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CHAPTER V

Distributions

Abstract. This chapter makes a detailed study of distributions, which are continuous linear func-
tionals on vector spaces of smooth scalar-valued functions. The three spaces of smooth functions
that are studied are the space C3o, (U) of smooth functions with compact support in an open set
U, the space C*°(U) of all smooth functions on U, and the space of Schwartz functions S(RY) on
RV The corresponding spaces of continuous linear functionals are denoted by D’(U), £'(U), and
S'(RM).

Section 1 examines the inclusions among the spaces of smooth functions and obtains the conclu-
sion that the corresponding restriction mappings on distributions are one-one. It extends from £'(U)
to D’(U) the definition given earlier for support, it shows that the only distributions of compact
support in U are the ones that act continuously on C*°(U), it gives a formula for these in terms of
derivatives and compactly supported complex Borel measures, and it concludes with a discussion of
operations on smooth functions.

Sections 2-3 introduce operations on distributions and study properties of these operations.
Section 2 briefly discusses distributions given by functions, and it goes on to work with multiplications
by smooth functions, iterated partial derivatives, linear partial differential operators with smooth
coefficients, and the operation (- )" corresponding to x +— —x. Section 3 discusses convolution at
length. Three techniques are used —the realization of distributions of compact support in terms of
derivatives of complex measures, an interchange-of-limits result for differentiation in one variable
and integration in another, and a device for localizing general distributions to distributions of compact
support.

Section 4 reviews the operation of the Fourier transform on tempered distributions; this was
introduced in Chapter III. The two main results are that the Fourier transform of a distribution
of compact support is a smooth function whose derivatives have at most polynomial growth and
that the convolution of a distribution of compact support and a tempered distribution is a tempered
distribution whose Fourier transform is the product of the two Fourier transforms.

Section 5 establishes a fundamental solution for the Laplacian in RY for N > 2 and concludes
with an existence theorem for distribution solutions to Au = f when f is any distribution of compact
support.

1. Continuity on Spaces of Smooth Functions

Distributions are continuous linear functionals on vector spaces of smooth func-
tions. Their properties are deceptively simple-looking and enormously helpful.
Some of their power is hidden in various interchanges of limits that need to be
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180 V. Distributions

carried out to establish their basic properties. The result is a theory that is easy to
implement and that yields results quickly. In the last section of this chapter, we
shall see an example of this phenomenon when we show how it gives information
about solutions of partial differential equations involving the Laplacian.

The three vector spaces of scalar-valued smooth functions that we shall con-
sider in the text! of this chapter are C*°(U), S(RV), and CX . (U), where U is a
nonempty open set in R Topologies for these spaces were introduced in Section
IV.2, Section IIL.1, and Section IV.7, respectively. Let {K,} be an exhausting
sequence of compact subsets of U, i.e., a sequence such that K, € K ; 4 forall
pandsuchthat U = ()2, K.

The vector space C*°(U) of all smooth functions on U is given by a separating
family of seminorms such that a countable subfamily suffices. The members of
the subfamily may be takentobe || f I, , = SUP, ek, |D“f (x)|,wherel < p < 00

and where « varies over all differentiation multi-indices.” The space of continuous
linear functionals is denoted by £'(U), and the members of this space are called
“distributions of compact support” for reasons that we recall in a moment.

The vector space S(RY) of all Schwartz functions is another space given by
a separating family of seminorms such that a countable subfamily suffices. The
members of the subfamily may be taken to be || f 1|, g = SUDycRN |x*DPF(x)|,

where « and B vary over all differentiation multi-indices.?> The space of contin-
uous linear functionals is denoted by S’(R"), and the members of this space are
called “tempered distributions.”

The vector space CS (U) of all smooth functions of compact support on U
is given by the inductive limit topology obtained from the vector subspaces C 10<<,>,

The space C 105) consists of the smooth functions with support contained in K ,, the
topology on C Ioé; being given by the countable family of seminorms || |, , =

SUp, kg, |D® f(x)|. The space of continuous linear functionals is traditionally*
written D'(U), and the members of this space are called simply “distributions.”
Since the field of scalars is a locally convex topological vector space, Proposition
4.29 shows that the members of D’(U) may be viewed as arbitrary sequences of
consistently defined continuous linear functionals on the spaces C,"(Op.

!A fourth space, the space of periodic smooth functions on RV, is considered in Problems 12—19
at the end of the chapter and again in the problems at the end of Chapter VII.

2The notation for the seminorms in Chapter IV was chosen for the entire separating subfamily
and amounted to || f|| x Do The subscripts have been simplified to take into account the nature of
the countable subfamily.

3The notation for the seminorms in Chapter III was chosen for the entire separating subfamily
and amounted to || f ”x"‘,x 5- The subscripts have been simplified to take into account the nature of
the countable subfamily.

4The tradition dates back to Laurent Schwartz’s work, in which D(U ) was the notation for
CS,(U) and D'(U) denoted the space of continuous linear functionals.
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For the spaces of smooth functions, there are continuous inclusions
Covn(U) € C™(U) for all U,
C2 RYyCSRY) c c®RY)  forU =R".
We observed in Section IV.2 that C2°_(U) € C*°(U) has dense image, and it

com
follows that S(RY) € C*°(R") has dense image. Proposition 4.12 showed that
C2 (RY) € S(RY) has dense image.

Ifi : A — B denotes one of these inclusions and 7T is a continuous linear
functional on B, then T o i is a continuous linear functional on A, and we can
regard T o i as the restriction of 7' to A. Since i has dense image, T o i cannot
be O unless 7" is 0. Thus each restriction map T +— T o i as above is one-one.

We therefore have one-one restriction maps
E'(U) - D'(U) forall U,
ERY) > S RY) - D'RY)  forU=R".

This fact justifies using the term “distribution” for any member of D’ and for
using the term “distribution” with an appropriate modifier for members of £’ and
S'.

As in Section III.1 it will turn out often to be useful to write the effect of a
distribution 7" on a function ¢ as (T, ¢), rather than as 7' (¢), and we shall adhere
to this convention systematically for the moment.’

We introduced in Section IV.2 the notion of “support” for any member of £/ (U),
and we now extend that discussion to D’ (U). We saw in Proposition 4.10 that if
T is an arbitrary linear functional on CZ>_(U) and if U’ is the union of all open

com

subsets U, of U such that T vanishes on C, (U, ), then T vanishes on Cgo (U”).
We accordingly define the support of any distribution to be the complement in
U of the union of all open sets U, such that 7 vanishes on Cg, (U,). If T has

com
empty support, then T = 0 because T vanishes on CS (U) and because CS (U)

com

is dense in the domain of T'. Proposition 4.11 showed that the members of £'(U)
have compact support in this sense; we shall see in Theorem 5.1 that no other
members of D’(U) have compact support.

An example of a member of £/(U) was given in Section IV.2: Take finitely
many complex Borel measures p, of compact support within U, the indexing be-
ing by multi-indices o with || < m, and put (7T, ¢) = Zmim fU D*p(x) dpy (x).
Then T is in £'(U), and the support of T is contained in the union of the supports
of the p,’s. Theorem 5.1 below gives a converse, but it is necessary in general
to allow the p,’s to have support a little larger than the support of the given
distribution 7.

5 A different convention is to write fU @(x)dT (x) in place of (T, ¢). This notation emphasizes
an analogy between distributions and measures and is especially useful when more than one RV
variable is in play. This convention will provide helpful motivation in one spot in Section 3.



182 V. Distributions

Theorem 5.1. If T is a member of D’ (U) with support contained in a compact
subset K of U, then T is in £'(U). Moreover, if K’ is any compact subset of
U whose interior contains K, then there exist a positive integer m and, for each
multi-index o with || < m, a complex Borel measure p, supported in K’ such
that

(T.9)= > f D% dp,  forallg e C*(U).
laf<m S K

REMARK. Problems 8-10 at the end of the chapter discuss the question of

taking K’ = K under additional hypotheses.

PROOF. Let ¥ be a member of C, (U) with values in [0, 1] thatis 1 on a
neighborhood of K and is 0 on K’¢; such a function exists by Proposition 3.5f.
If ¢ is in Cg (U), then we can write ¢ = Yo + (1 — ¥)p with ¢ in CF

and with (1 — ¥)g in CS_(K€). The assumption about the support of 7 makes

com

(T, (1 —¥r)e) =0, and therefore

(T, ) =(T,yo) +(T, (1 =y)p) = (T, yg) forallpinCZ,(U). (%)

Since the inclusion C%7 — C&, (U) is continuous, we can define a continuous

linear functional 71 on Cg by T1(¢p) = (T, ¢) for¢pin Cg5. Forany ¢ inCZ; (U),
¢ = Yo is in C32, and (») gives (T, ¢) = (T, ¥¢) = Ti(¥¢). The continuity
of T\ on C¥ means that there exist m and C such that

ITi(@)| <C 3 sup [DY¢(x)]  forallg € Ci. (k)

|la|<m xeK’

Let M be the number of multi-indices o with || < m.

We introduce the Banach space X of M-tuples of continuous complex-valued
functions on K’, the norm for X being the largest of the norms of the components.
The Banach-space dual of this space is the space of M-tuples of continuous linear
functionals on the components, thus the space of M-tuples of complex Borel
measures on K'.

We canembed C¢5 as a vector subspace of X by mapping ¢ to the M-tuple with
components D*¢ for || < m. We transfer 71 from C§ to its image subspace
within X, and the result, which we still call Ty, is a linear functional continuous
relative to the norm on X as a consequence of (). Applying the Hahn—Banach
Theorem, we extend 77 to a continuous linear functional 7 on all of X without
an increase in norm. Then 7 is given on X by an M-tuple of complex Borel
measures p,, on K', i.e., Ti ({ fu}jaj<m) = Zla\Sm fK, fo dp),. Therefore any ¢ in
CZ . (U) has

(T.9) = Ti(Wp) = Ty ({D*(U9)} jzm) = | |Z [ Do) dp,. ()
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The right side of (f) is continuous on C*°(U), and therefore 7" extends to a
member of £'(U). The formula in the theorem follows by expanding out each
D*(¥re) in () by the Leibniz rule for differentiation of products, grouping the
derivatives of i with the complex measures, and reassembling the expression
with new complex measures py . O

In Chapters VII and VIII we shall be interested also in a notion related to
support, namely the notion of “singular support.” If f is a locally integrable
function on the open set U, then f defines a member 7y of D'(U) by

(Ty, ¢) = / fodx forp € Coy (U).
U

If U’ is an open subset of U and T is a distribution on U, we say that T equals
a locally integrable function on U’ if there is some locally integrable function
f on U’ such that (T, ¢) = (T}, ¢) for all ¢ in C, (U). We say that T' equals
a smooth function on U’ if this condition is satisfied for some f in C*°(U"). In
the latter case the member of C*°(U’) is certainly unique.

The singular support of a member T of D’(U) is the complement of the
union of all open subsets U’ of U such that T equals a smooth function on U’.
The uniqueness of the smooth function on such a subset implies that if 7 equals
the smooth function f; on U| and equals the smooth function f, on U, then

fi(x) = fo(x) for x in U N Uj. In fact, T equals the smooth function f;

uinu;

on U{ N U} and also equals the smooth function f> there. The uniqueness

forces f; iU{ﬁUz’ =fH
equals a smooth function, we see that T is a smooth function on the complement
of its singular support.

}U{HUZ’
vinuy- Taking the union of all the open subsets on which T’

EXAMPLE. Take U = R!, and define

(T, ¢) = lim ¢(0) dx

&0 Jixjze X

for p € C° (R).

com

To see that this is well defined, we choose 1 in C2° (R') with 7 identically 1

com

on the support of ¢ and with n(x) = n(—x) for all x. Taylor’s Theorem gives
¢(x) = ¢(0) + xR(x) with R in C*(R'). Multiplying by n(x) and integrating
for |x| > &, we obtain

Jime B9E = 0(0) [0, B2+ [, ROON(X) dx.,
The first term on the right side is O for every ¢, and therefore

<T9 (ﬂ> = le R(X)n(x) dx.
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It follows that 7 is in D’(R!). On any function compactly supported in R' — {0},
the original integral defining T is convergent. Thus 7 equals the function 1/x
on R' — {0}. Since 1/x is nowhere zero on R! — {0}, the (ordinary) support of
T has to be a closed subset of R! containing R! — {0}. Therefore T has support
R!. On the other hand, T does not equal a function on all of R!, and T has {0}
as its singular support.

Starting in Section 2, we shall examine various operations on distributions.
Operations on distributions will be defined by duality from corresponding opera-
tions on smooth functions. For that reason it is helpful to know about continuity
of various operations on spaces of smooth functions. These we study now.

We begin with multiplication by smooth functions and with differentiation. If
Y is in C*°(U), then multiplication ¢ — ¢ carries Cog, (U) into itself and also
C*°(U) into itself. The same is true of any iterated partial derivative operator
¢ — D%p. We shall show that these operations are continuous. A multiplication
¢ — Y need not carry S(RV) into itself, and we put aside S(R") for further
consideration later.

The kind of continuity result for C*°(U) that we are studying tends to follow
from an easy computation with seminorms, and it is often true that the same

argument can be used to handle also C (U). Here is the general fact.

Lemma 5.2. Suppose that L : C*°(U) — C*°(U) is a continuous linear map
that carries Coo (U) into C, (U) in such a way that for each compact K € U,
C¥ is carried into C% for some compact K’ © K. Then L is continuous as a

linear map from C2°_(U) into C2°_(U).

com com

PROOF. Proposition 4.29b shows that it is enough to prove for each K that
the composition of L : C¥ — Cg followed by the inclusion of CZ into
C& L, (U) is continuous, and we know that the inclusion is continuous. Fix
K, choose K, in the exhausting sequence containing the corresponding K’,
and let « be a multi-index. By the continuity of L : C*(U) — C*(U),
there exist a constant C, some integer g with ¢ > p, and finitely many multi-
indices B; such that ||L((p)||p’a <C); ”90”%;3," Since L(¢) has support in
K’ € K, and ¢ has support in K € K’ € K, C K, this inequality shows that
sup,cxr [ID*(L(@)(x)| < C Y sup,cx |DPip(x)|. Hence L : Cy — Cyis
continuous, and the lemma follows. O

Proposition 5.3. If i is in C*°(U), then ¢ — ¢ is continuous from C*°(U)
to C*°(U) and from C (U) to CZ5 (U). If « is any differentiation multi-index,

then ¢ — D% is continuous from C*°(U) to C*(U) and from Cg (U) to
Caom(U).
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PROOF. The Leibniz rule for differentiation of products gives D*(¥¢p) =
> p<a C8(DP*Y) (DP o) for certain integers cg. Then

10l e < Xpeacsmsllol, 4.

where mg = sup,. K, | DB~ (x)]|, and it follows that ¢ +— ¢ is continuous
from C*°(U) into itself. Taking K’ = K in Lemma 5.2, we see that ¢ +— ¢ is

continuous from C&, (U) into itself.

Since ||D°‘<p||p’ﬁ = ||go||p7a+ﬁ, the function ¢ +— D% is continuous from
C®(U) into itself, and Lemma 5.2 with K’ = K shows that ¢ +— D%gp is
continuous from CZ (U) into itself. ]

We can combine these two operations into the operation of a linear partial
differential operator

P(x,D) = Z ce(x)DY  withall ¢, in C®(U)

loe|<m

by means of the formula P (x, D)p = Zlalim cq(x)D%@. It is to be understood
that the operator has smooth coefficients. It is immediate from Proposition 5.3
that P(x, D) is continuous from C*°(U) into itself and from Cgy, (U) into itself.

An operator P(x, D) as above is said to be of order m if some c,(x) with
|| = m has ¢, not identically 0. The operator reduces to an operator of the form
P (D) if the coefficient functions ¢, are all constant functions.

We introduce the transpose operator P (x, D)" by the formula

P(x, D)"p(x) = Y (=D D*(cax)p(x)).

loe|<m

Expanding out the terms D“ (ca (x)go(x)) by means of the Leibniz rule, we see
that P(x, D)™ is some linear partial differential operator of the form Q(x, D).
The next proposition gives the crucial property of the transpose operator.

Proposition 5.4. Suppose that P(x, D) is a linear partial differential operator

onU. If u and v are in C*°(U) and at least one of them is in CZ, (U), then

/ (P(x, D)"u(x))v(x) dx :/ u(x)(P(x, D)v(x))dx.
U U

PROOF. Itis enough to prove that the partial derivative operator D; with respect
to x; satisfies [, (Dju)vdx = — [, u(D;v)dx since iteration of this formula
gives the result of the proposition. Moving everything to one side of the equation
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and putting w = uv, we see that it is enough to prove that f]RN IyDjwdx =0
if wisin C3,(U), where Iy is the indicator function of U. We can drop the
Iy from the integration since D;w is 0 off U, and thus it is enough to prove that
Jgv Djwdx = 0 for w in C5, (RY). By Fubini’s Theorem the integral may be
computed as an iterated integral. The integral on the inside extends over the set
where x; is arbitrary in R and the other variables take on particular values, say
x; = ¢; fori # j. The integral on the outside extends over all choices of the c;

for i # j. The inside integral is already 0, because for suitable a and b, it is of
the form [” Djw dx; = [w]{1Z, =0 — 0 =0. 0

Next let us consider convolution, taking U = RYN. We shall be interested in
the function v * ¢ given by

Uk px) = [on Y — () dy = [pn Y (Me(x — y)dy,

under the assumption that ¥ and ¢ are in C*°(R") and that one of them has
compact support.

A simple device of localization helps with the analysis of this function: If K
is the support of v, then the values of ¥ * ¢(x) for x in a bounded open set S
depend only on the value of ¢ on the bounded open set of differences S — K.
Consequently we can replace ¢ by n¢, where 1 is a member of CZ (RV) that
is 1 on § — K, and the values of ¢ % ¢ (x) will match those of ¥ * (n¢)(x) for x
in S. The latter function is the convolution of two smooth functions of compact
support and is smooth by Proposition 3.5¢c. Therefore i * ¢ is always in C*®°(R")
if ¢ is in C32 (RY) and ¢ is in C*®(R"). We shall use this same device later in
treating convolution of distributions.

Proposition 5.5. If ¢ is in C2 (RV) and ¢ is in C*°(RY), then

(@ DY x¢@) = (DY) x @ =y * (D),
(b) convolution of three functions in C*(R") is associative when at least
two of the three functions have compact support,
(c) convolution with v is continuous from C*°(R") into itself and from
C& (R™) into itself,
(d) convolution with ¢ is continuous from C> (R") into C>°(RV).
PROOF. For (a), let K be the support of ¢r. Concentrating on x’s lying in a

bounded open set S, choose a function 7 in C (RV) thatis 1 on S — K, and

then ¢ % @(x) = ¥ * (ne)(x) for x in §. Proposition 3.5c says that
D* (Y * (ng))(x) = (DY) * (n@)(x) = ¥ * D*(ng)(x)

for all x in R", and consequently

D (Y * @) (x) = (DY) * ¢(x) = ¥ * D*p(x)
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for all x in S. Since § is arbitrary, (a) follows. The proof of (b) is similar.
For (c), again let K be the support of ¥, and apply (a). Then

1Y *@ll, o = sup [D*(Y % @)(x)| = sup [¢ * (D) (x)]

xek, xek,
< sup Je WD p(x = p)ldy| < ¥l sup.cg,—x 1D,
xek,

and the right side is < ||W||1||</’||q,a if g is large enough so that K, — K C K.
This proves the continuity on C*®(R"), and the continuity on C gg’m(RN ) then
follows from Lemma 5.2.

For (d), Proposition 4.29b shows that it is enough to prove that ¢ — ¥ x ¢ is
continuous from C3° into C % (RV) for each compact set K. The same estimate
as for (c) gives

1 * 0l 0 < IVILlellyo = IKlllwllq,a(Sullz [¥r ()
xXe

if g is large enough so that K, — K C K. The result follows. ([l

2. Elementary Operations on Distributions

In this section we take up operations on distributions. If f is a locally integrable
function on the open set U, we defined the member 7 of D'(U) by

(Ty, ¢) = / fodx
U

(e¢]

for ¢ in Cgy (U). If f vanishes outside a compact subset of U, then Ty is in
E’(U), extending to operate on all of C*°(U) by the same formula.

Starting from certain continuous operations L on smooth functions, we want
to extend these operations to operations on distributions. So that we can regard
L as an extension from smooth functions to distributions, we insist on having
L(Ty) = Ty y) if f is smooth. To tie the definition of L on distributions 7 to the
definition on general distributions 7', we insist that L be the “transpose” of some
continuous operation M on functions, i.e., that (L(T), ¢) = (T, M(p)). Taking
T = Ty inthis equation, we see that we musthave [, L(f)¢dx = [, fM(p)dx.
On the other hand, once we have found a continuous M on smooth functions with
Jy L(fHpdx = [, fM()dx, then we can make the definition (L(T), ¢) =
(T, M(¢)) for the effect of L on distributions. In particular the operator M on
smooth functions is unique if it exists. We write L' = M for it. In summary, our
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procedure® is to find, if we can, a continuous operator L on smooth functions
such that

/ L(f)pdx = f FL(9) dx
U U

and then to define
(L(T), ) = (T, L"(9)).

We begin with the operations of multiplication, whose continuity is addressed
in Proposition 5.3. If L is multiplication by the function ¢ in C*(U), then
we can take L = L because [, L(f)gdx = [,(Wfledx = [, f(Yo)dx =
f, y fL"(p) if f and ¢ are in C*°(U) and one of them has compact support. Thus
our definition of multiplication of a distribution 7" by v in C*°(U) is

(T, ) =(T,V¢).

Here we assume either that 7" is in D'(U) and ¢ is in Cgy,(U) or else that T is
in £'(U) and ¢ is in C*®°(U). Briefly we say that at least one of T and ¢ has
compact support.

The operation of multiplication by a function can be used to localize the effect
of a distribution in a way that is useful in the definition below of convolution
of distributions. First observe that if 7' is in D’(U) and 7 is in CS, (U), then
the support of nT is contained in the support of n; in fact, if ¢ is any member
of CZ (U N support(n)©), then ng = 0 and hence (n7T, ¢) = (T, ne) = 0. In
particular, nT is in £'(U). On the other hand, we lose no information about T
by this operation if we allow all possible n’s, because if T is in D’(U) and if ¢
is a member of C3 (U) with support in a compact subset K of U, then ¢ = n¢
and hence (T, ) = (T, np) = (nT, ¢).

Next we consider differentiation, which is a continuous operation by Proposi-
tion 5.3. When L gives the iterated derivative D* of a distribution, we can take
the operation L on smooth functions to be (—1)!%! times D%. The definition is
then

(DT, @) = (=1)°UT, D*¢).

Again we assume that at least one of 7' and ¢ has compact support.

Putting these definitions together yields the definition of the operation of a lin-
ear partial differential operator P (x, D) with smooth coefficients on distributions.
The formula is

(P(x, D)T, ¢) = (T, P(x, D)"),

6 Another way of proceeding is to use topologies on £/(U) and D’(U) such that CS, (U) is dense

in £/(U) and C*°(U) is dense in D’(U). The approach in the text avoids the use of such topologies
on spaces of distributions, and it will not be necessary to consider them.
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where P (x, D)" is the transpose differential operator defined in Section 1. This
definition is forced to satisfy P(x, D)T = Tp(, p)s on smooth f.

For further operations let us specialize to the setting that U = R". The first
is the operation of acting by —1 in the domain. For a function ¢, we define
@Y (x) = ¢(—x). Itis easy to check that this operation is continuous on C*®(R")
andon C22 (RV). Since fRN fYodx = fRN f@" dx by achange of variables, the

operator L' corresponding to L( f) = f" is just L itself. Thus the corresponding
operation T — T on distributions is given by

(T", @) = (T, ¢").
The operation (- )" has the further property that (¢¥)" = ¢ and (TV)" =T.

3. Convolution of Distributions

The next operation, again in the setting of RY, is the convolution of two dis-
tributions. Convolution is considerably more complicated than the operations
considered so far because it involves two variables.

The method of Section 2 starts off easily enough. An easy change of variables
shows that any three smooth functions, two of which have compact support,
satisfy fyu (W * Fodx = [ou W(fY * g)dx, where [Y(—x) = f(—x).
This means that [y L(Y)@dx = [pn W L"(p)dx, where L(¥) = ¥ % f and
L"(p) = fY*¢. Thus Section 2 says to define T * f by (T * f, @) = (T, " *¢).
To handle the other convolution variable, however, we have to know that 7 * f
is a smooth function and that the passage from f to T * f is continuous, and
neither of these facts is immediately apparent. In addition, there are several cases
to handle, depending on which two of the functions f, ¥, and ¢ at the start have
compact support.

Sorting out all these matters could be fairly tedious, but there is a model for
what happens that will help us anticipate the results. We shall follow the path
that the model suggests. Then afterward, if we were to want to do so, it would
be possible to go back and see that all the arguments with transposes in the style
of Section 2 can be carried through with the tools that we have had to establish
anyway.

The model takes a cue from Theorem 5.1, which says that members of £'(R")
are given by integration with compactly supported complex Borel measures and
derivatives of them. In particular our definitions ought to specialize to famil-
iar constructions when they are given by compactly supported positive Borel
measures. In the case of measures, convolution is discussed in Problem 5 of
Chapter VIII of Basic. The definition and results are as follows:

1) (u1 % w2)(E) = [pv w1(E — x) d o (x) by definition,
(i) fpv @ d (1% p2) = [pn Jan @(Xx+y) dpi(x) dpa(y) forg € Coom@®RY),
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(i) py * po = po * pp,

(iv) @ dx=*u isthe continuous function (¢ dx*u)(x) = f]RN ex—y)du(y) =
fRN (@) _xdu for ¢ € Ceom(RY), where the subscript —x refers to the
translate £, (y) = h(y +1).

The measures and the function ¢ in these properties are all assumed compactly
supported, but some relaxation of this condition is permissible. For example the
function ¢ can be allowed to be any continuous scalar-valued function on RV,

In defining convolution of distributions and establishing its properties, we shall
face three kinds of technical problems: One is akin to Fubini’s Theorem and will
be handled for £'(R") by appealing to Theorem 5.1 and using the ordinary form
of Fubini’s Theorem with measures. A second is a regularity question—showing
that certain integrations in one variable of functions of two variables lead to
smooth functions of the remaining variable —and will be handled for £'(R") by
Lemma 5.6 below. A third is the need to work with D’(R"), not just £’ (RV),
and will be handled by the localization device T+ nT mentioned in Section 2.
We begin with the lemma that addresses the regularity question.

Lemma 5.6. Let K be a compact metric space, and let .« be a Borel measure
on K. Suppose that ® = ®(x, y) is a scalar-valued function on R¥ x K such
that (-, y) is smooth for each y in K, and suppose further that every iterated
partial derivative D*® in the first variable is continuous on R x K. Then the
function

F(x) =/ S(x,y)du(y)
K

is smooth on R" and satisfies D* F (x) = f[( D¢®(x, y)du(y) for every multi-
index «.

REMARKS. The lemma gives us a new proof of the smoothness shown in
Section 1 for ¥ * ¢ when ¥ is in C32 (RY) and ¢ is in C®(RY). In fact,

we write the convolution as ¥ * ¢(x) = fRN ¢(x — y)¥(y)dy and apply the
lemma with p equal to Lebesgue measure on the compact set support(yr) and

with F(x) = ¥ x ¢(x) and ®(x, y) = ¢(x — )V (y).

PROOF. In the proof we may assume without loss of generality that @ is real-
valued. We begin by showing that F is continuous. If x, — xp, then the uniform
continuity of & on the compact set {x,},>0 x K implies that lim, ®(x,, y) =
®(xo, y) uniformly. Dominated convergence allows us to conclude that
lim,, [ ® (x4, y)du(y) = [ ®(xo, y)du(y). Therefore F is continuous.

Let B be a (large) closed ball in R", and suppose that x is a member of B that
is at distance at least 1 from B¢. If ¢; denotes the j th standard basis vector of RV
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and if |k| < 1, then the Mean Value Theorem gives
D(x + hej,y) — D(x,y) 0P
=—(cy)
h 9x;
for some ¢ on the line segment between x and x + 4. If € > 0 is given, choose
the & of uniform continuity of M’ on the compact set B x K. We may assume

that § < 1. For |h| < § and fory in K, we have
CD(x—I—he‘,y)—d)(x,y) E)CID
’ )\-\—( y)——(xy)<e
h ax
the inequality holding since (c, y) and (x,y)arebothin B x K and are at distance

at most § from one another. As a consequence, if L is any compact subset of RV
then

®(x + hej,y) —D(x,y) 0P
m = —(-xv y)
h—0 h ij
uniformly for (x, y) in L x K. Because of this uniform convergence we have
. P(x + hej, y) — P(x, y) 0P
tim | ’ an) = [ 5w ) duo.

The integral on the left side equals 7~ '[F(x + he;, y) — F(x,y)], and the
limit relation therefore shows that % f x P(x, y)du(y) exists and equals

3
Jx 7o @) du(y).

This establishes the formula D*F(x) = f x Dy ®@(x, y)du(y) for a equal to
the multi-index that is 1 in the j™ place and O elsewhere. The remainder of the
proof makes the above argument into an induction. If we have established the for-
mula D*F(x) = fK D2®(x, y)du(y) for a certain «, then the first paragraph of
the proof shows that D F is continuous. The second paragraph of the proof shows
for each partial derivative operator D; in one of the x variables that the operator

DP = D; D* has DPF(x) = fK DECD(x, y)du(y). The lemma follows. ]

For our definitions let us begin with the convolution of two members of £'(RV).
As indicated at the start of the section, we shall jump right to the final formula.
The justification via formulas for transpose operations can be done afterward if
desired. If we use notation that treats distributions like measures, the formula (ii)
above suggests trying

(S*T,9) = [pn [av 0(x +9)dT () dS(x) = (S, (T, ¢x)) = (T, (S, ¢y)),
where the subscript again indicates a translation: ¢,(z) = ¢(z + x). The outside
distribution acts on the subscripted variable, and the inside distribution acts on
the hidden variable. To make this into a rigorous definition, however, we have
to check that (T, ¢,) and (S, ¢,) are smooth, that the last equality in the above
display is valid, and that the resulting dependence on ¢ is continuous. We carry
out these steps in the next proposition.
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Proposition 5.7. Let S and T be in £'(RY), and let ¢ be in C>°(R"). Then

(a) the functions x = (T, ¢,) and y — (S, ¢,) are smooth on RV,

(b) DYx = (T, ¢x)) = (T, (D*@)x),

(c) the function ¢ — (T, ¢,) is continuous from C*(R") into itself and
from C, (RY) into itself,

(d) (S, (T, ¢x)) = (T, (S, ¢y)),

(e) the function ¢ — (S, (T, ¢,)) is continuous from C>®(R") into the
scalars,

(f) the formula

(SxT, ) = (S, (T, ¢x)) = (T, (S, 9)))

determines a well-defined member of £'(RY) such that S« T = T % S,
(g) the supports of S, T, and S x T are related by

support(S x T') € support(S) 4 support(7T').

PROOF. Let expressions for S and 7 in Theorem 5.1 be

(S,0) =, Jay D*¢(x)dpa(x) and (T, ) =34 [pv DPo(y) dog(y),

the sums both being over finite sets of multi-indices and the complex measures
being supported on some compact subset of RY. Then

(T, ) = 4 fnw DPo(x + y) dog(y). (*)

If we apply Lemma 5.6 with ®(x, y) = DP¢(x + y) and treat y as varying over
the union of the compact supports of the og’s, then we see that each term in
the sum over 8 is a smooth function of x. Hence x — (T, ¢,) is smooth, and
symmetrically y — (S, ¢,) is smooth. This proves (a).

Applying to (x) the conclusions of Lemma 5.6 about passing the derivative
operator D under the integral sign, we obtain

D*(x > (T, ¢x)) = X g [ D*Pop(x + y) dog(y) = (T, (D“9),).

This proves (b).
If K denotes a subset of RV containing the supports of all the o4’s, then

DT, @) <3 sup D Po(x + lllogll,
B ye
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where ||og|| denotes the total-variation norm of og. Hence

sup|D*(T, ¢.)| <3 sup [D* Po()|l|osll.
xeL B zeK+L

This proves (c) for C*°(R"). Combining this same inequality with Lemma 5.2,
we obtain (c) for C2 (RV).

The formula for (S, -) and the identity () together give
(S, (T, 0x)) = X [n Jav D*DP () dop(y) dpy(x)
a.p

= Zﬂ Jan Jev D Po(x + y) dog(y) dpe (x). (%)

By Fubini’s Theorem the right side is equal to

ZﬂfRN fRN DOH_ﬂ(p(x + y) dpa(x)daﬁ(y) = (Tv (S’ (Py)>

This proves (d).

Conclusion (e) is immediate from (c) and the continuity of S on C®(RV).
Thus S * T is in £ (RV). The equality in (d) shows that S * T = T % S. This
proves (f).

Finally let L be the compact set support(S) + support(7), and suppose that ¢
isin C2 (L€). Letd > 0 be the distance from support(¢) to L, and let D be the

com
function giving the distance to a set. Define

Ls = {x | D(x, support(S)} < 1d
and Ly = {x | D(x, support(T)} < %d.

If xgisin Lg and x7 is in L7, then |xg — 5| < %d and [x7 — | < %d for some
s in support(S) and ¢ in support(7). Thus |(xs + x7) — (s + 1)| < %d. Hence
Xg + xr is at distance < %d from L. Since every member of support(p) is at
distance > d from L, xg 4 xr is not in support(¢). Therefore

(Ls + Lr) N support(p) = &. ()

Also, support(S) C (Lg)? and support(T) € (L7)°. Since Lg contains a neigh-
borhood of support(S), Theorem 5.1 allows us to express S in terms of complex
Borel measures p, supported in Lg. Similarly we can express 7 in terms of
complex Borel measures og supported in Lz. By () the integrand in (%) is iden-
ticallyOon Lg+ Ly, and hence (S, (T, ¢)) = 0. Thus (ST, ¢) = O forall ¢ in
C& (L), and we conclude that support(S*7) C L = support(S) +support(T).
This proves (g). O
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Proposition 5.7 establishes facts about the convolution of two members of
E'(RM) as a member of £'(RY). If one of the two members is in fact a smooth
function of compact support, then the corresponding results about convolution of
measures suggest that the convolution should be a smooth function. The necessary
tools for carrying out a proof are already in place in Proposition 5.7 and Theorem
5.1.

Corollary 5.8. If Sisin £&'(RY), fisin C _(RV), and ¢ is in C*(R"), then

com
(SxTr,0) = (S, f' %)
Moreover, S * Ty is given by the C* function y — (S, (f¥)_,), i.e.,
SxTr=Tr with F(y) = (S, (f)—y).

REMARKS. For S in £&'(RV) and f in C2_(RV), we write S % f for the

com

ngm(RN ) function F of the corollary such that § * 7y = Tr. The specific
formula that we shall use to simplify notation is

NES Tf = Ts*f,

with the right side written as T, s rather than T, .

PROOF. Proposition 5.7f gives

(S*Tr, @) = (S, Ty, x)) = (S, fon FNO&x + y)dy)

= (S, fan F(=ox —y)dy) = (S, f¥ x ). )

This proves the first displayed formula. For the rest let S be written according to
Theorem 5.1 as (S, ¥) = ", [ev D*¥ dps. Then

(S, ¥ % 9) =Yg Jan DU % 9)(x) dpa ()
= Yo Jav (DY % 9)(x) dpa ()
=2 Jov Jay DY (x = )p(3) dy dpy (x)
= Jan [ Xa Jov (DfY) -y dpa(x)] 9(y) dy
= Jav (S, (f)=y)e () dy,
the next-to-last equality following from Fubini’s Theorem. Combining this cal-

culation with (%), we see that S « Ty = Tp with F(y) = (S, (f")—-,). The
function F is smooth by Proposition 5.7a. O
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Corollary 5.9. Convolution of members of £'(R") is consistent with convo-

lution of members of C32 (RY) in the sense that if £ and g are in CS, (RY), then

T, * Ty is given by the C* function T, * f, and this function equals g * f.

PROOF. The first conclusion is the result of Corollary 5.8 with § = T,.
For the second conclusion Corollary 5.8 gives T, * Ty = Tp with F(y) =

(Tg, (f)=y) = Jpw 8O [V (x — y)dx = [ g(X)f(y —x)dy = (g * f)(y)

Hence Tty = Tguy, and the second conclusion follows.

Corollary 5.10. If 7 is in £’'(RY) and ¢ is in C,(
(T % @)(x) = (T, ¢x).
PROOF. Corollary 5.8 gives (T * ¢)(x) = (T, (¢¥)_,), and the latter is
equal to (T, ((¢¥)—x)") = (T, ¢x). U
Corollary 5.11. If S and T are in £'(RY) and ¢ is in C°
(S*T,) = (S, T *x¢).

PROOF. Proposition 5.7f and Corollary 5.10 give (S * T, ¢) = (S, (T, ¢)) =
(S, TV * ¢). O

RM), then

(RV), then

com

Corollary 5.12. If T is in £'(R"), then the map ¢ > TV x ¢ is continuous
from C2° (R") into itself and extends continuously to a map of C*®(R") into

itself under the definition

(T % @)(x) = (T, gx).
The derivatives of TV x ¢ satisfy D*(T" x¢) = TV % D¢, and also (T * @) =
T x ¢,

PROOF. The equality (T * ¢)(x) = (T, @) restates Corollary 5.10, and the
statements about continuity follow from Proposition 5.7c. For the derivatives we
use Proposition 5.7b to write D*(TV x ¢)(x) = D*(T, ¢,) = (T, (D%),) =
(TY*D*p)(x). Finally (T x@)" (x) = (T"*@)(=x) =(T, ¢_) =(T", (p—x)")
=(T", (¢")x) = (T x ¢")(x). U

Since TV * ¢ is now well defined for T in £’ and ¢ in C*(R"), we can use
the same formula as in Corollary 5.11 to make a definition of convolution of two
arbitrary distributions when only one of the two distributions being convolved has
compact support. Specifically if S is in D'(RY) and T is in £'(R"), we define
S % T in D'(RY) by the first equality of

(S*T,9) =(S. T x¢) = (S, (T.¢x))  forg e CG,RY),
the second equality holding by Corollary 5.12. Corollary 5.12 shows also that
ST has the necessary property of being continuous on Co (RY), and Corollary

5.11 shows that this definition extends the definition of S % 7" when S and T are
in &'(RN).

com
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What is missing with this definition of S * T is any additional relationship that
arises for distributions that equal smooth functions. For example:

e Does this new definition make Ty * T = Tr,y when T is compactly
supported and f does not have compact support?

o Is STy equal to a function when f is compactly supported and S is not?

e If so, are the formulas of Corollaries 5.8, 5.9, and 5.10 valid?

e If so, can we equally well define S« T by (S * T, @) = (T, S¥ x ¢) =
(T, (S, ¢y)) when T is compactly supported and § is not?

The answers to these questions are all affirmative. To get at the proofs, we
introduce a technique of localization for members of D’(R"). Proposition 5.13
below is a quantitative statement of what we need. We apply the technique to
obtain smoothness of functions of the form (S, ¢,) when § is in D'(RY) and
@ is in C (RN); this step does not make use of the above enlarged definition
of § x T. Then we gradually make the connection with the new definition of

convolution and establish all the desired properties.

Proposition 5.13. Let N be abounded opensetin RY. Let SbeinD’(RY), and
let ¢ be in C2, (RY). If n € C2 (RY) is identically 1 on the set of differences
support(¢) — N, then (S, ¢,) = (nS, ¢,) for y in N. Consequently y — (S, ¢,)
is in C*°(R"Y). Moreover, D*(y > (S, ®y)) = (S, (D%p),), and the linear map
@ > (S, @) of CZ (RY) into C®(RY) is continuous.

PROOF. Let y be in N. If x + y is in support(¢), then x is in support(¢) — N,
and n(x) = 1. Hence n(x)¢(x + y) = ¢(x 4+ y). If x 4+ y is not in support(¢p),
then n(x)¢(x +y) = @(x +y) because both sides are 0. Hence n¢, = ¢, for y in
N,and (S, ¢y) = (S, ney) = (1S, ¢,). The function y — (1S, ¢,) is smooth by
Proposition 5.7a, and hence y — (S, ¢,) is smooth on N. Since N is arbitrary,
y = (S, @y) is smooth everywhere.

For the derivative formula Proposition 5.7b gives us D¥(y + (5, ¢y)) =
(nS, (D*p)y) for y in N. For y in N, (nS, @) = (S, ¢;) and (S, (D%p),) =
(S, (D%@)y). Therefore D*(y — (S, ¢y)) = (S, (D%p),) for y in N. Since N
is arbitrary, D*(y > (S, ¢y)) = (S, (D%p),) everywhere.

For the asserted continuity of ¢ — (S, ¢,), it is enough to prove that this map
carries C° continuously into C (R¥) for each compact set K. If N is a bounded
open set on which we are to make some C* estimates, choose 1 € C&j’m(RN )
so as to be identically 1 on the set of differences K — N. We have just seen that
(S, 9y) = (nS, y) forall y in N. Proposition 5.7c shows that ¢ — (nS, ¥,)
is continuous from CZ (RY) into C, (RY), hence from C¥ into CZ (RV),
hence from C% into C®(RYM). Therefore ¢ — (S, @y) is continuous from C¢’

into C®(R"). U
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Corollary 5.14. Let S be in D’ (RY), T be in £'(RV), and ¢ be in Cco(fm(]RN).
Then
(ST, @) = (S, T" x¢) = (S, (T, ¢x)) = (T, (S, 9))).

Moreover, D*(S « T) = (D*S) * T = S % (D*T) for every multi-index «.

REMARKS. The first two equalities follow by definition of S % 7" and by
application of Corollary 5.12. The new statements in the corollary are the third
equality and the derivative formula. The right side (7, (S, ¢,)) of the displayed
equation is well defined, since Proposition 5.13 shows that (S, ¢, ) isin C ©(RN).

PROOF. Let N be abounded open set containing support(7'), and choose a func-
tion n € C_(RN) that is identically 1 on the set of differences support(¢) — N.

com

Proposition 5.7g shows that

support(T " x ¢) C support(p) + support(T")
= support(gp) — support(7)
C support(p) — N,

and the fact that # is identically 1 on support(¢) — N implies that
MT" x9)=T"x¢. ()
Meanwhile, Proposition 5.13 shows that
(S, 9y) = (1S, ¢y) (sesk)

for all y in N, hence for all y in support(7"). Therefore

(T, (S, ¢y)) =(T, (S, @y)) by (xx)
= (T, (nS)" * ¢) by Corollary 5.10
=nS*T, ) by Corollary 5.11
=S, T x¢) by Corollary 5.10
= (S, (T * @)) by definition
= (S, T" *¢) by (). ()

For one of the derivative formulas, we have
(DY(S*T), ) = (=D*NS* T, D*¢) = (=D *NS (T, (D*@).)).
Proposition 5.7b shows that this expression is equal to

(=S, DT, ¢.)) = (D*S, (T, gx)),
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and the definition of convolution shows that the latter expression is equal to
((D*S)*T, ¢). Hence D*(SxT) = (D*S) =T . For the other derivative formula
we have

(DS T),p) = (DS T, D*p) = (=D"T, (S, (D“¢)y)).
Proposition 5.13 shows that this expression is equal to
(=DIUT, D*(S, ¢y)) = (DT, (S. ¢y)),
and step (1) shows that the latter expression is equal to
(S, (DT)" % @) = (S % (DT), ¢).
Hence D*(S«T) = S x (D“T). ]

For S in D’/(RY) and ¢ in C2°_(R"), we now define

(SY % @)(y) = (S, ¢y).

Corollary 5.8 shows that this definition is consistent with our earlier definition
when S is in the subset £’ (RY) of D’(RY). Proposition 5.13 shows that the linear
map ¢ > S * ¢ is continuous from C, (RY) into C*(RY).

Corollary 5.15. Let S be in D/(R"), T be in £'(RY), and ¢ be in CZ_ (RY).
Then

(S*T,9) = (S, TV *¢) = (S,(T, ¢x)) = (T. (S, ¢y)) = (T, 5" % 9),

and (SxT)Y =SV *TV.

PROOF. The displayed line just adds the above definition to the conclu-
sion of Corollary 5.14. For the other formula we use Corollary 5.12 to write
(S*T),0) = (ST, 9") = (S, TV % ¢") = (S, (T x9)¥) = (S, T x ¢) =
(SV TV, ). (]

With the symmetry that has been established in Corollary 5.15, we allow
ourselves to write 7 * S for S« T when S is in D’/(R") and T is in &'(RY). This
notation is consistent with the equality S * T = T % S established in Proposition
5.7f when S and T both have compact support.
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Corollary 5.16. Suppose that S is in D’(RV), that f is in C*°(R"), and that
at least one of S and f has compact support. If ¢ is in C° (RV), then

com
(S*Tr, @) = (S, Y * ).
Moreover, S * Ty is given by the C* function y — (S, (fV)_,), i.e
SxTy=Tr with F(y) = (S, (f)—y).
REMARK. If both S and f have compact support, Corollary 5.16 reduces to

Corollary 5.8.

PROOF. First suppose that S has compact support. Theorem 5.1 allows us to
write S as (S, ¥) = >, [gv D*V¥ dpg, with the sum involving only finitely many
terms and with the complex Borel measures p, compactly supported. Applying
Corollary 5.15 to S * Ty and using the definition of SV % ¢, we obtain

(S*Tp,0) = [on FO(SY % @) (y)dy
= [an FO) Xy Jan D¥0y(x) dpa(x) dy
= fan S Jav FOID%@(x + y) dpa(x) dy.

Since ¢ and the p,’s are compactly supported, we may freely interchange the
order of integration to see that the above expression is equal to

Yo v [ Jan FOID*@(x + y) dy] dpa(x)
=Yy Jan (FY % D¥@)(x) dpa (x)
= 3 Jan (DU(fY) % @) (x) dpa (x)
=0 Jan [ Jaw DA (F) = Y)o(y) dy] dpa(x)
= fav [ 2o Jon D*(fV)(x = y) dpa(x)]@(y) dy
= [ (S. (F)-y)e(y) dy
=(Tr, @),

as asserted.
Next suppose instead that f has compact support. Then

(SxTp, @) = (S, (Ty)" x @) = (S, Tyv x @) = (S, [ x ). ()

We are to show that this expression is equal to

(Tr, @) = (Tis.pv)_p) @) = Jpn (S, (f)-y)e(y) dy. (%)
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We introduce a member 1 of C35 (RY) that is identically 1 on the set of sums

support(f") + support(¢). Since 1S is in £'(RY), Corollary 5.8 shows that

S, f¥ @) = [en (S, (f)=)e(M dy = [en (S, n(f)=y)e(y) dy.

In view of () and (*:x), it is therefore enough to prove the two identities

S, £ x @) = (S, [ *¢) ()

and

Jev (S n(f=p)e( dy = [pn (S, (f)-y)e() dy. ()

Since support(fY x ¢) C support(f") + support(p), we have n(f * ¢) =
fY * @ and therefore (nS, ¥ * @) = (S, n(f~ *@)) = (S, f¥ x¢). This proves
()-

To prove (f7), it is enough to show that n(f")_, = (f")_, for every y in
support(¢). For a given y in support(¢), there is nothing to prove at points x
where (f¥)_y(x) = 0. If (f¥)_,(x) # 0, then f¥(x —y) # O and x — y is
in support(fV). Hence x = y + (x — y) is in support(¢) + support( /"), and
() (FY)—y(x) = (f¥)_y (x). This proves (i1). 0

Corollary 5.17. Convolution of two distributions, one of which has compact
support, is consistent with convolution of smooth functions, one of which has
compact support, in the sense that if f and g are smooth and one of them has
compact support, then 7, * T is given by the C* function T, * f and by the C*
function Ty * g, and these functions equal g * f.

PROOF. We apply Corollary 5.16 with § = T,, and we find that T, * Ty
is given by the smooth function that carries y to (Ty, (f*)—,). In turn, this
latter expression equals [ox 8(X)(fV)—y(x)dx = [on 8(X)fY(x — y)dx =
fRN gx)f(y —x)dx = (g * f)(y). Hence Ty * f = g = f. Reversing the
rolesof fand g, weobtain Ty x g = fxg =g * f. ([l

Corollary 5.18. If R, S, and T are distributions and v and ¢ are smooth
functions, then

(@) (T xy¥)*x¢@ =T x (¢ x ) provided at least two of T, ¥, and ¢ have
compact support,

®) (§S*T)*x¢p = (S *¢) * T provided at least two of S, T, and ¢ have
compact support,

() Rx(S%T) = (R=*S) T provided at least two of R, S, and T have
compact support.
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PROOF. Let 1 be in C° (RV). We make repeated use of Corollaries 5.15

com
through 5.17 in each part. For (a), we use associativity of convolution of smooth

functions (Proposition 5.5b) to write

(T * Tysg,m) = (T, (Y @) xn) =(T, (" *¢")*n)
= (T, ¥ x (¢ xn) = (T xTy, " xn)
= (T xTy) *x Ty, n).

Thus T * Tywy = (T x Ty ) % Ty. Since T * Tywp = Tra(ysp) and (T «Ty) % Ty =
Trsy * Ty = T(Tsy)vp, we obtain T x (Y * ) = (T * ) * ¢. This proves (a).
For (b), we use (a) to write

(S*T)* Ty, n) = (SxT, 0" xn) = (S, T" % (¢” xn))
= (S, (T7x¢ ) xn) = (S, (T x¢)" xn)
= (S, (T % Ty)" 1) = (S % (T % T,), n).

Thus (SxT) T, = S*(T xT,). Since (SxT) Ty = T(ss7)xp and Sx (T xT,) =
S * Tryp = Tsu(Txp), weobtain (S x T) x ¢ = § * (T * ¢).
For (c), we use (b) to write

(Rx(S*T),n) =(R,(S*xT)  xn) =(R,(SY*T") xn)
=(R,S"*(TV*n)=(RxS, T *n)
=((Rx8)*T,n).

Thus R« (S« T) = (R % S) % T, and (c) is proved. O

We conclude with a special property of one particular distribution. The Dirac
distribution at the origin is the member of £'(RY) given by (8, ¢) = ¢(0). It
has support {0}. The proposition below shows that the differentiation operation
D“ on distributions equals convolution with the distribution D%§.

Proposition 5.19. If T is in D’(R") and if § denotes the Dirac distribution at
the origin, then § x T = T. Consequently D*§ x T = D*T for every multi-index
a.

PROOF. For ¢ in Ccog’m(RN), Corollary 5.14 gives (§ x T, @) = (5, (T, ¢x)) =

(T, ¢), and therefore § *x T = T. Applying D* and using the second conclusion
of Corollary 5.14, we obtain D*(§ x T) = § % (D*T) = D*T. O
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4. Role of Fourier Transform

The final tool we need in order to make the theory of distributions useful for
linear partial differential equations is the Fourier transform. Let us write F for
the Fourier transform on the various places it acts, its initial definition being
F(HE) = fRN f(x)e ¥ dx on L' (RY). Since the Schwartz space S(RV)
is contained in L'(R"), this definition of F is applicable on S(R"), and it was
shown in Basic that F is one-one from S(RV) onto itself. We continue to use the
same angular-brackets notation for S’ (R") as for D’(R") and £'(RV). Then, as a
consequence of Corollary 3.3b, the Fourier transform is well defined on elements
T of S’(RV) under the definition (F(T), ¢) = (T, F(¢)) for ¢ € S(RV), and
Proposition 3.4 shows that F is one-one from S’(R") onto itself. On tempered
distributions that are L' or L? functions, F agrees with the usual definitions on
functions. For f in L', the verification comes down to the multiplication formula:

(FTy, @) = Ty, Fo) = [ f)(Fp)(x)dx = [(FLHx)@x)dx = (Trs, ¢).

For f in L%, we choose a sequence { f,,} in L' N L? tending to f in L?, obtain
(FTy,, 9) = (TFy,, @) for each n, and then check by continuity that we can pass
to the limit.

The formulas that are used to establish the effect of F on S(RY) come from
the behavior of differentiation and multiplication by polynomials on Fourier
transforms and are

D*(Ff)(x) = F((—27i)*x*f)(x)
and P(Ff(x) = FQri) PIDPFY(x).

Let us define the effect of D* and multiplication by x# on tempered distributions
and then see how the Fourier transform interacts with these operations. If ¢ is
in S(RY), then D% is in S(R"), and hence it makes sense to define D*T for
T € S'(RV)by (DT, ¢) = (—1)%(T, D%p). The productof an arbitrary smooth
function on RY by a Schwartz function need not be a Schwartz function, and thus
the product of an arbitrary smooth function and a tempered distribution need not
make sense as a tempered distribution. However, the product of a polynomial
and a Schwartz function is a Schwartz function, and thus we can define x? T for
T € S'RY) by (xPT, ¢) = (T, xP¢). The formulas for the Fourier transform
are then

F(DT) = Qui)¥x*FA(T)
and FxPTYy = (=270 "PIDP A(T).
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In fact, we compute that (F(D*T), ¢) = (D*T, Fp) = (—1)I*N(T, D*Fop) =
(—=DIT, F(—2mi)x*@)) = @ri)*(A(T), x*p) = Qi) (x* F(T), )
and that (F(x#T), o) = (xPT, Fo) = (T, xPFp) = (T, F(2ni) ¥IDPy)) =
Qri) P(FHT), DP ) = (=2mi) P(DP F(T), ¢).

We have seen that the restriction map carries £’ (R") in one-one fashion into
S’(RV). Therefore we can identify members of £'(RY) with certain members
of S’(RY) when it is convenient to do so, and in particular the Fourier transform
becomes a well-defined one-one map of £'(R") into S’(RY). (The Fourier
transform is not usable, however, with D’(R").) The somewhat surprising fact is
that the Fourier transform of a member of £'(R") is actually a smooth function,
not just a distribution. We shall prove this fact as a consequence of Theorem
5.1, which has expressed distributions of compact support in terms of complex
measures of compact support.

Theorem 5.20. If T is a member of £&'(R") with support in a compact subset
K of RV, then the tempered distribution F(T) equals a smooth function that
extends to an entire holomorphic function on CV. The value of this function at
z € CV is given by
F(T) () = (T, 270,

and there is a positive integer m such that this function satisfies
IDP(FT)($)| < Cy(1 +1D)"

for £ € RY and for every multi-index .

REMARK. The estimate shows that the product of (T, e=2%/%(*)) by a Schwartz
function is again a Schwartz function, hence that the tempered distribution F(7")
is indeed given by a certain smooth function.

PROOF. Fix a compact set K’ whose interior contains K. Theorem 5.1 allows
us to write

(T, 90) = 2_\01<m Jx» D 00 dp,
for all gy € C*(R"). Replacing ¢, by =27 (")
(T, e 20) = 37 am [ DECT2T75 dp, (6),
which shows that z > (T, e=2*=(")} is holomorphic in C" and gives the estimate

IDECT, e 27O < Y foegr IDEDEE 2758 dp, | (§) < Cy(1+ [x])".

gives

Replacing ¢ by Fo with ¢ in C, (RV) gives

(F(T), ) = (T, F9) = X \01<m Jeex DEFOE) dpu(§)
= Z\a\gm fEEK’ Dg fxeRN e*277ix45;‘(p(x) dx dpa(’i:)
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= Y ajem Jeex Jeery DECTT 0 (x) dx dpy (§)
= fxeRN (Z\a\fm fgeK/ Dge—zmx.g d,oo,(é)) p(x)dx
= [ @ (T, e 0)) o(x) dx.

Both sides are continuous functions of the Schwartz-space variable ¢ on the dense
subset Coor (R™), and hence the formula extends to be valid for ¢ in S(R"). This
proves that F(T) is given on S(RY) by the function x > (T, e=27**(")) The
estimate on Df of this function has been obtained above, and the theorem follows.

O

EXAMPLE. There is an important instance of the formula of the proposition
that can be established directly without appealing to the proposition. The Dirac
distribution § at the origin, defined by (8, ¢) = ¢(0), has Fourier transform F(5)
equal to the constant function 1 because (F(5), ¢) = (5, F(¢)) = F(p)(0) =
fRN @ dx = (Ty, ¢), where T; denotes the distribution equal to the smooth func-
tion 1. Therefore F(D%8) = (2mi)!*Ix*Ty, i.e., F(D*8) equals the function
x — (2i)!*x%. The formula of the proposition when 7 = D%§ says that this
function equals (D*8)(e~2"**(")), and we can see this equality directly because
<Da8, e—2m’x»(-)> — (_l)lal (5, Dae—Zﬂix-(~)> — (_l)lal(_zni)lalxa (5’ e—2m’x~(-)>
= Qmi)llxe,

We know that the convolution of two distributions is meaningful if one of them
has compact support. Since the (pointwise) product of two general tempered
distributions is undefined, we might not at first expect that the Fourier transform
could be helpful with understanding this kind of convolution. However, Theorem
5.20 says that there is reason for optimism: the product of the Fourier transform
of a distribution of compact support by a tempered distribution is indeed defined.
This is the clue that suggests the second theorem of this section.

Theorem 5.21. If Sisin &' (RY) and T isin S’ (R"), then § % T is in S’ (R"),
and F(S * T) = F(S)F(T).

PROOF. We know that S « 7 is in D’ (RN ), and we shall check that S % T is
actually in S’(R"), so that F(S * T) is defined: We start with ¢ in C32 (R")

and the identity (S * T, @) = (S, TV % ¢) = (SV, T % ¢"). Since S has compact
support, there is a compact set K and there are constants C and m such that

(S*T,9) <C 3 sup[D*(Tx¢")(x)|=C 3 sup|T * D¢")(x)]

la|<m xeK la|<m xeK

=C X sup (T, (D*(@"N):)| =C 3 sup (T, (D))l

lael<m xeK la|<m xeK
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Since T is tempered, there exist constants C’, m’, and k such that the right side is

<CC" Y sup |(1+[yH*DE(D).(y)|;

le|<m, x€K,
|Bl<m’ yeR¥

in turn, this expression is estimated by Schwartz-space norms for ¢, and thus
ST isin S’ (RM).
Now let ¢ and ¥ be Schwartz functions with ¢ and F(y) in C°_(RY). Then

com

(F(Tp + T), ) = (T, x T, F()) = (T, 9% F(y))
= (F(T), F~H@"* F@)) = (FD), (F @ NF(FW)))
= (F(T), F 1 @")W) = (KD, (F)y) = (F@)FT), ¥),

the next-to-last equality following since F~!(¢") = F(¢) by the Fourier inver-
sion formula. Since the ¥’s with F() in C2°_(R") are dense in S(RV),

FTy,xT) = Flo)FT). (%)

Finally let ¢ and ¥ be in C,(RY). Corollary 5.18 gives T, x (S x T) =

com

(Ty * S) * T. Taking the Fourier transform of both sides and applying (x) three
times, we obtain

F@OFS+«T)=FT,x(S+T)) =F((Ty*S)*T)
= F(Ty + YF(T) = Flo)F(S)F(T).

Hence we have (F(@)F(S «T), ) = (Flp)F(S)F(T), ¥) and therefore

(F(S*T), Fo)y) = (F(S)HT), Flo)y) forall ¢ € C&, (RY).
The set of functions F(¢p) is dense in S(RY). Moreover, if 5y — 71 in S(RY),
then ny¥» — ny in S(RY). Choosing a sequence of ¢’s for which F(¢) tends in
S(RY) to a function in C2 (RY) that is 1 on the support of v/, we obtain

(FS*T),¢) = (FSOHAT), ¥).

Since the set of ¥’s is dense in S(RY), we conclude that F(S « T) = F(S)F(T).
O
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5. Fundamental Solution of Laplacian

The availability of distributions makes it possible to write familiar partial differ-
ential equations in a general but convenient notation. For example consider the
equation Au = f in RV, where A is the Laplacian. We regard f as known and u
as unknown. Ordinarily we might think of f as some function, possibly with some
smoothness properties, and we are seeking a solution u that is another function.
However, we can regard any locally integrable function f as a distribution 7 and
seek a distribution 7" with AT = Ty. In this sense the equation Au = f in the
sense of distributions includes the equation in the ordinary sense of functions.

In this section we shall solve this equation when the distribution on the right
side has compact support. To handle existence, the technique is to exhibit a
fundamental solution for the Laplacian, i.e., a solution of the equation AT = 4,
where § is the Dirac distribution at 0, and then to use the rules of Sections 2-3 for
manipulating distributions.” The argument for this special case will avoid using
the full power of Theorem 5.21, but a generalization to other “elliptic” operators
with constant coefficients that we consider in Chapter VII will call upon the full
theorem.

In this section we shall make use of Green’s formula for a ball, as in Proposition
3.14. As we observed in a footnote when applying the proposition in the proof of
Theorem 3.16, the result as given in that proposition directly extends from balls
to the difference of two balls. The extended result is as follows: If Bg and B,
are closed concentric balls of radii € < R and if u and v are C? functions on a
neighborhood of E = Bg N (BY)¢, then

a d
f (uAv—vAu)dx:/ (u—v—v—u>da,
E OE an on

where do is “surface-area” measure on dE and the indicated derivatives are
directional derivatives pointing outward from E in the direction of a unit normal
vector.

Theorem 5.22. In RN with N > 2, let T be the tempered distribution
—Qy" (N = 2)7 x|~ =2 dx, where Qy_; is the area of the unit sphere SV,
Then AT = §, where § is the Dirac distribution at 0.

REMARK. The statement uses the name f(x)dx for a certain distribution,
rather than 77, for the sake of readability.

7 Although a fundamental solution for the Laplacian is being shown to exist, it is not unique. One
can add to it the distribution 7} for any smooth function f that is harmonic in all of RV,
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PROOF. We are to prove that each ¢ in C° (RV) satisfies (AT, @) = (8, ¢),

com
i.e., that the second equality holds in the chain of equalities

9(0) = (3,9) = (AT, ¢) = (T, Ap) = — g—lr—; Jan o

We apply Green’s formula as above with the closed balls Bg and B, centered at the
origin, with R chosen large enough so that support(¢) € B, withu = |x|~V=2),
and with v = @. Writing r for |x| and observing that Au = 0 on Bg — B, and
that g—z =—Vop- )r—‘ on the boundary of B,, we obtain

Jss. (—r N2 () (=& = ND))) eV dow = Jpoep, 7NV Apdx.

On the left side the first term has |x - V| / r bounded; hence its absolute value
is at most a constant times f a8, € dw, which tends to O as € decreases to 0. The
second term on the left side is —(N — 2)e~ VD faBe peV "1 dw, and it tends, as
€ decreases to 0, to —(N — 2)Quy_1¢(0). The result in the limit as € decreases
to O is that

—(N =2)Qn_19(0) = fon 1 VD Ag dx,

and the theorem follows. O

Corollary 5.23. In RY with N > 2, let T be the tempered distribution
—Qy' (N = 2)7 x| V=2 dx, where Qy_ is the area of the unit sphere SV~
If fisin &' (RY), thenu = T * f is a tempered distribution and is a solution of
Au = f.

PROOF. Let § be the Dirac distribution at 0, so that AT = § by Theorem 5.22.
Theorem 5.21 shows that 7' x f is a tempered distribution, and Corollaries 5.14
and 5.19 give A(T % f) = (AT) x f =6 * f = f, as required. g

BIBLIOGRAPHICAL REMARKS. The development in Sections 2—4 is adapted
from Hormander’s Volume I of The Analysis of Linear Partial Differential
Equations.

6. Problems

1. Prove that if U and V are open subsets of RN with U C V, then the inclusion

CX (U) — C (V) is continuous.

2. Prove that if ¢ is in Cgy,,(U), then the map ¥ — ¢ of C*°(U) into CSo, (U)
is continuous.
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Let U be a nonempty open set in RY. Any member Ty of £'(U) extends to a
member T of £ (RN) under the definition (T, ¢) = (Ty, <p|U) forp € C®°(RN).
Prove that this is truly an extension in the sense that if ¢; is in C*°(U) and if ¢
is in C*°(R") and agrees with ¢ in a neighborhood of the support of Ty, then
(T.9) =Ty, ¢|,) = (Tu, 1)

Prove the following variant of Theorem 5.1: Let K and K be closed balls of R

with K contained in the interior of K’. If T is a member of £(R") with support
in K, then there exist a positive integer m and members g, of L*(K', dx) for
each multi-index o with || < m such that

(T.9) = \j<m Jx» (D*P)gadx  forallp € CPRN).

Let K be a compact metric space, and let i be a Borel measure on K. Suppose
that ® = ®(x, y) is a scalar-valued function on RN x K such that ®(-, y) is
smooth for each y in K, and suppose further that every iterated partial derivative
DS @ in the first variable is continuous on RY x K. Define

F(x) = [ ®(x, y)du(y).

(a) Prove thatany T in £&'(RV) satisfies (T, F) = fK(T, D, y))du(y).
(b) Suppose that ® has compact supportin RV x K. Prove that any S in D’(RY)
satisfies (S, F) = [ (S, @(-, y)) du(y).

Suppose that T is a distribution on an open set U in RY such that (T, ¢) > 0
whenever ¢ is a member of C35, (U) that is > 0. Prove that there is a Borel
measure i > 0 on U such that (T, ¢) = fU pdu forall o in C(U).

com

Verify the formula of Theorem 5.22 for p(x) = ™" e f?
Jan X172 (A@) (x) dx = —Qn_1(N — 2)p(0)

for this ¢, by evaluating the integral in spherical coordinates.

, namely that

Problems 8-11 deal with special situations in which the conclusion of Theorem 5.1
can be improved to say that a distribution with support in a set K is expressible as the
sum of iterated partial derivatives of finite complex Borel measures supported in K.

8.

This problem classifies distributions on R! supported at {0}. By Proposition

3.5f let n be a member of C35, (R!) with values in [0, 1] that is identically 1 for

lx] < % and is O for |x| > 1. Suppose that T is a distribution with support at {0}.

Choose constants C, M, and n such that [(T, )| < C >}, SUP|y|<m | D¥p(x)]

for all ¢ in C®(R").

(a) For e > 0, define n,(x) = r)(s’lx). Prove for each k > 0 that there is a
constant Cy independent of ¢ such that sup, |(dd—x)k ne(x)| < Cre=k.
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(b) Using the assumption that 7 has support at {0}, prove that (T, ¢) = (T, ns¢)
for every ¢ in C®°(R").

(c) Suppose that ¢ is of the form ¢(x) = ¥ (x)x"*! with ¥ in C*R!). By
applying (b) and estimating |(T, n.¢)| by means of the Leibniz rule and (a),
prove that this special kind of ¢ has T'(¢) = 0.

(d) Using a Taylor expansion involving derivatives through order n and a re-
mainder term, prove for general ¢ in C*°(R!) that (T, ¢) is a linear combi-
nation of ¢(0), D1<p(0), ..., D"¢(0), hence that T is a linear combination
of §, D18, ..., D"s.

9. By suitably adapting the argument in the previous problem, show that every

distribution on R¥ that is supported at {0} is a finite linear combination of the
distributions D*§, where § is the Dirac distribution at 0.

10. Let the members x of RV be written as pairs (x/, x”) with x’ in RY and x”
in RV=L. Suppose that T is a compactly supported distribution on R¥ that is
supported in RE. By using a Taylor expansion in the variables x” with coefficients
involving x” and by adapting the argument for the previous two problems, prove
that T is a finite sum of the form (T, ) = ", <, (Tu: (D*®)|g,), the sum
being over multi-indices « involving only x” variables and each T, being in
E’(RL). (Educational note: The operators D of this kind are called transverse
derivatives to R”. The result is that 7 is a finite sum of transverse derivatives
of compactly supported distributions on R-.)

11. Using the result of Problem 9, prove the following uniqueness result to accom-
pany Corollary 5.23: if £ is a distribution of compact support in RN with N > 2,
then any two tempered distributions # on R that solve Au = f differ by
a polynomial function annihilated by A. Is this uniqueness still valid if « is
allowed to be any distribution that solves Au = f ?

Problems 12—13 introduce a notion of periodic distribution as any continuous linear
functional on the space of periodic smooth functions on RY. Write T for the circle
R/27Z, and let C*°(T V) be the complex vector space of all smooth functions on RY
that are periodic of period 27 in each variable. Regard C*°(TV) as a vector subspace
of C*®((—2mx, 2m)N), and give it the relative topology. Then define P’ (T) to be the
space of restrictions to C>° (T of members of £'((—2x, 27r)™). For S in P'(T"),
define the Fourier series of S to be the trigonometric series Y, 7~ cxe®* with
cx = (S, e thxy,

12. Prove that the Fourier coefficients c; for such an S satisfy |cx| < C (1 + |k|?)"™/?

for some constant C and positive integer m.

13. Prove that any trigonometric series D ;v cre™®™ in which the ¢; ’s satisfy |cx| <

C(1 + |k|?)™/2 for some constant C and positive integer m is the Fourier series
of some member S of P'(TV).

Problems 14-19 establish the Schwartz Kernel Theorem in the setting of periodic
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functions. We make use of Problems 25-34 in Chapter III concerning Sobolev spaces

L,%(TN ) of periodic functions. As a result of those problems, the metric on C*(TV)

may be viewed as given by the separating family of seminorms || - || L2 (TN k>0,
K

and C®°(T") is a complete metric space. The Schwartz Kernel Theorem says that
any bilinear function B : C®(TV) x C*®(T") — C that is separately continuous in
the two variables is given by “integration with” a distribution on TV x TV = T2V,
The analogous assertion about signed measures is false.

14. Let B : C®(TN) x C®(T"V) — C be a function that is bilinear in the sense
of being linear in each argument when the other argument is fixed, and suppose
that B is continuous in each variable. The continuity in the first variable means
that for each v € C>(T"), there is an integer k and there is some constant
Cy. k such that |B(g, ¥)| < C‘/”k”(p”Lg(TN) for all ¢ in C*®°(T"), and a similar

inequality governs the behavior in the ¥ variable for each ¢. For integers k > 0
and M > 0, define

Exm = {y € C(MN) [ 1Bg, )| < Mligll v, forall g € C(TY)}.

(a) Prove that each Ey p is closed and that the union of these sets on k and M
is C(TMN).

(b) Apply the Baire Category Theorem, and prove as a consequence that there
exist an integer k£ > 0 and a constant C such that

B )| = Clgl 2y 112 vy

for all ¢ and v in C®(TV).

15. Let B be as in Problem 14, and suppose that k and C are chosen as in Problem 14b.
Fix an integer K > N /2, and define k' = k + K. Prove that

|B(Da(p7 D’B“//)| = C”(p”Li,(TN)”w”Lz,(TN)

for all ¢ and v in C°(T") and all multi-indices & and B with || < K and
Bl < K.

16. Let B, C, K, and k’ be as in Problem 15. Put by, = B(e'"("), ¢/ (")) for [ and
m in Z", and for each pair of multi-indices (e, ) with |a| < k" and |8| < K/,
define

b (_l')\a\+|ﬁ|lamﬁe—il‘xe—im~y
R N S [T

1 N
me lo/[<k' IB/1=K

for (x, y) € TN x TN. Prove that this series is convergent in L>(TV x TV).
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18.

19.
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With B, C, K, and k" be as in Problem 15 and with F, g as in Problem 16 for
la| < k" and |B| < k/, define

Bon= > e [ R0t em@hno dedy
oe| <K',
|Bl<k’

[, 7]V x[—m, 7]V

forg and ¢ in COO(TN). Prove that B'is well defined forall ¢ and ¢ in C*° (T
and that B/(e!'(), ¢ (")) = B(e!l'("), ¢ ()) for all / and m in ZN.

With B’ as in the previous problem, prove that B (¢, ¥) = B(gp, ¥) for all ¢ and
¥ in C°(T"N), and conclude that there exists a distribution S in P’(T>") such
that

B, ¥)=(S.¢oQ¥)

for all ¢ and ¢ in c®(TN) if ¢ ® ¥ is defined by (¢ ® ¥)(x, y) = (x)¥ ().

Let 1 be a function in Coo, (R!) with values in [0, 1] that is 1 for x| < % and

is 0 for |x| > 1. For f continuous on T'!, the Hilbert transform

! - —y)d
(H(nf))(x) = lim — n(x —y)flx—ydy
e T Jyy|ze y

exists as an L2(R') limit.

(a) Let C(T") be the space of continuous periodic functions on R of period 27,
and give it the supremum norm. Taking into account that H, as an operator
from LZ(RI) to itself, has norm 1, prove that

B(f, g) = [T, (Hf)(x)(ng)(x) dx

is bilinear on C(T'") x C(T"') and is continuous in each variable.
(b) Prove that there is no complex Borel measure p (x, y) on [—, 1% such that
B(f,8) = [i_ynp F@)g(y)dp(x, y) forall f and g in C(T").





