
on R4 can be identified with the space of based holomorphic spheres in the loop
space ΩG of a compact Lie group G. Generalizing this theorem, we formulate a
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conjecture stating that it should exist a bijective correspondence between the mod-
uli space of Yang–Mills G-fields on R4 and the space of based harmonic spheres
in the loop space ΩG. In our lectures we discuss this conjecture and propose an
idea of its proof.

2. Harmonic Maps

2.1. Harmonic Self-maps of the Riemann Sphere

Consider the following problem, arising in the ferromagnetic theory. Suppose that
at any point x = (x1, x2) of the Euclidean plane R2 it is given a unit vector
φ(x) ∈ R3, depending smoothly on x. In other words, we have a smooth map

φ : R2 → S2, x 7−→ φ(x)

of the Euclidean plane R2 into the unit sphere S2 ⊂ R3.
Define the energy of φ by the following Dirichlet integral

E(φ) =
1

2

∫
R2

|dφ|2dx1dx2

where

|dφ|2 =
∣∣∣∣ ∂φ∂x1

∣∣∣∣2 + ∣∣∣∣ ∂φ∂x2
∣∣∣∣2 .

Problem 1. Find all smooth maps φ : R2 → S2 with a finite energy E(φ) < ∞
which are extremal with respect to E(φ).

Figure 1. Smooth map from the Euclidean plane R2 to the
two-sphere S2.

Due to the finite energy condition it is natural to impose on maps φ the following
asymptotic condition

φ(x) −→ φ0 uniformly for |x| → ∞
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where φ0 is a fixed point of S2. Under this condition the maps φ : R2 → S2 extend
to continuous maps

φ : S2 = R2 ∪ {∞} −→ S2.
It is well known that continuous maps φ : S2 → S2 have a topological invariant,
called the degree of the map. This invariant counts how many times (counted with
respect to orientation) the image of φ covers the sphere S2 in the target space. It
can be computed by the formula

degφ =

∫
R2

φ∗ω

where ω is the normalized volume form on the sphere S2, satisfying
∫
S2 ω = 1,

and φ∗ω is the preimage of ω under the map φ.
Taking into account this invariant, we can reformulate our original problem as
follows

Problem 2. Find all extremals of the energy E(φ) in the class of smooth maps
φ : R2 → S2 with E(φ) <∞ of a given degree k = degφ.

To solve this problem, we introduce the complex coordinates. Namely, denote by
z = x1 + ix2 the complex coordinate in the definition domain R2 ≈ C and by w
the stereographic complex coordinate in the image S2 \ {∞}. In these coordinates
the expression for the energy of the map φ = w(z) takes the form

E(φ) = 2

∫
C

|wz|2 + |wz̄|2

(1 + |w|2)2
|dz ∧ dz̄|

where wz = ∂w
∂z , wz̄ = ∂w

∂z̄ . The formula for the degree of φ is rewritten as

degφ =
1

2π

∫
C

|wz|2 − |wz̄|2

(1 + |w|2)2
|dz ∧ dz̄|.

Comparing these two formulae, we arrive at inequality

E(φ) ≥ 4π|degφ|.
Moreover, the equality here can be attained only by

• holomorphic functions φ = w(z) for k = degφ ≥ 0, satisfying wz̄ ≡ 0;

• anti-holomorphic functions φ = w(z) for k < 0, satisfying wz ≡ 0.

In other words, holomorphic maps φ = w(z) realize minima of E(φ) in topo-
logical classes with k ≥ 0, while anti-holomorphic functions φ = w(z) realize
minima of E(φ) in topological classes with k < 0. For minimizing maps in these
classes the value of E(φ) is equal to 4π|k|, i.e., it is an integer modulo 4π. Hence,
the energy in our problem is “quantized” which sometimes happens in nonlinear
classical physical systems.
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To find explicit formulas for the minimizing maps, we suppose, for definiteness,
that k > 0. We also note that the value of E(φ) does not change under rota-
tions of the sphere S2 in the target space (by this reason this model is often called
the “SO(3)-model”). Due to this SO(3)-invariance of the problem we can fix the
asymptotic value φ0 by setting it equal to w0 = 1. So we have to describe holo-
morphic maps of the Riemann sphere S2 = R2∪{∞} into itself of degree k which
are equal to one at infinity. Such maps are obligatory rational and, having degree
k, they should have the form

φ = w(z) =

k∏
j=1

z − aj
z − bj

where aj ̸= bj are arbitrary complex numbers.
Note that the space of solutions of our problem depends on 4k real parameters (or
4k + 2 real parameters if we add rotations of S2 in the image).

Remark 1. We have described all local minima of E(φ). It can be proved that
this functional has no other critical points apart from the local minima (which is
an effect of two-dimensionality of the target manifold S2).

2.2. General Definition of Harmonic Maps

Let M be an oriented Riemannian manifold of dimension m, provided with a Rie-
mannian metric g with metric tensor (gij), and N is an oriented Riemannian mani-
fold of dimension n, provided with a Riemannian metric h with metric tensor hαβ .

Definition 2. Let φ : (M, g) → (N,h) be a smooth map. Its energy is given by
the Dirichlet integral

E(φ) =
1

2

∫
M
|dφ(p)|2volg

where dφ is the differential of φ and volg is the volume element of metric g.

The squared norm of the differential can be computed in local coordinates as fol-
lows. Choose local coordinates xi at p ∈M and uα at q = φ(p) ∈ N . Then

|dφ(p)|2 =
∑
i,j

∑
α,β

gij
∂φα

∂xi
∂φβ

∂xj
hαβ

where φα = φα(x) are the components of φ, gij = (g−1)ij are the entries of the
inverse matrix of (gij), volg is the volume element of g, given in local coordinates
by the formula

volg =
√
|det(gij)|dx1 ∧ . . . ∧ dxm.
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Remark 3. There is also an invariant description of the differential dφ. Namely,
the map φ : M → N generates the tangent map φ∗ : TM → TN which may be
identified with a section dφ of the bundle

T ∗M ⊗ φ−1(TN) −→ N

where φ−1(TN) is the inverse image of TN under the map φ whose fibre at p ∈
M coincides with the fibre TqN at q = φ(p). The bundle T ∗M ⊗ φ−1(TN) is
provided with a natural Riemannian metric, induced by Riemannian metrics g and
h. (The local expression for this metric can be read from the local formula for
|dφ(p)|2.)

Example 4. LetM be an open subset in Rm andN be an open subset in Rn. Then
the squared norm of the differential of a smooth map φ = (φ1, . . . , φn) :M → N
is given by

|dφ(x)|2 =
m∑
i=1

n∑
α=1

∣∣∣∣∂φα∂xi

∣∣∣∣2 = m∑
i=1

∣∣∣∣ ∂φ∂xi
∣∣∣∣2

and the energy is equal to

E(φ) =
1

2

∫
M

m∑
i=1

∣∣∣∣ ∂φ∂xi
∣∣∣∣2 dx1 ∧ . . . ∧ dxm.

Extremals of E(φ) are given by the maps φ = (φα) with components φα being
harmonic functions.

Definition 5. A smooth map φ : M → N is called harmonic if it is extremal for
the energy functionalE(φ) with respect to all smooth variations of φ with compact
supports.

Let us write down the Euler–Lagrange equations for E(φ) in local coordinates
xi on M and (uα) on N . Denote by M∇ the Levi-Civita connection of M ,
represented locally by the Christoffel symbol MΓkij , and by N∇ the Levi-Civita
connection of N , represented locally by the Christoffel symbol NΓγαβ . In these
coordinates the Euler–Lagrange equations take the form

∑
i,j

gij

 ∂2φγ

∂xi∂xj
−

∑
k

MΓkij
∂φγ

∂xk
+

∑
α,β

NΓγαβ(φ)
∂φα

∂xi

∂φβ

∂xj


= ∆Mφ

γ +
∑
i,j

gij
∑
α,β

NΓγαβ(φ)
∂φα

∂xi

∂φβ

∂xj
= 0 , γ = 1, . . . , n.
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The operator

∆Mφ
γ =

∑
i,j

gij

{
∂2φγ

∂xi∂xj
−

∑
k

MΓkij
∂φγ

∂xk

}
is the standard Laplace–Beltrami operator of M , determined by metric g. Note
that it is a linear differential operator of second order in φγ . The second term in
Euler–Lagrange equations depends on the geometry of the target space N and is
quadratic with respect to derivatives of φγ .

Example 6. For N = Rn the Euler–Lagrange equations reduce to the Laplace–
Beltrami equations on the components of φ. Their solutions are given by harmonic
functions φγ . For m = dimM = 1 harmonic maps φ : M → N coincide with
geodesics of N , parameterized by the arc length.

Remark 7. One can write down the Euler–Lagrange equations for E(φ) also in
an invariant form. Recall that dφ may be identified with a section of the bundle
T ∗M ⊗ φ−1(TN). As we pointed out above, this bundle can be provided with a
natural connection ∇, generated by Levi-Civita connections M∇ and N∇. The
Euler–Lagrange equations in terms of this connection are written in the form

tr(∇dφ) = 0

where the vector field τφ = tr(∇dφ) is called the stress tensor of φ.

2.3. Harmonic Maps of Almost Complex Manifolds

Let M be an almost complex Riemannian manifold, provided with an almost com-
plex structure

M
J , compatible with Riemannian metric g, and N be an almost com-

plex Riemannian manifold, provided with an almost complex structure
N
J , com-

patible with Riemannian metric h.
Recall that an almost complex structure J on M is a smooth family {Jp}p∈M
of endomorphisms Jp : TpM → TpM such that J2

p = −I . This structure J
is integrable if it generates the ∂̄J -operator, satisfying the integrability condition
∂̄2J = 0. The compatibility of J with Riemannian metric g means that the two-form
ω on M , defined by

ω(X,Y ) := g(X, JY )

is symplectic and the metric g is Hermitian. A manifold (M, g, J, ω) with such an
almost complex structure is called almost Kähler and it is called Kähler if J is
integrable.

Definition 8. Let φ : M → N be a smooth map of almost Kähler manifolds. It is
holomorphic if the tangent map φ∗ : TM → TN commutes with almost complex
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structures
M
J and

N
J , i.e.,

φ∗ ◦
M
J =

N
J ◦ φ∗.

It is called anti-holomorphic if φ∗ anti-commutes with
M
J and

N
J .

Theorem 9 (Lichnerowicz). Let φ : M → N be a smooth map of almost Kähler
manifolds. Holomorphic and anti-holomorphic maps φ realize local minima of the
energy functional E(φ) in a given topological class.

However, in general, the energy functional E(φ) has also non-minimal critical
points (harmonic maps).

In our course we shall be interested in the following problem.

Problem 3. Describe all harmonic spheres φ : P1 → N , i.e., harmonic maps of
the Riemann sphere P1 = S2 to a given Riemannian manifold N , by reducing this
problem to the description of holomorphic spheres in almost Kähler manifolds.

3. Instantons and Yang–Mills Fields

This Section contains a brief introduction to Yang–Mills fields. A detailed ex-
position of this theory the reader may found in the books by Atiyah [1], Freed–
Uhlenbeck [7] and Naber [8].

3.1. Yang–Mills Equations on R4

Let G be a compact Lie group (gauge group). A gauge G-potential on R4 is a
connection in a principal G-bundle over R4, identified with a one-form A on R4

with values in the Lie algebra g ofG. IfG coincides with the group U(n) of unitary
(n× n)-matrices then this form may be written as

A =

4∑
µ=1

Aµ(x)dxµ

where x = (x1, x2, x3, x4) are coordinates on R4, Aµ(x) are smooth functions on
R4 with values in skew-Hermitian (n×n)-matrices. For n = 1 the gauge potential
is the Euclidean analogue of the electromagnetic four-potential. A gauge G-field
F is the curvature of connection A, given by a two-form on R4 with values in g of
the form

F = DA = dA+
1

2
[A,A]
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where D : Ω1(R4, g) → Ω2(R4, g) is the covariant exterior derivative, generated
by the connection A. In the case G = U(n) this form is equal to

F =

4∑
µ,ν=1

Fµν(x)dxµ ∧ dxν

where
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

with ∂µ := ∂/∂xµ, µ = 1, 2, 3, 4. For n = 1 the form {Fµν} coincides with the
Euclidean analogue of the Maxwell tensor of electromagnetic field.
A gauge transform is a smooth map g : R4 → G, acting on gauge potentials and
fields by the formula

A 7−→ Ag := g−1dg + g−1Ag, g : F 7−→ Fg := g−1Fg

where G acts on g by the adjoint representation. In the case G = U(1) the gauge
transform coincides with the multiplication by the factor g(x) = eiθ(x) so that
A 7→ A− idθ and F does not change under this map.
Define the Yang–Mills action functional by the formula

S(A) =
1

2

∫
R4

∥F∥2d4x

where

∥F∥2 =
4∑

µ,ν=1

∥Fµν∥2

and the norm ∥Fµν∥ is computed with the help of an invariant inner product on g.
In the case G = U(n) one can take for such a product ⟨X,Y ⟩ := tr(XY ). Then
the formula for S(A) will rewrite as

S(A) =
1

2

∫
R4

tr(F ∧ ∗F )

where ∗ is the Hodge star-operator on R4.
The functional S(A) is invariant under gauge transformations so that S(A) de-
pends on the class of the connection A modulo gauge transformations rather than
A itself.

Definition 10. Yang–Mills fields are the gauge fields F with finite Yang–Mills ac-
tion S(A) < ∞, realizing the extrema of S(A). The corresponding gauge poten-
tials A are called the Yang–Mills connections.

Yang–Mills fields satisfy the Euler–Lagrange equations for S(A) which have the
form

D∗F = 0
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where D∗ : Ω2(R4, g) → Ω1(R4, g) is the formal adjoint of D. It is equal to
D∗ = − ∗D∗ so that the Euler–Lagrange equations for S(A) may be rewritten as

D(∗F ) = 0.

This equation is called the Yang–Mills equation and is sometimes supplemented
with the Bianchi identity

DF = 0

automatically satisfied for gauge fields F .

3.2. Instantons

A gauge field F is called selfdual (respectively anti-selfdual) if

∗F = F, (respectively ∗ F = −F ).

It is an immediate corollary of Bianchi identity that solutions of duality equations

∗F = ±F

satisfy the Yang–Mills equations.
If we write down the form F as a sum

F = F+ + F−

with F± = 1
2(∗F ±F ) then the formula for the Yang–Mills action can be rewritten

in the form

S(A) =
1

2

∫
R4

(
∥F+∥2 + ∥F−∥2

)
d4x.

For gauge fields F with finite Yang–Mills action the quantity

k(A) =
1

8π2

∫
R4

(
−∥F+∥2 + ∥F−∥2

)
d4x =

1

8π2

∫
R4

tr(F ∧ F )

is an integer-valued topological invariant, called the topological charge of F . Ev-
idently,

S(A) ≥ 4π2|k(A)|.
The minimum of S(A), equal to 4π2|k| in the topological class of gauge potentials
with finite Yang–Mills action and fixed topological charge k(A) = k, may be
attained for k > 0 only on anti-selfdual fields and for k < 0 only on selfdual ones.

Definition 11. Anti-selfdual fields with finite action S(A) < ∞ are called the
instantons while selfdual fields with finite action S(A) < ∞ are called the anti-
instantons.
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Instantons and anti-instantons realize local minima of the action S(A), however,
there exist also non-minimal critical points of this functional.
One of the main objects in Yang–Mills theory is the moduli space of Yang–Mills
fields which is the quotient of the space of all Yang–Mills fields modulo gauge
transforms. The structure of this space is far from being understood and one of
our goals is to approach this problem on the base of harmonic spheres conjecture.
However, the analogous problem for instantons, i.e., the description of the moduli
space of instantons on R4, was solved by Atiyah–Drinfeld–Hitchin–Manin with
the help of the twistor approach, introduced in the next Section.
Comparing Yang-Mills fields with harmonic maps, introduced in Section 2, we
observe the following evident analogy between:

{(anti-)holomorphic maps} ←→ {(anti-)instantons }

and
{harmonic maps } ←→ {Yang–Mills fields } .

As we shall see from the Atiyah theorem and harmonic spheres conjecture, this
formal analogy has, in fact, a much deeper meaning.

4. Twistor Interpretation of Instantons

4.1. Basic Twistor Bundle over S4

We shall identify the four-sphere S4 with the quaternion projective line in the same
way as the two-sphere S2 is identified with the complex projective line CP1.
Recall that the space of quaternions H consists of elements

q = x1 + ix2 + jx3 + kx4

where x1, x2, x3, x4 ∈ R, i2 = j2 = k2 = −1 and the multiplication law is defined
by the relation

ij = −ji = k.

The space H is a non-commutative field isomorphic, as a vector space, to R4. As
a complex vector space H can be identified with C2 by writing quaternions in the
form

q = z1 + z2j

where z1 = x1 + ix2, z2 = x3 + ix4 ∈ C.
Quaternion projective line HP1 consists of pairs [q, q′] of quaternions (not equal to
zero simultaneously) which are defined up to multiplication (from the right) by a



22 Armen Sergeev

nonzero quaternion. We identify the Euclidean sphere S4 = R4 ∪ {∞} with the
quaternion projective line HP1 and define the basic twistor bundle over S4

π : CP3 CP1

−→ HP1

by the tautological formula

[z1, z2, z3, z4] 7−→ [z1 + z2j, z3 + z4j]

where the four-tuple [z1, z2, z3, z4] ∈ CP3 is defined up to multiplication by a
nonzero complex number while the pair [z1+z2j, z3+z4j] ∈ HP1 is defined up to
multiplication (from the right) by a nonzero quaternion. The fibre of π coincides
with the complex projective line CP1, invariant under multiplication from the right
by j, i.e., under the map

j : [z1, z2, z3, z4] 7−→ [−z2, z1,−z4, z3].

The constructed bundle π : CP3 → S4 has a nice interpretation in terms of complex
structures on R4 due to Atiyah. To describe it, consider the restriction of π to the
Euclidean space R4 ∼= H

π : CP3\CP1
∞ −→ R4

where the omitted complex projective line CP1
∞ is identified with the fibre π−1(∞)

of the twistor bundle at∞ ∈ S4.
The space CP3\CP1

∞ is foliated by parallel complex projective planes CP2. These
planes intersect in CP3 on the projective line CP1

∞ so that each point p of CP1
∞

defines one family of parallel planes. The tangent map π∗ provides the tangent
space TqR4 at a point q ∈ R4 with the complex structure, induced from these
parallel planes. Different families, determined by points p ∈ CP1

∞, define different
complex structures on TqR4 so that the space of all complex structures on TqR4,
compatible with metric, can be identified with CP1

∞. Summing up, we can consider
the twistor bundle

π : CP3\CP1
∞ −→ R4

as a bundle of complex structures on R4, compatible with metric. The fibre of this
bundle at a point q ∈ R4 consists of complex structures on the tangent space TqR4,
compatible with metric, and can be identified, as above, with CP1

∞.

4.2. Atiyah–Hitchin–Singer Construction and Penrose Twistor Program

We shall use an interpretation of basic twistor bundle as a bundle of complex struc-
tures, given in the last Subsection, to extend the twistor bundle construction to
general Riemannian manifolds.
Let N be an even-dimensional oriented Riemannian manifold of dimension 2n.
Consider the bundle π : J (N)→ N of complex structures on N , compatible with
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Riemannian metric. The fibre of this bundle at a point q ∈ N coincides with the
space J (TqN) of complex structures Jq on the tangent space TqN , compatible
with metric. The bundle π : J (N) → N is associated with the principal bundle
O(N) → N of orthonormal frames on N and its fibre π−1(q) can be identified
with the complex homogeneous space O(2n)/U(n).
The bundle π : J (N)→ N can be always provided with a natural almost complex
structure, introduced by Atiyah–Hitchin–Singer. Namely, the Levi-Civita connec-
tion N∇ on N generates a natural connection on O(N), hence on J (N). This
connection determines the corresponding vertical-horizontal decomposition

TJ (N) = V ⊕H.

Using this decomposition, introduce an almost complex structure J 1 on J (N) by
setting

J 1 = J v ⊕ J h

where the value J vz of J v at z ∈ J (N) coincides with the canonical complex
structure on the vertical space Vz , identified with O(2n)/U(n). The value of the
horizontal component J hz at z coincides with the complex structure J(z) on the
horizontal space Hz , given by the point z of the twistor bundle, where Hz is iden-
tified with the tangent space Tπ(z)N by π∗. We recall that the fibre π−1(q) of the
bundle π : J (N) → N at q = π(z) ∈ N consists of complex structures on
TqN and we denote by J(z) the complex structure on TqN , corresponding to the
point z ∈ π−1(q). This construction provides (J (N),J 1) with the structure of an
almost complex manifold.
We formulate now an heuristic Penrose twistor program:

Construct for a given Riemannian manifold N a twistor bundle π :
Z → N , where the twistor space Z is an almost complex manifold,
with the following characteristic property: there should be a one-to-
one correspondence between

{
objects of Riemannian
geometry on N

}
←→

{
objects of holomorphic
geometry on Z

}
·

Such a correspondence, being established, would give a method of studying the
real geometry of the Riemannian manifold N via the complex geometry of its
twistor space Z.
The above Atiyah–Hitchin–Singer construction yields an example of such a twistor
bundle J (N) → N where the twistor space Z = J (N) is provided with the
almost complex structure J 1.
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4.3. Atiyah–Ward and Donaldson Theorems

From now on we shall deal only with the complex projective spaces CP1 and CP3.
By this reason, we shall shorten their notation to P1 and P3.
We return to the problem of description of{moduli space of

G-instantons on R4

}
=
{G-instantons on R4}
{gauge transforms}

·

Using the basic twistor bundle π : P3 \ P1 → R4, Atiyah and Ward have reduced
this problem to a problem of description of certain holomorphic bundles over the
three-dimensional complex projective space P3. Namely, according to them, there
is a one-to-one correspondence between{moduli space of
G-instantons on R4

}
←→

{
based equivalence classes of holomorphic
GC-bundles over P3, trivial on π-fibers

}
.

Here, GC is the complexification of the group G and the term “based” means that
the equivalence ofGC-bundles over P3 is defined “modulo” P1

∞, i.e., all mappings,
defining the equivalence of the bundles, should be equal to identity on P1

∞.
This result has the following two-dimensional reduction to the space P1×P1, given
by the Donaldson theorem{moduli space of

G-instantons on R4

}
←→

{
based equivalence classes of holomorphic
GC-bundles over P1×P1, trivial on P1

∞∪P1
∞

}
where P1

∞ ∪ P1
∞ denotes the union of two complex projective lines “at infinity” of

P1 × P1.

5. Twistor Interpretation of Harmonic Spheres

5.1. Eells–Salamon Theorem

Guided by the Penrose twistor program, mentioned in Subsection 4.2, we may
suppose that our original problem of construction of harmonic spheresφ : P1 → N
in a given Riemannian manifoldN should reformulate as a problem of construction
of holomorphic spheres ψ : P1 → Z in its twistor space (Z = J (N),J 1) such
that φ = π ◦ ψ

Z = J (N)

π

��
P1

ψ
::t

t
t

t
t

φ
// N
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And it is almost true. In fact, projections of holomorphic spheres ψ : P1 → Z to
N do satisfy some partial differential equations of second order on N . However,
these equations are not harmonic but ultrahyperbolic, i.e., “harmonic with a wrong
signature” (n, n) instead of the required signature (2n, 0).
By this reason, we have to change the definition of the almost complex structure
on Z if we want to construct harmonic spheres in N as projections of holomorphic
spheres in Z. Namely, we shall provide Z with a new almost complex structure
J 2 which is given in terms of the vertical-horizontal decomposition

TJ (N) = V ⊕H
by

J 2 = (−J v)⊕ J h.
It is precisely this almost complex structure, introduced by Eells and Salamon,
which is used for the twistor description of harmonic spheres.
Before we formulate the main result of this Subsection, let us give a formal defini-
tion of the twistor bundle.

Definition 12. A smooth bundle π : Z → N of an almost complex manifold
(Z,J ) over a Riemannian manifold N will be called the twistor bundle of N if the
projection φ := π ◦ ψ of any holomorphic sphere ψ : P1 → Z to N is a harmonic
sphere φ : P1 → N .

Theorem 13 (Eells–Salamon theorem). The twistor bundle

π : Z = J (N) −→ N

provided with the almost complex structure J 2, is the twistor bundle, i.e., projec-
tion φ := π ◦ψ of any holomorphic sphere ψ : P1 → Z to N is a harmonic sphere
φ : P1 → N .

Using this theorem, we can construct harmonic spheres in the manifold N from
holomorphic spheres in its twistor space Z.
However, we note that the almost complex structure J 1 on J (N) is integrable⇔
N is conformally flat while the almost complex structure J 2 is never integrable.

Remark 14. Taking this into account, the Eells–Salamon theorem may look not
helpful as a method of construction of harmonic spheres in N . Indeed, it reduces
the problem of construction of harmonic spheres in the Riemannian manifold N to
the problem of construction of holomorphic spheres in the almost complex mani-
fold (Z,J 2). But the almost complex structure J 2, being non-integrable, might
be quite bizarre. For example, such a structure may have no non-constant holo-
morphic functions even locally. But our advantage is that we are dealing not with
holomorphic functions, i.e., holomorphic maps f : Z → C, but with a dual object
– holomorphic maps ψ : C → Z. Such a map is holomorphic with respect to the
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almost complex structure J 2 on Z ⇐⇒ it satisfies the Cauchy–Riemann equation
∂̄Jψ = 0 with respect to the pulled-back almost complex structure J := ψ∗(J 2)
on C. This structure J is integrable (as any almost complex structure in complex
dimension one). In particular, the above Cauchy–Riemann equation has many lo-
cal solutions.

5.2. Complex Grassmann Manifolds and Flag Bundles

We apply the twistor approach to the description of harmonic spheres in the com-
plex Grassmann manifold Gr(Cd). In this case it is natural to choose for its
twistor spaces the bundles of complex structures over Gr(Cd), invariant under the
action of the unitary group U(d). Such bundles coincide with the flag bundles
defined below.

Definition 15. The flag manifold F r(Cd) in Cd of type r = (r1, . . . , rn) with
d = r1 + . . . + rn consists of flagsW = (W1, . . . ,Wn), i.e., nested sequences of
complex subspaces

W1 ⊂ . . . ⊂Wn = Cd

such that the dimension of the subspace V1 := W1 is equal to r1 and dimensions
of the subspaces Vi :=Wi ⊖Wi−1 are equal to ri for 1 < i ≤ n.

The flag manifold F r(Cd) admits the following description as a homogeneous
space of the unitary group U(d)

F r(Cd) = U(d)/U(r1)× · · · × U(rn).

It is a compact Kähler manifold which has an U(d)-invariant complex structure,
denoted by J 1.

Definition 16. For the construction of a flag bundle over the Grassmann manifold
Gr(Cd) we fix an ordered subset σ ⊂ {1, . . . , n}, such that

∑
i∈σ ri = r, and

define the flag bundle
πσ : F r(Cd) −→ Gr(Cd)

by
πσ :W = (W1, . . . ,Wn) 7−→W :=

⊕
i∈σ

Vi.

5.3. Harmonic Spheres in Grassmann Manifolds: Burstall–Salamon
Theorem

The flag bundle πσ, introduced in the previous Subsection, can be provided, as
before, with an almost complex structure J 2

σ so that the following analogue of
Eells–Salamon Theorem 13 will hold.
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Theorem 17 (Burstall-Salamon). The flag bundle

πσ : (F r(Cd),J 2
σ ) −→ Gr(Cd)

provided with an almost complex structure J 2
σ , is a twistor bundle, i.e., the pro-

jection φ = πσ ◦ ψ of any holomorphic sphere ψ : P1 → F r(Cd) to Gr(Cd) is
a harmonic sphere φ : P1 → Gr(Cd) in Gr(Cd). Moreover, the converse is also
true: any harmonic sphere φ : P1 → Gr(Cd) in Gr(Cd) may be obtained in this
way from some flag bundle πσ : F r(Cd)→ Gr(Cd).

Using the above twistor interpretation of harmonic spheres in Gr(Cd), we can
reduce their description to the description of holomorphic spheres in flag manifolds
F r(Cd). The latter problem was solved by Wood. The idea of his construction can
be roughly described as follows. A map ψ : P1 → F r(Cd) may be considered as a
decomposition of the trivial bundle P1 × Cd into the direct sum of subbundles

P1 × Cd = ψ1 ⊕ . . .⊕ ψn

where ψi := ψ∗Ti with Ti being the ith tautological bundle over F r(Cd). A
map ψ : P1 → F r(Cd) is J 1-holomorphic ⇐⇒ all subbundles ψ1, . . . , ψn are
holomorphic. Wood has proposed a procedure how to rebuild this decomposition
into a decomposition

P1 × Cd = ψ̃1 ⊕ . . .⊕ ψ̃m
corresponding to a J 2-holomorphic sphere, where subbundles ψ̃i are either holo-
morphic or anti-holomorphic.

6. Atiyah Theorem and Harmonic Spheres Conjecture

6.1. Loop Spaces of Compact Lie Groups

We switch now to the infinite-dimensional target manifolds N , namely we take for
N the loop space ΩG of a compact Lie group G.

Definition 18. Let G be a compact Lie group. Then its loop space is

ΩG = LG/G

whereLG = C∞(S1, G) is the loop group ofG, i.e., the space ofC∞-smooth maps
S1 → G andG in the denominator is identified with the subgroup of constant maps
S1 → g0 ∈ G. Otherwise, ΩG can be thought of as the space of based loops, i.e.,
the maps S1 → G, sending 1 ∈ S1 7→ e ∈ G.
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The space ΩG is an infinite-dimensional Kähler manifold. A complex structure on
ΩG is induced from its representation as a homogeneous space of a complex Lie
group

ΩG = LGC
/
L+G

C

where GC is the complexification of G, LGC = C∞(S1, GC) is the complexified
loop group of G, and L+G

C = Hol(∆, GC) is a subgroup of LGC, consisting of
the maps which may be holomorphically extended to the unit disc ∆.

6.2. Holomorphic Spheres in Loop Spaces: Theorem of Atiyah

Recall that, according to Donaldson theorem{moduli space of
G-instantons on R4

}
←→


based equivalence classes of holomorphic
GC-bundles over P1×P1, trivial on the union
P1
∞ ∪ P1

∞

 .

Atiyah theorem asserts that the right hand side of this correspondence can be iden-
tified with the space of based holomorphic spheres in ΩG. In other words, there is
a one-to-one correspondence

based equivalence classes of holo-
morphic GC-bundles over P1 × P1,
trivial on the union P1

∞ ∪ P1
∞

←→
{based holomorphic spheres
f : P1 → ΩG, sending ∞ to
the origin of ΩG

}
.

The proof of Atiyah theorem is based on the following construction.

Figure 2. Holomorphic GC-bundle over CP1 × CP1.

Restrict a given holomorphic GC-bundle over P1 × P1 to the projective line P1
z ,

passing through a point P1 × {z} parallel to P1
∞. This restricted bundle is deter-

mined by a transition function

f̃z : S1 −→ GC



Harmonic Spheres and Yang–Mills Fields 29

which is holomorphic in a neighborhood of the equator S1 in P1
z . Hence, f̃z ∈ LGC

and we have a map

f : P1 ∋ z 7−→ f̃z ∈ LGC 7−→ f(z) ∈ ΩG = LGC/L+G
C.

This map is holomorphic and based⇐⇒ the original GC-bundle over P1 × P1 is
holomorphic and trivial on P1

∞ ∪ P1
∞.

6.3. Harmonic Spheres Conjecture

Atiyah and Donaldson theorems imply that there is a one-to-one correspondence
between {moduli space of

G-instantons on R4

}
←→

{
based holomorphic spheres
f : P1 → ΩG

}
.

So we have a correspondence between local minima of two functionals, namely{
Yang–Mills action on
gauge G-fields on R4

}
and

{
energy of smooth
spheres in ΩG

}
with local minima given respectively by{instantons and anti-

instantons

}
←→

{
holomorphic and anti-
holomorphic spheres

}
.

If we replace here the local minima by the critical points of the corresponding
functionals, we shall arrive at the formulation of the harmonic spheres conjec-
ture, namely it should exist a one-to-one correspondence between{moduli space of Yang–

Mills G-fields on R4

}
←→

{
based harmonic spheres
f : P1 → ΩG

}
.

Remark 19. We can consider the described transition from the local minima to
the critical points of our functionals as a “realification” procedure. Indeed, if we
replace smooth spheres in the right hand side of the above diagram by smooth
functions f : C → C then the described transition will reduce to the replacement
of holomorphic and anti-holomorphic functions by arbitrary harmonic functions
(which are the sums of holomorphic and anti-holomorphic functions). In the case
of smooth spheres in ΩG this transition from holomorphic and anti-holomorphic
spheres to harmonic ones becomes non-trivial due to the non-linear character of
Euler–Lagrange equations for the energy.

Unfortunately, a direct extension of Atiyah–Donaldson proof to the harmonic case
is not possible since the proof of Donaldson theorem, based on the monad method
of construction of holomorphic vector bundles on complex projective spaces, is
purely holomorphic. However, one can attempt to reduce the proof of the har-
monic spheres conjecture to the holomorphic case by “pulling-up” both sides of
the correspondence in this conjecture to their twistor spaces.
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7. Twistor Bundle over the Loop Space

7.1. Hilbert–Schmidt Grassmannian

In order to construct a twistor bundle over the loop space ΩG we shall first em-
bed ΩG into an infinite-dimensional Grassmannian, and then construct its twistor
bundle by analogy with the finite-dimensional case.
The role of an infinite-dimensional Grassmannian will be played by the Hilbert–
Schmidt Grassmannian of a complex Hilbert space H , provided with a polariza-
tion. That is a complex Hilbert space H together with a decomposition

H = H+ ⊕H−

into the direct orthogonal sum of closed infinite-dimensional subspaces H±. In the
case of the space H = L2

0(S1,C) of square integrable functions on S1 with zero
average one can take for such subspaces

H± = {γ ∈ H ; γ =
∑
±k>0

γke
ikθ}.

Definition 20. The Hilbert–Schmidt Grassmannian GrHS(H) consists of closed
subspaces W ⊂ H such that the orthogonal projection π+ : W → H+ is a
Fredholm operator and orthogonal projection π− :W → H− is a Hilbert–Schmidt
operator.

For a given subspace W ∈ GrHS(H) the Fredholm index of the projection π+ :
W → H+ is called the virtual dimension of W .
Similar to the finite-dimensional case, the Hilbert–Schmidt Grassmannian GrHS(H)
admits the following homogeneous representation

GrHS(H) =
UHS(H)

U(H+)× U(H−)

where the unitary Hilbert–Schmidt group UHS(H) is defined by

UHS(H) = {A ∈ U(H) ; π− ◦A ◦ π+ is Hilbert–Schmidt}.

The Grassmannian GrHS(H) is a Hilbert Kähler manifold, consisting of a count-
able number of connected components of a fixed virtual dimension:

GrHS(H) =
∪
d

Gd(H)

where
Gd(H) = {W ∈ GrHS(H) ; virtual dimW = d}.



Harmonic Spheres and Yang–Mills Fields 31

7.2. Virtual Flag Bundles and Harmonic Spheres in the Hilbert–Schmidt
Grassmannian

The virtual flag manifold and flag bundles are defined by analogy with the finite-
dimensional case.

Definition 21. The virtual flag manifold F dr(H) inH of type r = (r1, . . . , rn) with
d = r1 + . . . + rn consists of flagsW = (W1, . . . ,Wn), i.e., nested sequences of
complex subspaces

W1 ⊂ . . . ⊂Wn ⊂ H
such that the virtual dimension of the subspace V1 := W1 is equal to r1, and
dimensions of subspaces Vi :=Wi ⊖Wi−1 are equal to ri for 1 < i ≤ n.

Definition 22. For the construction of a flag bundle over the Grassmann manifold
Gr(H) we fix an ordered subset σ ⊂ {1, . . . , n}, so that

∑
i∈σ ri = r, and define

the virtual flag bundle
πσ : F dr(H) −→ Gr(H)

by

πσ :W = (W1, . . . ,Wn) 7−→W :=
⊕
i∈σ

Vi.

As in the finite-dimensional case, we can provide the virtual flag bundle πσ with an
almost complex structure J 2

σ so that the following analogue of Burstall–Salamon
Theorem 17 holds.

Theorem 23. The virtual flag bundle

πσ : (F dr(H),J 2
σ ) −→ Gr(H)

provided with the almost complex structure J 2
σ , is a twistor bundle, i.e., the pro-

jection φ = πσ ◦ψ of any almost holomorphic sphere ψ : P1 → F dr(H) to Gr(H)
is a harmonic sphere φ : P1 → Gr(H) in Gr(H).

We think that the converse of this Theorem is also true, as in the finite-dimensional
case.

7.3. Embedding of Loop Spaces into the Hilbert–Schmidt Grassmannian

Suppose that our compact Lie group G is realized as a subgroup of the unitary
group U(N) and construct an embedding of ΩG into the Grassmannian GrHS(H)
where H = L2

0(S1,CN ).
Construct first an embedding of the loop groupLG into the unitary Hilbert–Schmidt
group UHS(H). For that we associate with a loop γ, belonging to the space
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LG = C∞(S1, G) ⊂ C∞(S1,U(N)), the multiplication operator Mγ in the
Hilbert space H = L2

0(S1,CN ), acting by the formula

h ∈ H = L2
0(S1,CN ) 7−→Mγh(z) := γ(z)h(z), z ∈ S1.

In other words, Mγh is a vector function from H = L2
0(S1,CN ), obtained by

the pointwise application of the matrix function γ ∈ C∞(S1,U(N)) to the vector
function h ∈ H = L2

0(S1,CN ). The operator Mγ belongs to the unitary group
UHS(H) if γ ∈ C∞(S1,U(N)).

The constructed embedding LG ↪→ UHS(H) generates an isometric embedding

ΩG −→ GrHS(H).

8. Idea of the Proof of Harmonic Spheres Conjecture

8.1. Harmonic Analogue of Atiyah Theorem

Using the constructed isometric embedding ΩG ↪→ GrHS(H), we can consider an
arbitrary harmonic map φ : P1 → ΩG as taking its values in the Grassmannian
GrHS(H), hence, in one of its connected components Gr(H) and use the twistor
method.

We start from a harmonic version of Atiyah theorem, relating based harmonic
spheres φ : P1 → ΩG to harmonic GC-bundles over P1 × P1. For a fixed z ∈ P1

we pull back the value φ(z) ∈ ΩG to φ̃(z) ∈ LGC and consider φ̃(z) as a transi-
tion function of a bundle over projective line P1

z . By changing z ∈ P1, we obtain a
GC-bundle E over P1 × P1 which is harmonic and trivial over P1 ∪ P1 if and only
if the original map φ is based and harmonic.

We note that if we consider the map φ : P1 → ΩG as taking values in GrHS(H)
then the value φ(z) for a fixed z ∈ P1 is interpreted in terms of GrHS(H) as a
subspace Wz =Mφ̃(z)H+.

8.2. Twistor Interpretation of the Moduli Space of Yang–Mills Fields

The twistor interpretation of the above construction has the following form. A
harmonic sphere φ : P1 → ΩG may be considered as a harmonic sphere in a
submanifold Gr(H) ⊂ GrHS(H), consisting of subspaces W ⊂ H of some fixed
virtual dimension r. Assuming that the converse of Theorem 23 is true, the har-
monic sphere φ : P1 → Gr(H) in terms of the twistor flag bundle should coincide
with the projection of some J 2

σ -holomorphic sphere ψ : P1 → F dr(H) so that there
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is a commutative diagram

F dr(H)

πσ

��
P1

ψ
;;xxxxxxxxx

φ
// Gr(H) .

Then for a fixed z ∈ P1 we pull back the value ψ(z) = (ψ1(z), . . . , ψn(z)) to
ψ̃(z) = (ψ̃1(z), . . . , ψ̃n(z)) with ψ̃i(z) ∈ LGC.
In terms of F dr(H) the value ψ(z) = (ψ1(z), . . . , ψn(z)) is given by the virtual
flagW(z) = (W1(z), . . . ,Wn(z) where Wi(z) =Mψ̃i(z)

H+.

The functions ψ̃i(z) ∈ LGC, being considered as transition functions, determine
some bundles over P1

z . By changing z ∈ P1, we obtain for i = 1, . . . , n the GC-
bundles Ei over P1 × P1, trivial over P1

∞ ∪ P1
∞. It follows from the definition of

the almost complex structure J 2
σ that these bundles Ei should be either holomor-

phic or anti-holomorphic. So by Atiyah theorem they should correspond either to
instantons or anti-instantons on R4.
In this way we can associate with any Yang–Mills field on R4 a finite collection
of instantons and anti-instantons on R4. This construction may be considered as a
twistor description of the moduli space of Yang–Mills fields on R4.
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