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HINTS FOR SOLUTIONS OF PROBLEMS

Chapter 1

1. We start from

fol sin p,x sin px dx = —% écos(p,, + p)xdx + %fol cos(pn — pm)x dx.

The first term on the right is equal to
—% p,mlem sin( pp+pm)l = — 1 anlrpm (sin pyl cos py!l + cos pyl sin py,1)

2
1 1 n m
=25 (= 5= cos pul cos pl — B cos pyl cos pyl)

= ﬁm(pn+pm) cos ppl cos py,l = ﬁ cos ppl cos ppl.

Similarly the second term on the right is — ﬁ cos ppl cos pyl. The two terms cancel,
and the desired orthogonality follows.

2. In (a), the adjusted operator is L(u) = ((1 — 2)u')’, and Green’s formula gives

1
()\n _)Lm)/ Pn(t)Pm(t)dtz(L(Pn)» Pm)_(Pn’L(Pm))
—1
= [(1 = (PO Pu(t) = Pu) Pp)]" |,

where A, and A,, are the values A, = —n(n 4+ 1) and A, = —m(m + 1) such that
L(P,) = A, P, and L(P,) = Ay Py,. The right side is O because 1 — £2 vanishes at
—1and 1.
In (b), the adjusted operator is L(u) = (tu’)’ + tu, and L(Jo(k - )) equals —k?¢ if
Jo(k) = 0. Green’s formula gives
(k2 + k2) [ Jolknt) Jo (k)1 dt
= (L(Jo(kn -))s Jolkm -)) = (Jotkn ), L(Jo (ki -)))
1
= [t (% (Jo(kn - ) () Jo(kmt) — Jotknt) 2% (JoCkn -))())],-

The expression in brackets on the right sideisOat# = 1 because Jo (k) = Jo(kp) =0,
and it is O at r = O because of the factor ¢.
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546 Hints for Solutions of Problems

3. With L(u) = (p(t)u’)’ — q(t)u, the formula for u*(t) = fat Go(t,s)f(s)ds in
the proof of Lemma 4.4 is

w () = p© (= @1(®) [} 9205) f(s)ds + 92(t) [} ¢1(s) f (5) ds).

As is observed in the proof of Lemma 4.4, the derivative of this involves terms in
which the integrals are differentiated at their upper limits, and these terms drop out.
Thus

w* (1) = p©) (= @) [ 92(5) f(5)ds + @5(t) [} 91 (s) f(5) ds).

For the second derivative, the terms do not drop out, and we obtain

w'(t) = p(&) " (= @] (®) [3 @2(5) f(s)ds + @} (t) [} ¢1(s) f (5) ds)
+ p(©) (= o] p2(D) f (1) + @5 (D@1 (1) £ (1)).

When we combine these expressions to form p(t)u*’(¢) + p'(®)u*' (t) — q()u* (1),
the coefficient of fat @ (s)f(s)dsis— p(c)’1 L(¢1) = 0, and similarly the coefficient

offal @1(s) f(s)ds is p(c)"'L(¢2) = 0. Thus

L@w*) = p©) ' p) f()( = 0| (@2 (t) + @5 (1)1 (1))
= p@©) 'p) f(t) det W (g1, p2) (1) = f(1),

the value of det W (g1, ¢2) having been computed in the proof. This completes (a).
For (b), we can take ¢ () = cost and ¢,(¢) = sinz. Since p(¢) = 1, we obtain

sinf coss — cost sins ifs <t,
Go(t,s) =

if s > t.

The conditions #(0) = 0 and u(7/2) = O meanthata =0,b =n/2,c1 =d; =1,
and ¢y = d» = 0 in (SL2). Thus the system of equations (x) in the proof of Lemma

4.4 reads

cos0 sin0 ki) _ —u*(0)

cos% sin% J\ky)  \ —u*(w/2) )"
and we obtain k; = —u*(0) = 0 and ky = —u*(x/2) = — [ f(s) cos s ds. The
proof of Lemma 4.4 says to take K1(s) = 0 and K»>(s) = — coss. The formula for

Gi(t,5)is G1(t,s) = Go(t,s) + K1(s)e1(t) + Ka(s)@a(t), and therefore

Sinf coss — cost sins . —costsins
Gi(t,s) = —sinfcoss = . .
0 —sinf coss

In particular, G (z, s) is symmetric, as it is supposed to be!
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4. We have ft? ((py)) y2 = (pyy) y1) dt = fttlz(gz — g1)y1y2dt > 0 as aresult of

the outlined steps. Since ((py})'y2 — (py3)'y1) = %(p(y}y2 — y1¥5)), we conclude

that [ p(y}y2 — ylyé))]z > 0. This proves (a).

Since yi(t1) = yi(f2) = 0, the expression p(1)y;(t)y2(t) — p(H)y1(t)y5(t) is
p(©2)y](12)y2(2) at t = 1. Here p(r) > 0 and y»(r2) > 0. Since yi(r2) = 0
and since y;(f) > O for all ¢ slightly less than 7, we obtain y|(2) < 0. Thus
p(t2)y|(2)y2(r2) < 0. Similarly the same expression is p(t1)y](t1)y2(r)) att = 1.
We have p(t;) > 0 and y»(#;) > 0. Since y;(t;) = 0 and y;(t) > O for ¢ slightly
greater than ¢1, we obtain y|(#1) > 0. Thus p(#1)y(t1)y2(t;) > 0. This gives the
desired contradiction and completes (b).

Part (c) is just the special case in which g;(tr) = —q(¢t) + Ar(t) and g2(¢) =
—q(t) + Apr(t). The hypothesis on g — g1 is satisfied because g>(t) — g1(f) =
(A — Apr() > 0.

5. For (a), substitute for W(x, ) and get —y" (x)p(t) + V()Y (x)p) =
iy (x)¢(1). Divide by ¥ (x)p(t) to obtain —‘f/j”(f; +V(x) = z%) The left side
depends only on x, and the right side depends only on ¢. So the two sides must be

some constant E. Then —‘{;/”((;)) + V(x) = Eyields " + (E — V(x))¥ =0.

For (b), the equation for ¢ is i% = E. Then ¢’ = —i E@, and ¢(r) = ce ' £?.

6. We substitute ¥ (x) = e /2H(x), ¥'(x) = —xe " 2H(x) + e /2H' (x),
and ¥ (x) = xze_xz/zH(x) — 2xe‘x2/2H’(x) + e_x2/2H”(x) — e_"z/zH(x), and
we are led to Hermite’s equation.

7. Write H(x) = Z/fio ckxk. We find that ¢y and ¢ are arbitrary and that
(k+2)(k 4+ Dckya — 2n — 2k)c = 0 for k > 0. To get a polynomial of degree d,
we must have ¢y # 0 and cs42 = 0. Since cy42 = cg(2n —2d)/((d +2)(d + 1)),
this happens if and only if d = n.

8. We have L(H, (x)e’xz/z) =—-2n+ 1)H, (x)e’x2/2. Define an inner product
by integrating over [-N, N]. Then

—2(n—m) [ H,(x)Hp (x)e™ dx
= (L(H,()e™ %), Hy(0)e™7?) — (Hy(x)e ™2, L(Hy (x)e™ %)
= [(Hy(0)e ™2 (Hyp(0)e ™) = (Hy(x)e ™) (Hy (x)e 2],

As N tends to infinity, the right side tends to 0. Since n # m, we obtain the desired
orthogonality.

Chapter 11

1. A condition in (a) is that f take on some value on a set of positive measure.
A condition in (b) is that f take on only countably many values, these tending to O,
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and that the set £ where f is nonzero be the countable union of sets E,, of positive
measure such that no E, decomposes as the disjoint union of two sets of positive
measure.

2. Let v, beinimage(Al — L) with v, — v, and choose u, with (Al — L)u, = v,,.
We are to show that v is in the image. We may assume that v # 0, so that ||v,|| is
bounded below by a positive constant for large n. Since ||v, || < [|AL — L||lun ||, N unl
is bounded below for large n. Passing to a subsequence, we may assume either that
|lu, || tends to infinity or that ||u,, || is bounded.

If ||u,| is bounded, then we may assume by passing to a subsequence that {Lu,,}
is convergent, say with limit w. From Au, = Lu, + v,, we see that Au, — w + v.
Putu = A~ '(w+v). Then (A — L)u = (w+v) —limLu, = w+v—w = v, and
v is in the image.

If |lu, || tends to infinity, choose a subsequence such that {L(||u, I ~'un)} is con-
vergent, say to w. Then we have ||u, ||~ 'Au, — L(lun|| " tn) = ||lunll~'v,. Passing
to the limit and using that v, — v, we see that [u, || ~'Au, — w. Applying L, we
obtain Aw = L(w). Thus (Al — L)w = 0. Since Al — L is one-one, w = 0. Then
llunll = Au, — 0, and we obtain a contradiction since ||u,| ' Au, has norm || for
all n.

3. It was shown in Section 4 that the set of Hilbert—Schmidt operators is a normed
linear space with norm || - ||yg. Since ||L|| < ||L|ly4g, any Cauchy sequence {L,} in
this space is Cauchy in the operator norm. The completeness of the space of bounded
linear operators in the operator norm shows that {L,} converges to some L in the
operator norm. In particular, lim, (L,u, v) = (Lu, v) for all u and v. By Fatou’s
Lemma,

ILllys = X5 ILuj | = 3; liminf,, || Ly |

< liminf, 3°; [|Lnu;|* = liminf, || L, |-

The right side is finite since Cauchy sequences are bounded, and hence L is a Hilbert—
Schmidt operator. A second application of Fatou’s Lemma gives

ILm — Lllgs = > 1 (Lm — L)uj|> = 3, liminf, || (L — Ly)uj|?
< liminf, 3 | (L — Ly)uj||> = liminf, || Ly — Ly|lys-

Since the given sequence is Cauchy, the lim sup on m of the right side is 0, and hence
{L,,} converges to L in the Hilbert—Schmidt norm.

4. If L and M are of trace class, then D, |[((L + M)u;, v)| <Y ; (|(Lu;, vi)| +
[(Mu;, vi)|) < |[Lllyc + IM]lpc. Taking the supremum over all orthonormal bases
{u;} and {v;}, we obtain the triangle inequality.

5. Once we know that Tr(AL) = Tr(LA), then Tr(BLB~') = Tr(B~'(BL)) =
Tr(L). To prove that Tr(AL) = Tr(L A), fix an orthonormal basis {;}. The formal
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computation is

Tr(AL) = Zj (ALuj, uj) = Zj (Luj, A*u;) = Zj > (Luj, ui)(A*uj, u;)
= Zj Zi (Au,-, uj)(L*ui, uj) = Zi Zj (Au,-, u.,-)(L*u,-, uj)
= Zi (AM,', L*u,-) = Zi (LAL{,', I/l,') = TI'(LA),

and justification is needed for the interchange of order of summation within the second
line. It is enough to have absolute convergence in some orthonormal basis, and this
will be derived from the estimate

1/2 1/2
Y CAus up) (L upl < Y5 (X5 1Az, up) )2 (5 1@ i, up )
= Y lAu L uil] < [A] Y 1L ).

The proof of Proposition 2.8, applied to L* instead of L, produces operators U and T,
orthonormal bases {w;} and { f;}, and scalars A; > O such that L* = UT, |U| <1,
Tw; = /Aw;, and Y |[(L*w;, ;)] = Y. (Tw;, w;). Taking u; = w;, we have
IL*w;|| = |lUTw;|| < |Tw;i]l = /A = (Tw;, w;). Hence for this orthonormal
basis, Y [|L*w;|| < Y (Tw;, w;) = Y [(L*w;, fi)|. The right side is finite since
L* is of trace class.

6. If v is a nonzero vector in the A eigenspace of Ly and if LgLy = LoLg,
then LyLg(v) = LgLy(v) = ALgv. Thus the A eigenspace of L, is invariant
under Lg. We apply Theorem 2.3 to the compact operator Lg on each eigenspace of
L, obtaining an orthonormal basis of simultaneous eigenvectors under Ly and Lg.
Iterating this procedure by taking into account one new operator at a time, we obtain
the desired basis.

7. In (a), the operators L + L* and —i (L — L*) are self adjoint, and they commute
since L commutes with L*. Compactness is preserved under passage to adjoints and
under taking linear combinations, and (b) follows.

8. If U is unitary, then U* = U~!. Then UU~! = I = U~'U shows that U
is normal. Since U preserves norms, every eigenvalue A has |A| = 1. If U is also
compact, then the eigenvalues tend to 0. Hence U is compact if and only if the Hilbert
space is finite-dimensional.

9. The solutions of the homogeneous equation are spanned by cos wt and sin wt.
Then the result follows by applying variation of parameters.

10. Take g(s) = p(s)u(s) in Problem 9.
11. In (a), let t < ¢’. Then

(THE) = THO) = [ K@, ) f(s)ds — [ K(t,5)f(s)ds
= ftt/ K, s)f(s)ds + fat [K(t,s)— K(t,s)]f(s)ds.
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The first term on the right tends to 0 as ¢ — 7 tends to O because the integrand is
bounded, and the second term tends to O by the boundedness of f and the uniform
continuity of K (¢, s) — K (¢, s) on the set of (s, ,7) wherea <s <t <t

In (b), for n = 1, we have [(T)(®)| = | [ K(t,5) f(s)ds| < M [} |f(s)|ds
C M as required. Assume the result for n — 1 > 1, namely that |(T”_1 )|
G CM' e — @2 Then [TNHOI = | K. s)(T”‘lf)(s) ds|
M [ I(T"'f)(9) ds < Mgy M"—1 [l (s—a)"2ds = CM"(t —a)"~
Thus the n™ term of the series is < 1), CM"(b—a)" !

In (c), the uniform convergence follows from the estimate in (b) and the Weierstrass
M test.

—IAIA IA

(n=D! 1)'

12. The operator T is bounded as a linear operator from C([a, b]) into itself.
Because of the uniform convergence, we can apply the operator term by term to the
series defining u. The resultis Tu = Tf + T*f + T3f + ... = u — f. Therefore
u—Tu=f.

13. Subtracting, we are to investigate solutions of u — T'u = 0. Problem 11
showed for each continuous u that the series u + Tu + T?u + --- is uniformly

convergent. If u = Tu, then all the terms in this series equal u, and the only way that
the series can converge uniformly is if u = 0.

Chapter III

1. Let D; = 9/dy;. Let S be the vector space of all linear combinations of
functions (1 4 472|y|*)~"h with n a positive integer and / in the Schwartz space S.
Then D; ((1+47%(y|*)™"h) = —8nw?y;(1+472|y[*) =D h+(1+472|y|?) " D;h.
The first term on the right side is in S because yjh isin S, and the second term on the
right side is in S because Djhisin S. Thus S is closed under all partial derivatives.
Since the product of a polynomial and a Schwartz function is a Schwartz function, S
is closed under multiplication by polynomials. Smce the members of S are bounded,
we must have S € 8. In particular, (1 + 472|y|*)"'gisin Sif g isin S.

2. Since the Fourier transform and its inverse are continuous, it is enough to handle
pointwise product. Pointwise product is handled directly.
—2x

3. In (a), the ordinary partial derivatives are Dx(log((x2 + yz)*l)) T2 and
Dy(log((x2 + yz)’l)) = xz_ii >. These are also weak derivatives. In fact, use of

polar coordinates shows that they are integrable near (0, 0), hence locally integrable
onR2. If pisin C%° (), we are to show that fQ log((x2+y») " HD,p(x, y)dxdy =

Jo 2§ ‘ff 2 dx dy and similarly for y. For each y # 0, the integrals over x are equal,

and the set where y = 0 is of measure O in 2. The argument with the variables
interchanged is similar. Thus log((x> + y?)~!) has weak derivatives of order 1. In

com
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xp(x,y) | s rPlcosb|?
x2+y? | =T
integrable near r = 0 relative to r dr for p < 2 butnot p = 2.

In (b), the argument for the existence of the weak derivative of log log((x>+y?)™")

is similar to the argument for (a), the ordinary x derivative being

polar coordinates the p™ power of | = r~P|cos@|P, which is

—2x
(x% + yH)log((x2 +y>)~ 1’

. .. 4cos’@
In polar coordinates the square of this is

rdr.

4. The idea is to use the Implicit Function Theorem to obtain, for each point of the
boundary, a neighborhood of the point for which some coordinate has the property that
the cone of a particular size and orientation based at any point in that neighborhood
lies in the region. These neighborhoods cover the boundary, and we extract a finite
subcover. Then we obtain a single size of cone such that every point of the boundary
has some coordinate where the cone lies in 2. The cones based at the boundary
points cover all points within some distance € > 0 of the boundary, and cones of half
the height based at interior points within those cones and within distance €/2 of the
boundary lie within the cones for the boundary points. The remaining points of the
region can then be covered by a cone with any orientation such that its vertex is at
distance < €/2 from all its other points.

, which is integrable relative to
r2log?(r=2) &

5. For0 <a < N, |x|" V=% jsthe sum of an L' function and an L™ function and
hence is a tempered distribution. It is the sum of an L' function and an L? function
for0 <o < N/2.

6. The second expression is converted into the first by changing ¢ into 1/¢. The
first expression is evaluated as the third by replacing #|x|? by s.

7. The formula obtained from the first displayed identity is

Jon G@IxD TNV -OT (LN — )G dx = [fn (21212 29T (B (x) dx,
which sorts out as
A 3NN — @) [ "V 0(x) dx = 73T (Sa) fon 1x™%0(x) dx.

8. In (a), we check directly that F(D*T) = (27i)!*/&* F(T). Since T is in H?,
Jaw IFTE) P (1 + E%)° dE is finite. Now [§] < [€] < (1 + |§[)!/? for every j,
and hence || < (1 + |£]%)*/% for |a| = s. Since (1 4 |£]H)V/? > 1, (1 + |£|»)!/% is
an increasing function of ¢, and thus |£%| < (1 + |£]%)%/? for |a| < 5. Consequently
(2mi)l*lg* F(T) is square integrable for |a| < s. Thus the Fourier transform of DT
is a square integrable function for || < s. By the Plancherel formula, D*T is a
square integrable function for || < s.
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Let T be the L2 function f, and let D*T be the L2 function gq for |a| < s.
The statement that f has g, as weak derivative of order « is the statement that
Jgn fD%@dx = (=D [y gupdx for ¢ € C5 (RV); this is proved for ¥ = @
by the following computation, which uses the polarized version of the Plancherel
formula twice:

(=DM oy go ¥ dx = (=D [oy @ri)e* F(f)F(Y) d
= [an F(HQrECF () dE = [pn F(F)F(D*Y) dE = [on fD*Yr dx.

Since f and its weak derivatives g, through || < s are all in L2, f isin L2(R").
In (b), if T is given by an L? function, then F(T) = F(f) is an L? function.
Hence F(T) is locally square integrable. We are assuming that D*T is given by
an L? function g, for |a| < s. The formula F(g,) = F(D*T) = 2mi) ¥ F(T)
shows that §*F(f) is in L? for |a| < 5. Now [§*|F(N)* = X, & F(f)I* and
similarly &1 7)1 = 3, & & FOP = X (o, o ) IEFOI

Hence

,,,,,

and f isin H®.
For (c), in one direction the argument for (a) gives

A7z = Y=o 1DF 172 = Xjaj<, 1D EFNI
< (XZjai=s COPNIA+IEDFNONT: < (Xjaj<s @O F 10

In the other direction the displayed formula for (b), when integrated, gives
1A = 81Dy <s 2717 ND S, < sULFI
9. In (a), let T be in H®. Then the computation
IT 113 = 1L+ £ PR, = 1F (A + 1D 2RD)IE. = 1A(D)3,

shows that Ay preserves norms. To see that Ay is onto L2, let f be in L?. Then
F(f) is in L? and hence acts as a tempered distribution. Then (1 + |&|%) /2 F(f)
is a tempered distribution also. Since F carries S’(RV) onto itself, T =
F=H (1 + 1€ 7*/2F(f)) is a tempered distribution. This tempered distribution
has the property that A (T) = f.

In (b), the relevant formula is that (A) ™' (¢) = F ! ((1 + IEIZ)_S/Z.?:((p)). If ¢
is in S(RY), then so is F(¢). An easy induction shows that any iterated derivative of
(1+|€%)~5/? isasumof products of polynomials in & times powers (possibly negative)
of 1+]&|2. Application of the Leibniz rule therefore shows that any iterated derivative
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of (1 + &%) ™5/2F(p) is a sum of products of polynomials in £ times derivatives of
F(g), all divided by powers of 1 + |£]>. Consequently (1 + |£]2)7/2F(p) is a
Schwartz function, and so is its inverse Fourier transform.

For (c), we know that C°_(RY) is dense in LZ(RY), and hence S(R") is dense

com
in L2(RV) also. Applying the operator (A;)~!, which must carry S(RV) onto itself,
we see that S(RY) is dense in H*.
10. If T is in H~* and ¢ is in S(R"), then the definition of Fourier transform on

S(RM), together with the Schwarz inequality, implies that

(T, @)l = UFT), F~H @) = | fgn FTEF (@) (E) dE|
= | fon [(L+ [EPD)SPETE A + £ 2F (@) (€)1 dE|
<A+ EDTPADN LA+ 1EPF L@ = 1Ty 1@l g

11. For ¥ in S(RY), we have [(F(T), )| = [T, F@))| < CIF@) s =
C( fon IFF@NE R + 2 de)? = C(fun W (6P + [EP) d)'? =

Cly ||L2(RN (4IEP)y de)* Thus F(T') acts as a bounded linear functional on the dense
vector subspace S(RV) of L2(RY, (1 + |£]?)* d&). Extending this linear functional
continuously to the whole space and applying the Riesz Representation Theorem for
Hilbert spaces, we obtain a function f in L2(RY, (1 4 |£|?)* d&) such that

(F(T), ) = [pn VEFEA + [E]P) dE

forally in S(RY). Put () = £(€)(14+]€[*)*. Then [px Yo (§)*(1+]§]%) d€ =
fRN | F(E)2( + |€]>)* dE < oo, and the above displayed formula shows that F(T)
agrees with the function 9 on S(RY). Thus 7 is in H~5. To estimate || T|| Hs>

we twice use the fact that S(RY) is dense: 1Tl s = |W0”L2(RN (A4ERD) - dg) =

”f”LZ(RN,(l_HElZ)sdE) = Sup|\¢\| <1 |<f(T)7 lﬂ>| = Sup”(PHfol |(T7 §0>|

Thus || T -, < C.
12. In (a), we apply the Schwarz inequality: ||<,o||sup < ||.7-"1((p)||l = [|Fl, =

Jiow IF@E A+ 1EPY/21LA + 1PN d < 1Tyl o (o 1+ 18P d8) 2.

For (b), the last integral in (a) is finite for s > N/2. Thus we have [¢|ly,, <
ClTyll s for all ¢ in S@®RN). If T is in H*, we know from Problem 9c that we
can find a sequence ¢ in S(RY) such that Ty, tends to T in H®. For p < g, we
then have |l¢p — ¢qllgup < CliTy, — Ty, |l ys- Letting ¢ tend to infinity, we see that
¢p converges uniformly to some function f, necessarily continuous and bounded.
Let Ty be the tempered distribution given by f. We show that T = Ty. If
is in S(RY), then F(y) is integrable, being a Schwartz function, and the uniform
convergence of ¢, to f implies that (Ty, F(¥)) = lim,(7,,, 7(¥)). On the other
hand, (T, — T, FW))| < 1Ty, — T ll s IF W)l - and thus (T, F(3)) tends to
(T, F(3r)). Therefore (Ty, F(y)) = (T, F(¥)), and T = Ty.

LZ®N (1+812)S dt)
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For (c), it follows from Problem 8 that for any fixed s and any multi-index « with
lal < s, DY@l oo < Call@ll s forall ¢ in SMRN). Fix m with s > N/2 + m,
and let T be in H*. By Problem 9c we can choose a sequence ¢; in S(RY) such
that T, tends to 7' in H®. For p < g and for each a with |a| < m, (a) shows
that ”Da§0p - Dagot] ”sup S C(; ”TD"‘gop - TD”‘(pq ”Hx—hx\ S C(/x ”TD‘X(pp - TD“ §0q ”H.r—m'
Letting g tend to infinity, we see that D%p, converges uniformly to some function
f«, necessarily continuous and bounded. By the theorem on interchange of limit and
derivative, fy = lim, Dorpp is of class C™ with f, = D“ fy for all o« with || < m.
Then we can argue as in (b) to see that T = T, and (c) is proved.

13. In (a), Py * (uo + i Huo)(x) = Py % uo(x) +iQy * ug(x) = iZz % uo(x) =
((—imz)™") % ug(x). The left side is in 7{” since H is bounded on L”, and the form
of the right side shows that the result is analytic in the upper half plane. Hence the
expression is in H?.

In (b), we know that f(x +iy) = Py x up(x) +iQy * uo(x) = Py % up(x) +
i PyHug(x). Taking the L? limitas y | 0, we obtain fo = uo + i Hug. Hence i Hug
is the imaginary part of fjy.

14. According to the previous problem, the functions in H? are those of the form
Py x (uo +1iHup) with ug in L2. Thatis, they are the functions of the form ug+i Hug
with ug in L?. The operator H acts on the Fourier transform side by multiplication by
—isgn x. Hence the Fourier transforms of the functions of interest are all expressions
Uuo(x) +i(—isgnx)ug(x) a.e. This function is 2z (x) for x > 0 and is O for x < 0.
Conversely any function in L? is the Fourier transform of an L? function, and thus
if g is given that vanishes a.e. for x < 0, we can find uo with uy = %g. Then
Uo +i(—isgnx)up = g.

15. The first inequality is by the Schwarz inequality, and the second inequality is
evident. For the equality we make the calculation

A(F|?) = 4L 2 (FP)1? =2 LI(IFP) T L(F, F)]
=2qZL(F )2 (F', F)]
q_ q_
=q(q = D(FP)I2(F, F)(F',F) +2q(F)* ' (F', F')
=@’ |F1*™H(F. F)? = 2q|FI7*|(F, F))? +2q | F17| F')?

=q*|FI"*(F, F)I* +2q|F|"*( = [(F, F)* + |F*|F']?).

16. Arguing by contradiction, suppose that u(x;) > 0 with |x; — xo| < r. For
any ¢ > 0, the function v.(x) = u(x) 4+ c(|x — x0|2 — r2) has Av. > 0 on B(r; xp)
andv = u < 0on dB(r; xo). We can choose the positive number c¢ sufficiently small
so that v.(x;) > 0. Fix that ¢, and choose x; in B(r; x)¢' where v, is a maximum.
Then x; is in B(r; xp), and all the first partial derivatives of v, must be O there. Since
Av:(xp) > 0, we must have D}vc(xg) > 0 for some j, and then the presence of a
maximum for v — x at x, contradicts the second derivative test.
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17. For (a), we calculate [[g.[3 = [plge()?dx = [p|F.(x)|dx <
JelfG+ie)dx +e fplx +il72 < I fllp +ellc+D) 72

In (b), the functions x + g¢(x +iy) and x — F.(x + iy) are Poisson integrals
of the functions with y replaced by y/2, and then are iterated Poisson integrals in
passing from y/2 to 3y/4 and to y. In the first case the starting function is in
L?, and in the second case the starting function is in L'. The function at 3y/4 is
then in L? since L' x L> C L?, and the function at y is continuous vanishing at
infinity since L x L> € Co(R). This handles the dependence for large x. For
large y, we refer to the proof of Theorem 3.25, where we obtained the estimate
e, P < [Gro)N 1V N + Ditollullf,, if u is in HP and t > f.

In (c), the functions | F,(z)|'/? and g, (z) are equal for z = x. Hence the continuous
function u(z) = |Fs(2)|"/? — g+ (z) on R%r vanishes at y = 0 and tends to 0 as |x|+|y|
tends to infinity. Given § > 0, choose an open ball B large enough in Ri so that
u(z) < § off this ball. Since the second component of F(z) is nowhere vanishing,
| Fe(2)]'/? is everywhere smooth for y > 0. Problem 15 shows that A(| F,(z)|'/?) > 0,
and we know that Ag.(z) = O since g, is a Poisson integral. Hence Au(z) > 0.
Applying Problem 16 on the ball B, we see that u(z) < § on B. Hence u(z) < § on
RZ. Since § is arbitrary, u(z) < 0 on R%. Therefore |F,(z)|'/? < g.(z) on R3.

18. In (a), the fact that Py is in L? implies that lim,, fR Py(x — 1)ge, (1) dt =
fR Py(x — t)g(t)dt. Thus g (z) — g(z) pointwise for Imz > 0. Then we have
|f@]'? < limsup, | f(z + iey)|"/? < limsup, g.(z) = g(z). Since g(z) is the
Poisson integral of g(x), the inequality g(x +iy) < Cg*(x) is known from the given
facts at the beginning of this group of problems.

In(b), we have | f (x+iy)| < C?g*(x)?, and we know that [|g*||, < Azl|gll,. From
Problem 17a we have ||g|3 < limsup, ||g, I3 < limsup, (Ilf]l , +&ll (x+i)72]);) =

110

19. Every f in Ceom(X) has | [y f(x)dv(x)| = lim, | [ f()gn(x) dpu(x)| <
limsup,, [y [f (g ()| dpn(x) < [y |f ) du(x). If K is compact in X, we can
find a sequence { fi } of functions > 0 in C¢om (X) decreasing pointwise to the indicator
function of K, and dominated convergence implies that ] Ix dv(x)| < [x dux).
In other words, |[v(K)| < w(K). Separating the real and imaginary parts of v and
then working with subsets of a maximal positive set for v and a maximal negative set
for v, we reduce to the case that v > 0. Since v is automatically regular, we obtain
V(E) < u(E) for all Borel sets E, and the absolute continuity follows.

20. Since f is in H!, it is in 7! and hence is the Poisson integral of a finite
complex Borel measure v, and the complex measures f(x +i/n) dx converge weak-
star against Ceom(R) to v. Meanwhile, we have | f(x + i/n)| < C2g*(x)?* for
all n. In Problem 19 take du(x) = C?g*(x)>dx. Then the complex measures
Fx+i/n)[C*g*(x)1 ' du(x) converge weak-star to v. Problem 19 shows that v is
absolutely continuous with respect to C2g*(x)? dx. Hence v is absolutely continuous
with respect to Lebesgue measure.



556 Hints for Solutions of Problems

21. For (a), F(T ¢) is the product of an L*° function and a Schwartz function. The
rapid decrease of the Fourier transform translates into the existence of derivatives of
all orders for the function itself. Hence & is locally bounded.

For (b), any x with |x| > 1 has

O (x) = limyo [0, (57 — T3)e () dy.

lx—y|¥

Hence |®(x)] is

< limsupy o [, = 9OIK (x — y)||ﬁ - ﬁ| dy + [ 9(3) \K(x—pyc?;K(x)\ dy.

If |x| > 2|y]| for all y in the support of ¢, two estimates in the text are applicable;
these appear in the proof that the hypotheses of Lemma 3.29 are satisfied:

) 2|y
IS — el SN3VERE and K-y - K@) = (7).

|x

The smoothness of K makes (1) < Ct for small positive . Since the y’s in question
are all in the compact support of ¢, both terms are bounded by multiples of [x|~(N+D.
Conclusion (¢) is immediate from (a) and (b).

22. Part (a) is just a matter of tracking down the effects of dilations. Part (c¢)
follows by dilating ® = T'¢ — k to obtain &, = (T'¢), — k., by applying (a) to write
o, = Tp: — k¢, by convolving with f, and by applying (b). Thus we have to prove
(b).

For (b), we have ¢, x Tf = @, * (limg Ts f). The limit is in L?, and convolution
by the L' function @¢ is bounded from L? to L*°. Therefore ¢, * (lims T f) equals
lims(¢e * (Tsf)) = limg(pe * (ks *x f)). This is equal to lims((¢e * k5) * f) =
lims ((Tsp:) * f) since @, is in L. Finally we can move the limit inside since
limg Ts¢. can be considered as an L”" limit and fisin LP.

23. From (c), wehave sup,_ o | T f (x)| = sup,q ke * f(X)| < sup,.q [Pe* f(x)]
+sup,_g l@e * (Tf)(x)] < Co f*(x) + Cy(T f)*(x), where Co and C,, are as in the
given facts at the beginning of this group of problems.

24. Taking L? norms in the previous problem and using Theorem 3.26 and the
known behavior of Hardy—Littlewood maximal functions, we obtain

[sup 1. £, = Coll 1, + Col TN, = CodpllFl, + CoApl T,
£>
< CoMpll fll, + CoApChll £, = CIF 1,0

where A, and C), are constants such that ||f*||p < Ap||f||p and ||Tf||p < Cp||f||p.

We know that lim,~q T f (x) exists pointwise for f in the dense set Coop, (RM), and

a familiar argument uses the above information to give the existence of the pointwise
limit almost everywhere for all f in LP.
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25. This follows from the same argument as for Proposition 3.7.
26. Fix ¢ > 0in C2°_(RYN) with integral 1, and define ¥, (x) = e Ny (e~ 'x). If

com
fisin LZ(TV), then , * f is smooth and periodic, hence is in C>(TV). Suppose
it is proved that
D*(Ye * f) =Y x D*f  for |a| <k. (x)

If we let n be the indicator function of [—2m, 271V, then Proposition 3.5a shows
that limg g [|[n(Ye * D*f — D*f))|l, = O for |a| < k, and then (*) shows that

limg o [In(D* (e * f) — D*f)ll, = 0. Hence limg o [ * f — fIILi(TN) =0.
For (x), the critical fact is that the smooth function v * f is periodic. If ¢ is
periodic and 1, is supported inside [—7, 7]V, then
Jionmyy (e % DUF@)p@) dx = [ [ e DF(x — y)g(x) dy dx
= i m¥ Sy Ve DS (x = y)p(x) dx dy
= (=D [ Sy Ve (6 — y) DY (x) dx dy
= (=D [ (e x @)D (x) dx
= Ji_pnpy (D (e % )@ dx.
and () follows.
27. We have

”Daf”iﬁTN) =Y o=k @O [y IDPDOfI? dx
=Ygz QO N fi o IDFP f P dx
< Yiyizkrial QO™ Jiy o IDVf P dx

_ 2
=1/ 13; ooy

Thus we can take Cy x = 1.

28. Foreach«, we have (2)~N [ |DYf > dx < (Sup,e_qpv 1D%f (X))
Summing for |«| < k gives

2
”f”Li(TN) E Z‘(X‘Sk (Supxe[—n,n]N |D0[f(x)|)2’

and the right side is < (ka\gk SUPye[—r 7]V |D*f (x)])%. Thus we can take Ay = 1.

29. Since 112 < |I|%, we have I?* < (J[|)®l < (1 + |I|*)¥, and the left inequality
of the problem follows with Bj equal to the reciprocal of the number of «’s with
|| < k. For the right inequality, we have 1 + 11> = Z‘a‘fl [%®. Raising both sides

to the k™ power gives the desired result once the right side is expanded out since
120128 _ [2(@+B)
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30-31. For f in C®(T"), let f have Fourier coefficients ¢;. The /" Fourier
coefficient of D*f is then i!*//%¢;, and hence | DYf||3 = Y, |¢;|*1**. Consequently
”f”LfUN) = lal*( D al<k 12*). Then the estimate required for Problem 31 in

the case of functions in C*®°(T") is immediate from the inequalities of Problem 29.

Problem 26 shows that C*®°(T'") is dense in L%(TN). Let f be given in L,%(TN),
and choose f(") in C®(TV) convergent to f in L%(TN). Since f(”) tends to f in
L?, the Fourier coefficients cl(") of f™ tend to those ¢; of f for each [. Applying
Problem 29 to each f and using Fatou’s Lemma, we obtain 3, |¢;|>(1 + |I|>)* <
Cka”iﬁ(TN)’ On the other hand, if f is given in L,%(TN) with Fourier coefficients

c;, then we can put f® (x) = Z‘”Sn cie'"*. Since f™ is given by a finite sum and
since Df (x) =), cil%e"* in the L? sense for || < k, we see that £ converges
to f in L%(TN ). The left inequality of Problem 31 holds for each £ since f
is in C*°(T'V), and the expression in the middle of that inequality for £ is < the
corresponding expression for f. Passing to the limit, we obtain the left inequality of
Problem 31 for f.

This settles Problem 31. It shows also that if f is in L%(TN ), then we have
> ler?(1+1112)* < 0o. On the other hand, if this sum is finite, then we define £ to

be Y j<n cie'"*. Problem 31 gives us Bk”f(n)”iz(TN) < >, le(1 +|11?)k for each
- k

n. Each D¥f™ for |a| < k is convergent to something in L2, and the completeness
of L,%(TN ) proved in Problem 25 shows that ) converges to something in L,%(TN ).
Consideration of Fourier coefficients shows that the limit function must be . Hence
fisin LI(TV).

32. Putc = K/N > 1/2. Term by term we have Y, (1 + [I|)~NVFD/2 <
Sher e L+ (1 +13) = ]‘[JI.V=1 (X ez (1 +m*)~¢), and the
right side is finite since ¢ > 1/2. This proves convergence of the sum.

Now suppose that f is in L%((TN ), and suppose that f has Fourier coefficients c;.
Problem 31 shows that 3, [¢;|*(1 + |I*)X < oco. The Schwarz inequality gives

dulal=Ylad+ 11HK2)1(1 + 112K /2
< (St U)o i =6)',

and we conclude that Y |¢;| < oo. Therefore the partial sums of the Fourier series
of f converge to a continuous function. This continuous function has to match the
L? limit almost everywhere, and the latter is f.

33. Let ¢; be the Fourier coefficients of f. If f isin L%( (TN with K > N/2,
then Problem 32 shows that f is continuous and is given pointwise by the sum
of its Fourier series. The inequalities in the solution for that problem show that
£l < Y lel < Ax (X 1P +1212)7%) "%, In turn, Problem 31 shows that

the right side is < AxC ,1/ 2|| £l This gives the desired estimate for « = 0

LA (TNy
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with m(0) = K for any integer K greater than N /2. Combining this estimate with
the result of Problem 27, we obtain an inequality for all o, with m(«) = K + || and
1/2
Co = AxCY".
34. The comparisons of size are given in Problems 28 and 33. These comparisons
establish the uniform continuity of the identity map in both directions, by the proof
of Proposition 3.2. (The statement of the proposition asserts only continuity.)

Chapter IV

1. With the explicit definition of the norm topology on X /Y, we have ||x + Y| <
lx]|, and consequently the quotient mapping ¢ : X — X/Y is continuous onto the
normed X/Y. Because of completeness the Interior Mapping Theorem applies and
shows that the quotient mapping carries open sets to open sets. Consequently a subset
E of X/Y in the norm topology is open if and only if g~ (E) is open. This is the same
as the defining condition for a subset of X/Y to be open in the quotient topology, and
hence the topologies match.

2. Let K = ker(T), and let ¢ : X — X/K be the quotient map. By linear
algebra the map T : X — Y induces a one-one linear map 7' : X/K — Y, and
then T = T’ o q. Since K is closed in X, Proposition 4.4 shows that X/K is a
topological vector space. Since T (X) is finite dimensional and 7" is one-one, X /K
is finite dimensional. Proposition 4.5 implies that 7’ is continuous. Since T is the
composition of continuous maps, it is continuous.

3. LetT : X — Y beacontinuous linear map from one Banach space onto another,
and let K = kerT. As in Problem 2, write T = T’ o ¢, where ¢ : X — X/K is
the quotient mapping. Here T' is one-one. Since a subset E of X/K is open if and
only if g~'(E) is open, T" is continuous. Problem 1 shows that the topology on X /K
comes from a Banach space structure. By the assumed special case of the Interior
Mapping Theorem, T’ carries open sets to open sets. Therefore the composition T
carries open sets to open sets.

4. This follows from Proposition 4.5.

5. Take x,, to be the n™ member of an orthonormal basis. Then ||x,| = 1 for all n.
Any u in H has an expansion u = ZZ‘;I cnXp, convergent in H, with ¢, = (u, x;)
and > |c, |2 < 0o. Then {(u, x,)} tends to O for each u, and {x,} therefore tends to 0
weakly.

6. The weak convergence implies that lim, (f,,, f) = (f, f) = IIf 2. Therefore
I f = FIZ = 1 fall* = 2Re(fu, ) + ILf 17 tends to || £11* = 2] f 1> + || £1I* = 0.

7. Let the dense subset of X* be D. For x* in X* and y* in D, we have

X" (en) — x*(xo)| < 1™ =y )] + 1y (o) — ¥ (o) + 10" — x™) (x0)
< 16 = ¥l ll + 1y Gen) — y* (o) | + 5™ = y*[lxoll
< (C +lxoDlIx™ = y*ll + [y* Cen) — y* (x0) 1,
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where C = sup,, ||x,||. Given x* € X* and € > 0, choose y* in D to make the
first term on the right be < €, and then choose n large enough to make the second
term < €.

8. For (a), let D(f) = 1. Then ¢t f[O,t] | f1? dx is a continuous nondecreasing
function on [0, 1] thatisOat¢# = O andis 1 at# = 1. Therefore there exists a partition
O=ay<a; <---<a, =10f][0, 1]suchthatf[0’aj] |fI1Pdx = j/nforO < j <n.
If f; for j > 1 is the product of n and the indicator function of [a;_1, a;], then
D(fp) = in? =n=0-P and f = L(fi +---+ fo).

For (b), let g; = cf; in (a), so that D(g;) = |c|’D(f;) = |c|Pn=U=P). If we
put ¢ = n(=P)/P  then D(gj) = 1. Thus we obtain the expansion n=P/pf =
L(gi+ -+ gu) with D(g;) = 1 for each j. Since D(n!=PV/? f) = n'=PD(f) =
n'=P, the multiple n!=P)/P f of f is a convex combination of functions / with
D(h) < 1. Taking a convex combination of 0 and this multiple of f shows that r f
is a convex combination of functions 2 with D(h) < 1if0 <r < nI=P)/P_ Since
sup, n1=P)/P = 400, every nonnegative multiple of f is a convex combination of
functions & with D(h) < 1.

For (c), we scale the result of (b). The smallest convex set containing all functions
e!/Ph with D(h) < 1 contains all nonnegative multiples of f. Since D(¢'/Ph) =
eD(h), the smallest convex set containing all functions k with D (k) < ¢ contains all
nonnegative multiples of f. Since f is arbitrary, this convex set is all of L7 ([0, 1]).

For (d), the sets where D(f) < ¢ form a local neighborhood base at 0. Thus if
LP ([0, 1]) were locally convex, then any convex open set containing O would have
to contain, for some ¢ > 0, the set of all f with D(f) < e. But the only convex set
containing all f with D(f) < ¢ is all of LP([0, 1]) by (c). Hence L7 ([0, 1]) is not
locally convex.

For (e), suppose that £ is a continuous linear functional on L? ([0, 1]). Then we
can find some ¢ > O suchthat D(f) < ¢ impliesRe £(f) < 1. The set of all f where
Re Z(f) < 1is aconvex set, and it contains the set of all f with D(f) < €. But we
saw in (c) that the only such convex set is L? ([0, 1]) itself. Therefore Re £(f) < 1
for all f in L? ([0, 1]). Using scalar multiples, we see that Re £(f) = O for all f.
Therefore £(f) = 0, and the only continuous linear functional £ on L? ([0, 1]) is
¢=0.

9. In (a), if ¢ is compactly supported in K, then 8;1 SUP, ¢k, SUP|g|<m, [D%p(x)]
is 0 for p > po. Thus ||¢]|,, . is a supremum for p < po of finitely many expressions
that are each finite for any smooth function on U. Hence ||¢|l,, . is finite. Conversely
if ¢ is not compactly supported, then the expressions s, = SUP,¢k, lp(x)| have
0 < s, < oo forall p. If we define the sequence ¢ by &, = min(p~', s,), then ¢,
decreases to 0 and every sequence m has ||¢||,, , > s;l SUP, ¢k, lp(x)] = p for all
p- Since p is arbitrary, | ¢l|,, , = 00.

For (b), we have only to show that the inclusion of C%‘; into (C,(U), T') is
continuous for every p. If (m, ¢) is given, we are to find an open neighborhood of 0 in
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Clo(op suchthat ||¢|,, . < I forall ¢ in this neighborhood. Put M = max(my, ..., mp)
and § = min(ey, ..., ¢p). If ¢ is supported in K, and SUPy K, SUP|q|<M [ID%p(x)] <
8,theneg, ! SUPy ¢k, SUP|g|<m, |D*@(x)|isOforr > pandis < 1forr < p. Therefore
its supremum on r, which is ||¢]|,, ., is < 1.

For (c), define m, = max{p, ny, ..., np} for each p, and then {m,} is monotone
increasing and tends to infinity. Next choose C), for each p by the compactness of the
support of v, and the use of the Leibniz rule on v, so that whenever [D“n(x)| < c
forsomen € C°(U),allx ¢ K,,andall o with |a| < mp,then2p+l|D“(1ppn)(x)| <
Cpc for that n, all x € U, and all @ with |a| < m,. Choose &), to be < §,/C,, and
to be such that {¢,} is monotone decreasing and has limit 0. If ||l¢,, . < 1, then
SUPL gk, SUP|y|<m,, |D¥p(x)| < &, forall p. Taking n = ¢ in the definition of Cp,, we
see that sup,.cy SUp|q| <y, 2P D (Yr,0) (x)| < Cpep < 8. Since Yrpp is in C;’(‘;+3
and m, > n,, we see that 2P+l ¥, meets the condition for being in N N C Ioé’m.

For (d), we see from (c) that 21’+1wp(p isin N for all p > 0. The expansion
=2, 2= 2P Fly 0) is a finite sum since ¢ has compact support, and it
therefore exhibits ¢ as a convex combination of the O function and finitely many
functions 27! ¥, @, each of whichisin N. Since N is convex, ¢ is in N. This proves
the asserted continuity.

For (e), each vector subspace C,%‘; is closed nowhere dense, and the union of these
subspaces is all of C2> (U).

com

10. Disproof: The answer is certainly independent of H, and we can therefore
specialize to H = L%([0, 1]). The multiplication algebra by L°°([0, 1]) is isometric
to a subalgebra of B(H, H) and is not separable. Therefore B(H, H) is not separable.

11. Certainly A’ D M(L?(S, u)). Let T be in A’, and put g = T'(1). For
f continuous, Tf = T(f1) = TMyl = M;T1 = Mrg = fg = gf. If we
can prove that g is in L*°(S, u), then T and M, will be bounded operators equal
on the dense subset C(S) of L%(S, i) and therefore equal everywhere. Let Ex =
{x‘ N < |g(x)] < N + 1}, and suppose that u(Ey) > 0. We shall derive an
upper bound for N. Choose a compact set Ky € Ex with w(Ky) > 0. Then
choose f in C(S) with values in [0, 1] such that f > 1 on Ky and fodu <
2u(Ky). Then [¢lgflPdp = [ 1gfPdin = [i 181 din = N*u(Ky). Also,
[sIfPdu < [ fdu < 2u(Ky) since 0 < f < 1. Therefore Nu(Ky)'/? <
leflly < UTHIfll, < V2T |(Kn)'/?, and we obtain N < /2|7 . This gives
an upper bound for N and shows that g is in L>°(S, w).

12. The Spectral Theorem shows that we may assume that A is of the form M, and
actson H = L2(S, ), with g in L®(S, ). Certainly we have SUp) 7, <1 (Mg f, )]
< |lgllco- Letus prove the reverse inequality. Lemma 4.55 and Proposition 4.43 show
that ||g ||, is the supremum of the numbers |Ag| such that A¢ is in the essential image
of M,. For A¢ in the essential image, fix € > 0 and let f; be the indicator function of
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g '({]x — Aol < €}). Then

S8l fiPdie = [y ngj<c 841 = hon(18C) =hol <€)+ [ly()_so1<c (§—H0) dt.

The last term on the right is < e,u(| g(x) — Xl < e) in absolute value. Hence
JsglfiPdu = (o + Ou(lgx) — ol < €) with [¢| < €. Dividing by || f1l; =
n(1g(x) — Aol < €) and setting f = f1/| fill,, we obtain | [5 g| fI*dp — Ao| < e.
Since € is arbitrary, Xg is in the closure of {(Mgf, ) | Fl, = 1}. Taking the
supremum over Aq in the essential image, we obtain SUpj 7, <1 (Mg f, ) = lIglloo-

13. This is what the proof of Theorem 4.53 gives when the assumption that A4 is
maximal is dropped and the cyclic vector is produced by a hypothesis rather than by
Proposition 4.52.

14. Apply the previous problem. Proposition 4.63 shows that A, is canonically
homeomorphic to o (A). Under this identification we want to see that U AU ! is
multiplication by z. Thuslety : o (A) — A} be the homeomorphism obtained from
the proposition. The solution of the previous problem and the proof of Theorem 4.53
show that U AU ~! is multiplication by A when we work with A%, and it is therefore
Zow when we work with o (A). The defining property of ¢ is that f(z) = foX(w ()
for f € C(0(A)) and z € o (A). This equation for the function f(z) = z says that
Ao (z) =z, and hence U AU ~! is multiplication by z on o (A).

15. For (a), A immediately contains all Mp for arbitrary polynomials P with
complex coefficients on [0, 1]. By the Stone—Weierstrass Theorem, .4 contains all
operators My with f continuous on [0, 1]. This collection of operators is an algebra
closed under adjoints and operator limits (which are the same as essentially uniform
limits of the functions), and hence it exhausts A. If we then form A1, we obtain all
continuous functions in L2([0, 1]), and these are dense. Hence 1 is cyclic.

For (b), Proposition 4.63 says that the spectrum may be identified with o (M),
and Lemma 4.55 shows that this is [0, 1].

In (c), the system of operators M,, satisfies conditions (a) through (d) for the
system @ (M,) of Theorem 4.57. By uniqueness, ¢(M,) = M, for every bounded
Borel function on [0, 1].

17. If 0 < u(S) < 1, then pu is a nontrivial convex combination of 0 and a
measure with total mass 1 and is therefore not extreme. Since O is evidently extreme,
the problem is to identify the extreme measures among those with total mass 1. If
w is given with w(S) = 1 and if some Borel set £ has 0 < w(E) < 1, define
w1 (A) = w(E) 'w(E N A) and uy = w(ES) ' w(E€ N A). Then g and p, have
total mass 1, and the equality 4 = w(E)u; + w(E€)u; shows that u is not extreme.

Thus we may assume that  takes on only the values 0 and 1. In this case the
regularity of u implies that u is a point mass, as is shown in Problem 6 of Chapter XI
of Basic.

18. For (a), we have f = (1 — 1)| fi ||1’1f1 + t||f2||1’1f2 with t = || f2]|,. For
(b), we observe for any f in L'([0, 1]) with Ifll;, = 1thatt — f[O,t] | fldx is
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continuous on [0, 1],is 0 at7 = 0, and is 1 at t = 1. Therefore there exists some #;
with f[o, . | fldx = % The set E = [0, o] is then a set to which we can apply (a) to
see that f is not an extreme point of the closed unit ball.

19. For the compactness of K in (a), we are to show that the set of invariant
measures is closed. Such measures jhave [ fdu = [¢ (foF)duforall f € C(S).
If we have a net {u, } of such measures convergent weak-star to 1, then we can pass
to the limit in the equality for each y, and obtain [ gfdn = /. ¢ (f o F)du for the
limit p since f and f o F are both continuous. If we define v(E) = ,u(F*1 (E)), this
equality says that fS fdp = fS fdvforevery f € C(S). By the uniqueness in the
Riesz Representation Theorem, p = v. Therefore the limit w is invariant under F'.

In (b), if 1 could be extreme but not ergodic, we could find a Borel set E with
0 < w(E) < 1suchthat F(E) = E. Put u1(A) = n(E)"'w(AN E) and ua(A) =
w(ES) "' (AN E€). The invariance of the set E implies that ¢ and 5 are invariant.
Since u = w(E)1 + w(E) s, 1 is exhibited as a nontrivial convex combination
of invariant measures and cannot be extreme.

For (c), the answer is “no.” Take S to be a two-point set with the discrete topology,
and let F interchange the two points. Then every measure p on S with u(S) = 1 is
ergodic, but only the two point masses are extreme points.

20. For (a) the assumed condition on f for the function c(n) that is nonzero at

n = 0 and is O elsewhere shows that f(0) > 0. The condition on f for the function

f(O) f(k)> is
f(=k) f(0)
Hermitian and positive semidefinite. The Hermitian condition forces f(—k) = f (k),
and the condition determinant > O then says that | £ (k)|> < f(0)2.

For (b), Example 2 of weak-star convergence in Section 3 says that a necessary
and sufficient condition for a sequence { f,,} in L°° to converge to f weak-star is that
{ll fiulloo} be bounded, which we are assuming, and that fE fondu — fE fdup for
every E of finite measure. Here the sets of finite measure in Z are the finite sets, and
thus the relevant convergence is pointwise convergence.

For (c), Theorem 4.14 shows that the weak-star topology on the closed unit ball of
L°(Z) is compact metric, and therefore the topology is specified by sequences. The
convexity of K is routine, and we just have to see that K is closed. We can do this
by assuming that we have a pointwise convergent sequence whose members are in K
and by proving that the limit is in K. This too is routine.

For (d), suppose that ¢/*® = (1—1) Fy (n)+t F>(n) nontrivially. Taking the absolute
value and using (a), we have 1 < (1 —t)|Fi(n)| +t|Fa(n)] < (1 —t)+t=1,and
equality must hold throughout. Therefore |F(n)| = |F2(n)| = 1. Suppressing the
parameter 1, suppose that we have ¢/ = (1 —1)e!#' +t¢!#? nontrivially. Multiplying
through by e ¥, we reduce to the case that v = 0. Sowe have 1 = (1—1)e'%1 +1¢'?2.
The real partis I = (1 — 1) cos ¢ + ¢ cos ¢}, and we must have cos ¢| = cos ¢} =1
in6 inf

c(n) that is nonzero at 0 and k and is O elsewhere is that the matrix (

and €'Yt = ¢'%2 = 1. Hence Fi(n) = ¢ is an extreme

point.

= Fp(n),and n — e
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For (e), the Fourier coefficient mapping from complex Borel measures on the circle
to doubly infinite sequences is linear and one-one, and we are told to assume that the
mapping carries the set of Borel measures onto the set of positive definite functions.
The value of the positive definite function at O is then the total measure of the circle.
Hence the question translates into identifying the extreme Borel measures of total
mass 1 on the circle. Problem 17 shows that these are the point masses.

21. For (a), the convergence is proved by showing that the partial sums form
a Cauchy sequence. For m < n, we have || Y}_o(f/C)F = >3 (f/O* ||Sup =

| > ke (F/OF ||sup < > kemi1 1f/Cl%,,. and the right side tends to O as m and

sup?

n tend to infinity because || f/Cllg,, = IC = f llsup < 1. So the series converges to
some x. Since (Y 7_o(f/C)¥)(1 — f/C) =1— (f/C)"*! and since multiplication
is continuous, the element x is a multiplicative inverse to 1 — f/C.

In (b), £(f) = C would imply ¢(1 — f/C) = £(1) — £(f)/C = 0. But then
0=0-4(x) =4£(1 — f/C)t(x) = £(1) = 1 would give a contradiction.

From (b) we obtain |[£(f)| < 1. Taking the supremum over all f with | f ||Sup <1,
we find that ||£|| < 1. Thus £ is bounded. This proves (c).

22. Problem 21 shows that £ is bounded. The result follows by using the Stone
Representation Theorem and the first example after its proof.

23. Iftisin T, define £, () = (U f)(¢) for f in C(S). Itis routine to check that
£, satisfies the hypotheses of Problem 22 and is therefore given by evaluation at some
s in S. Define this s to be u(#). The proofs of (a), (b), and (c) are then straightforward.

24. This is just a matter of applying Problem 23 and tracking down the isomor-
phisms.

25. Let S be a nonempty set, and let A be a uniformly closed subalgebra of B(S)
with the properties that A is stable under complex conjugation and contains 1. If S is
acompact Hausdorff spaceand V : A — C(S>) is an algebra isomorphism mapping 1
to 1 and respecting conjugation and if Sy, p, and U are as in Theorem 4.15, then there
exists a unique homeomorphism @ : S — S such that (Uf)(®(s2)) = (Vf)(s2)
for all f in A. Then one has to give a proof.

26. For (a), the reflexive and symmetric properties are immediate from the defi-
nition. For the transitive property let x; ~ x; and x; ~ x;. Say thati < k, j < k,
Vi (X)) = Yrj(x), j < m, I < m, Y¥uj(xj) = Ym(x;). Choose n with k < n
and m < n. Application of ¥ to ¥y (x;) = Y (x;) gives ¥y (xi) = ¥yj(x;)),
and application of Yy, t0 Yy (x;) = Y (x;) gives ¥, (xj) = Y (x;). Therefore
Vi (x;) = Y (x), and ~ is transitive.

For (b), suppose that v (x;) = ¥j(x;). We are to show that vy; (x;) = ¥y;(x;)
whenever i <[ and j < [. Assume the contrary for some /. Choose m with k < m
and [ < m. Application of ¥, to Vi (x;) = Vij(xj) gives Y (xi) = ¥mj(xj). On
the other hand, application of v, to ¥y; (x;) # Yuj(x;) gives Ypi (x;) # Ymj(x;)
since Y, is by assumption one-one. Thus we have a contradiction.
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27. Suppose that we are given maps ¢; : W; — Z with ¢; o ¥j; = ¢; whenever
i < j. Define P : [IWi — Z by &)(xj) = ¢;(x) if x; is in W;. The map )
is continuous, and the claim is that it descends to the quotient to give a map ¢
satisfying ®(g(x;)) = ®(x;). To see the necessary consistency, suppose x; ~ Xx;
With x; in W;. Say that j < k, | < k, and y; (x]) = Y (x7). Then we have
D(x)) = ¢ (x}) = @i (X)) = @rna (x1) = @, (x1) = ®(x;), and the consistency is
proved. The definition of @ is complete, and we have arranged that ® o (g | Wj) = @j
foreach j. This establishes existence of the map ® in the universal mapping property.
Since ¢ carries [ [; W; onto W, the formulas ® o (q|Wj) = ¢; force the definition
we have used for ®. This establishes the uniqueness of the map @ in the universal
mapping property.

28. With (V, {p;}) as a direct limit, take Z = W and ¢; = ¢;. Each map ¢;
carries W; into Z, and the universal mapping property of (V, {p;}) yields a mapping
F :V — Wwithq; = Fop;foralli. Reversing the roles of (V, {p;}) and (W, {g;}),
we obtain a mapping G : V — W with p; = G o g; forall i.

With (V, {p;}) as a direct limit, take Z = V and ¢; = p;. Then the identity l’v
meets the condition of the universal mapping property for this situation. On the other
hand, so does G o F', which carries V toitself and has p; = Gog; = (Go F)o p;. By
the uniqueness that is part of the universal mapping property, Go F = 1 | v+ Similarly
FoG=1|,.

The homeomorphism F is unique because any such mapping F* must similarly
have G o F* = 1|v and F¥ 0 G = 1|W. Thus F* must be a two-sided inverse to G,
and there can be only one such function.

Thus F is a homeomorphism.

29. For (a), let U be an open set in [ [; W;. We are to prove that ¢(U) is open.
Since each W; is open in the disjoint union, we may assume that U € W; for some i.
We are to prove that ¢ ~' (¢(U)) is open, hence that ¢~ (¢(U)) N W; is open for each
J. Thus we are to show that the set V of all x; in W; such that x; ~ x; for some x; in
U isopenin W;. Choose k withi < k and j < k. Then we have V = wk_jl(wki(U)).

The hypothesis for this problem makes v; (U) open in Wi, and then 1//,;1 Wi (U))
is open since Y is continuous.

For (b), we are to separate ¢ (x;) and g (x;) by disjoint open sets if x; and x; are not
equivalent. Choose k withi < k and j < k, so that v; (x;) and ¥y (x;) are both in
Wy. They are distinct in Wy by Problem 26b. Since W, is Hausdorff, we can choose
disjoint open sets A and B in W with v, (x;) in A and v (x;) in B. Then g(A) and
q(B) are disjoint since g is one-one on Wy, and they are open by (a).

For (c), the mapping into the direct limit is continuous and open and therefore
carries compact neighborhoods to compact neighborhoods. Since the quotient map
is onto the direct limit, every point of the direct limit has a compact neighborhood.

For an example in (d), take W; = {1,...,1} for each i, with v;; equal to the
inclusion if i < j. Each W; is finite, hence compact, and the direct limit is the set of
positive integers with the discrete topology.
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30. Each X(S) is Hausdorff as the product of Hausdorff spaces. The space
(X i SKi) is compact by the Tychonoff Product Theorem, and then X (S) is the
product of finitely many locally compact spaces, which is locally compact. The
Hausdorff property is handled by Problem 29b, and the final assertion is clear from
the definition.

Chapter V

1. If K is compact in U, then K is compact in V, and hence the inclusion of
C¥ into CZ,, (V) is continuous. By Proposition 4.29 the inclusion of Cg, (U) into
C&, (V) is continuous.

2. Fix K compact large enough to contain support(¢). Then the map ¥ — V¢ is
continuous from C*°(U) into C¥°. The inclusion of C¥° into CZ;, (U) is continuous,
and hence ¥ +— Y, being a composition of continuous functions, is continuous
from C*°(U) into Co, (U).

3. Let {K;} be an exhausting sequence of compact subsets of U, and choose
¥ € Cogn(U) thatis 1 on K; andis O off K 1. Foreach j, the product (<p|U — Q) Y;
is in Cgy, (U) with support contained in the open set U N (support(Ty))¢. Therefore
Ty ((¢|, — ¢1)¥;) = 0 for each j. The functions (¢|,, — 1)V tend to ¢|,, — ¢ in
the topology of C®(U), and therefore Ty (¢|,, —¢1) = 0. Hence Ty (¢|,)) = Ty (¢1)
as required.

4. An adjustment is needed to the proof of Theorem 5.1. The proof in the
text in effect used the expressions || f1| Ko = SUPick [((D*f)(x)| as seminorms
together describing the relative topology of C% as a subspace of C*°(R"). To
modify the proof of the theorem, we need to see that the same relative topology
results from using the expressions || f |l g/ ; ew = [(D*f) ||L2(K,). In one direction

we have ||(D°‘f)||L2(K,) < Csup, g [(D*f)(x)|, the constant C being the L? norm
of the function 1 on K’. In the reverse direction we apply Sobolev’s inequality
(Theorem 3.11) with U equal to the interior of K’. This open set satisfies the cone
condition. Sobolev’s inequality shows for k > N/2 that sup, . [(D*f)(x)| <
C(X pi<i 1D P17, ( K,))l/z. We follow the lines of the proof of Theorem 5.1,
using these new seminorms and using linear functionals on spaces of L? functions
instead of spaces of continuous functions, and the desired result follows.

5. For (a), we write (T, ¢) = ), fRN D% dpy(x) by means of Theorem 5.1.
Substitution and use of Lemma 5.6 gives

(T,F) =34 Jpn DY [ @(x,y)du(y) dpo(x)
=3y Jan [ DEP(x, ¥) du(y) dpa (x).

On the other hand, [, (T, ®(-, y))du(y) = [x D g Jan DEP(x, y) dpo (x) du(y),
and the two expressions are equal by Fubini’s Theorem.
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For (b), choose a compact subset L of RY such that L x K contains support(®),

and choose 7 in Coop, RV) that is identically 1 on L. Part (a) shows that

S, F) = [0S, ®(-, y))du(y).

On the other hand, we have (nS, F) = (S,nF) = (S, F), and (nS, (-, y)) =
(S, n(HD(-,y)) = (S, ®(-,y)), and the result follows.

6. For any member n of CZ (U) with values in [0, 1], nT is a member of

E'(U). If ¢ is a real-valued member of CS5 (U), then for both choices of the sign
=+, n(||<,0||Sup + ¢) is a member of C3y, (U) thatis > 0. Hence (T, 77(||<p||sup +¢)) >
0, and (T, nll¢llep = (T, nll@llsyp) = F(T.ne) = FT, @), ie., [(nT, ¢)| <
(T, 77)||(p||sup. For complex-valued ¢, such an estimate is valid for the real and
imaginary parts separately, and we conclude that ¢ — (nT, ¢) is a bounded linear
functional on CZ;,,(U) relative to the supremum norm. Corollary 3.6a shows that
C& ., (U) is dense in Ceom(U) and that the approximating functions to a function > 0
can be taken to be > 0. Consequently the continuous extension of n7 is a positive
linear functional on C.on (U). By the Riesz Representation Theorem the extension is
given by a Borel measure yt,. The boundedness of the linear functional forces ., (U)
to be finite.

Let {K,} be an exhausting sequence. Define 7, to be a member of CZ,,,(U) with
valuesin [0, 1] thatis 1 on K3, and is O off Kzop I and write 11, for the corresponding
Borel measure j1,),. Then the sequence {1, (x)} is nondecreasing for each x and has
limit 1. The measures p, have to be nondecreasing on each set, and we define
w(E) = lim, u,(E) for each Borel set E. The nondecreasing limit of measures is a
measure, with the complete additivity holding by monotone convergence. We show
that (T, ¢) = [, ¢ du for every ¢ in Co5 (U).

For any ¢ in Cg,(U), as soon as po is large enough so that K3,, contains
support(p), we have (n,T, ¢) = (T, ¢) for p > po. Also, 1, (E) remains constant
for each Borel subset of K7, when p > po, and hence u(E) = up(E) for such

subsets. Thus (T, @) = (n,T, ¢) = [, ¢du, = [, du, as asserted.

7. Computation gives A(e’”'x‘z) = 4712|Jc|2e”’|"|2 — 27 Ne ™ What needs
computing is fRN |x|_(N_2)|x|21’e_”‘x|2 dx for p = 1 and p = 0, and then one has
to sort out the result. This integral equals Qy_; f;° r2+1e=7r gr For p = 1 and
p = 0, the integral is elementary. Alternatively, it can be converted into a value of
the gamma function by the change of variables 77> > s. In neither case does the
value of Q_1 need to be computed.

8. Part (a) follows from the chain rule and the boundedness of each derivative of
 since () (x) = e 7™ (e 7).

For (b), if ¢ has compact support, then (1 — 1. )¢ has compact support away from
{0}. Therefore (T, (1 — no)g) = 0, and (T, ) = (T, (1 — ne)@) + (T, ne9) =
(T, nee). Since ¢ +— (T, ) and ¢ — (T, nep) are continuous and Cé’g’m(RN) is
dense in C®*(RN), (T, ) = (T, nee) for all ¢ in C®(RY).
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In (c), we apply (a) and obtain
T, n:9)| < € Y_g suppy < 1D (e9) ()] = C Yo supjy < [D*(n:0) (¥
< C' Yo Yo SUPpx = | D (1) (1) (D) ()|
< C" Yo im0 e K suppyy <. (D) ()
< C" Yo' 7" suppy < (D'@) (1))
When ¢(x) = ¥ (x)x"t!, [Dlo(x)| < ¢ 3L_y D79 (x)|[x"+'~"|, and the supre-
mum for |x| < e is < ¢/e"t!1~!. Therefore
(T, @) = T, neg)| < ¢'C" 3! "e" ™ = /C" (n + De.
The right side tends to 0 as ¢ decreases to 0, and thus (T, ¢) = 0.

In (d), the Taylor expansion of a general ¢ is (x) = Y ;_, %(p(k) 0)x* +
¥ (x)x" with ¢ in C*®°(R!). Applying (T, -) to both sides and using (c), we
obtain (T, @) = Y }_o & ¢® (O)(T, x¥).

9. The adjustments in the argument are to (a) and (c). For (a), the estimate is
[(D%n:(x)| < C |a|8_|"‘| and is again proved by the chain rule. Each differentiation

introduces a factor of ¢ ~!. For (c), Taylor’s Theorem says that the remainder term in
computing a smooth function ¢(x) about the point O is

n+l I Iy 1 "ty
Z Tyl X1 XN fO (I =9 ax'l.. N (sx)ds,
li++ly=n+1, Xty
all [;>0

hence is of the form

[ )
> Vi OX) X
I+ FHy=n+1,
all [;>0

Thus one works with a function v (x)xi] e xj\’,v with ¥ smooth and with ) i lj =n+1.
The argument for (c¢) in Problem 8 now can be used.

10. As with Problem 9, the arguments for (a) and (c) in Problem 8 need adjustment,
and this time we need to change (d) completely. For (a), we use the above function
n for RV=L_ and we define . (x’, x”/) = n(e~'x”). Then (a) causes no difficulties.
For (¢), we need a new form of Taylor’s Theorem. The point is to treat ¢ (x’, x”) as
a function of x” alone, form a Taylor expansion with remainder, and carry along x’
as a parameter. The result is that the remainder term is a sum of terms of the form
VY (x', x")YM(x"), where v is in C*°(R") and M is a homogeneous monomial in the
x" variables of total degree n + 1. Then (c) causes no difficulties and again gives 0.
In (d), the main terms of the Taylor expansion are of the form ¢, D*@(x’, 0)(x”)%,
where « is a multi-index that is nonzero only in the positions corresponding to x”
and has total degree < n. We introduce a linear functional 7, on C®(RL) by
the definition (T, ¥ (x")) = co(T, ¥ (x")(x")¥). Then T, is continuous, and the
expansion (T, ¢) = Z|a|§n<T0“ (D“¢)|RL) has the required form.
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11. Subtracting two tempered distributions solving Au = f, we obtain a tempered
distribution u with Au = 0. From F(D%) = (27i)!*1£* F(u) and F(Au) = 0, we
obtain |£|2F(u) = 0. It follows that F(u) is supported at {0}. Problem 9 then shows
that F(u) is a finite sum of the form ), ¢, D*8. Taking the inverse Fourier transform
of both sides, we see that the distribution # equals a polynomial function.

12. Apply Theorem 5.1 to a member S of £'((—2m, 27r)V), writing it as a sum
of finitely many derivatives of complex Borel measures p, of compact support:
(S, ) = Zla\sm fK D%¢p dp,,, where K.is a compact subcube of (—2, 2n?N. For
@(x) = e~** we have sup,.x |D¥(e~ k)| < |k%|, and therefore |(S, e~/k*)| <
> i< K[l og | < C(1+ [k13)™/2, where C =Y, <, 104 I-

13. Change notation and suppose that |cx| < C(1 + |k|?)™ for all k. The series
ik-x
fx) = Zk: MT;;W is then absolutely uniformly convergent, and f(x) is

continuous periodic. Define S’ € £'((—2x, 2m7)V) by
(8", 9) = @m)~N f[—n,n]N f)ex)dx.
Let D = 1 — A, and define § = D"*N*1§’. Then

<S, e—ik<x> — (S/, Dm-i—N-f—l(e—ik-X)) — (1 + |k|2)m+N+1(S/’e—ik-x>
=1+ |k|2)m+N+l(27T)_N ﬁ—n,n]N f(x)e—ik~x dx

2ym+N+1 ~
= (1 + k9™ TR T = Ck»

as required.
14. For each ¢, the set of i with |B(p, ¥)| < ||<p||L2(TN)
k
continuous function | B(¢p, -)|is < some constant, and this is closed. The set Ey  is
the intersection of such sets and is therefore closed. For each i, the function B( -, )

is linear and continuous, and therefore there exists an integer k and a constant M for
which |B(p, ¥)| < M||¢|| for all ¢. This proves (a).

is the set where the

LA(TV)
Since C*°(TV) is complete, the Baire Category Theorem shows that some Ej_
has nonempty interior, hence contains a basic open set, i.e., some set of the form

U= {1/f’| v — ¢0||L%(TN) < €}. If ¥ has ||¢||L%(TN) < €, then Y9+ isin U and
thus has [B(g. Yo + ¥)| < Mllg| 1, forall ¢ in C>(T"). Then
k
0

The right side is < M’ ||| for k1 = max{k, k(¥)} and M’ = M + Cy k(yy)-

Lg (T)
7, —1 7, —1

Hence B, Y| < M€ 012 ) IVl 2y < M€H0NL o IV 12 vy

where k; = max{ky, s}.
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15. We apply the inequality of Problem 14b to D% and D#1/, and then the result
follows by applying the norm inequality of Problem 27 in Chapter Il to || D% ¢||

and | DPy |

L3(TN)
LY(TN)
16. The functions e/!*¢/™Y are orthonormal in L>(TN x TV), and it is therefore

enough to show that the sum of the absolute-value squared of the coefficients is finite.
That is, we are to show that

|blm|212am2ﬂ
b a2 e~ °
1,meZN (Z|a’\§k’l ) (Z\ﬂ’\fk’m )
whenever || < k" and 8| < k'. Since I** < 3", /<1 12 and m?f < i<k m?’,
it is enough to prove that
|blm|2

L (X P (X< m*F')
If we use the estimate of Problem 15 for ¢ = ¢/*'(") and ¢ = ¢/™(*), we have

Pém® by |? = | B(D*!" ), DPe™ NP < C2le™ N7, ) €™ N7
k k'

< 00. (%)

,(TN) ”e
for |¢| < K and |B| < K. Hence
lZam2ﬁ|blm|2 < CZ( Z 120/)( Z mZﬂ’).
lo/| <k’ 1Bk’
Summing over « and g for |o| < K and |8| < K and taking into account Problem 29
in Chapter III, we obtain

A+ IPHEA + mHE > < (Y P4)( X m?F)
lo’| <k’ 1B/I<k’
for a constant C’. Thus the left side of () is < C'Y", , czv (141D 7K (1+|m|?) =K,
and Problem 32 of Chapter III shows that this is finite.

17. Since Fy g is in L2(TYN x TN), B’ is a continuous function of two LZ(T™)
variables D¢ and Dfv. In particular it is well defined for ¢ and ¥ in C®(TV).
Because of continuity in L? and orthogonality, we have

@m)—2N / Fop(x, y) D% DP ™Y dx dy
[—7‘[,7‘[]2N

by (—i )11 1By B 111t B

= Qm)" N / . —_—_dxd
‘ ey (2 P mF) O
lo/| <k’ B'I<k
B blml2am2f5
_( Z lza/)( Z mzﬁ,)~
lo/ | <k’ |B/I<k'

Summing for « and B with |a| < &’ and |B| < k/, we obtain B'(¢!"("), ™ (")) =
B(e!t(), im )y,
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18. The result of Problem 17 implies that B’ (¢, 1) = B(p, ¥) if ¢ and ¢ are
trigonometric polynomials. It shows also that convergence in L2 of either variable
and its derivatives through order k" implies convergence of B’. Since convergence
in C®(TN) implies convergence in L (T") and since B is separately continuous,
B’ = B on C®(T"). The expression on the right side of the display in the statement
of Problem 17 is the action of a distribution on 7V x T¥ upon the function ¢ ® ¥,
and thus B(p, ¥) = (S, ¢ ® v) for a suitable distribution S.

19. By the Schwarz inequality, |B(f, &)| < I|H(/)l,lIngll, = lInfll,lngll, =
I£1o118l, = I f llsup I8 llsup- This proves (a).

For (b), we argue by contradiction. Using continuous functions f and g with
disjoint supports, we see near (0, 0) that we musthave dp(x, y) = % ‘i%‘%yy. However,
the function ﬁ is not locally integrable, and there can be no such signed measure
p.

Chapter VI

1. For (a), let C be the connected component of 1. Since multiplication is
continuous, it carries the connected set C x C to a connected set containing 1, hence to
a subset of C. Thus C is closed under products. Similarly it is closed under inverses.
It is topologically closed since the closure of a connected set is connected. If x is in
G, then the map x — gxg~! is continuous and therefore carries the connected set C
to a connected set containing 1, hence to a subset of C. Thus gCg~!' C C for all g,
and C is normal. For (b), one can take the additive rationals or the countable product
of two-element groups; for each the identity component contains only the identity
element.

2. In (a), if g fixes the first standard basis vector, then the first column of g
is the first standard basis vector. Since g is a rotation, g%¢ = 1. In particular
Zj(gtr)ijgj] = 8;1. Thus (g');; = 8;; for all i, and g1; = 8;1. In other words, the
first row of g is O except in the first entry.

In (b), let v be any unit vector in RN , and extend v to a basis v, vz, ..., vy. The
Gram—Schmidt orthogonalization process replaces this basis by an orthonormal basis
such that the first member is still v. We form a matrix with this orthonormal basis
as its columns. If it has determinant —1, we multiply the last column by —1, and
then the determinant will be 1. The resulting matrix is in SO(N) and carries the first
standard basis vector to v.

For (c), we obtain a continuous function SO(N) — SV~! given by g > gey,
where e is the first standard basis vector. This function descends to a function
SO(N)/SO(N — 1) — SN~ that is necessarily continuous. It is one-one onto, its
domain is compact, and the image is Hausdorff. Hence it is a homeomorphism.

3. What needs to be shown is that every sufficiently small open neighborhood
N of 1 - H in G/H is mapped to an open set by w. Since G/H is locally compact
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and has a countable base, there exist open neighborhoods Uy of 1 - H such that U ,fl
is compact, U,fl C Uk+1, and G/H = | J;, Ux. The Baire Category Theorem for X
shows that 7 (U,,) has nonempty interior V for some n. Let y be a member of G such
that 7(yH) isin V, and put U = 7~ ' (y~'V). Then U is an open neighborhood of
1-Hin G/H and 7(U) = y~'V is open in X. Also, U is compact as a closed
subset of U,fl. Let N be any open neighborhood of 1 - H in G/H that is contained in
U. Since U®' is compact,  is a homeomorphism from U*! with the relative topology
to 7 (U*!) with the relative topology. Thus 77 (N) is relatively open in 7 (U°"). Hence
7(N) = n(U) N W for some open set W in X. Since n(N) € n(U), we can
intersect both sides with 7(U) and get 7 (N) = rUHNWNzWU)=Wnx).
Since W N (U) is open in X, w(N) is open in X.
4. This is a special case of the previous problem.

5. No. The reason is that the subset R! p cannot be locally compact. In fact,
if it were locally compact, then it would be open in its closure, by Problem 4 in
Chapter X of Basic. Since T? is a group and R! p is a subgroup, (R! p)°! is a group,
and R! p would be an open dense subgroup. An open subgroup is closed, and hence
R!p would be equal to (R'p)!, i.e., R' p would have to be closed in T2. Then
R! N {(e!?, 1)} would be a closed subgroup of the circle group {(¢!?, 1)} and would
have to be a finite subgroup or the entire circle. On the other hand, we readily check
that R' p N {(¢’?, 1)} is countably infinite. It therefore cannot be closed.

6. Take V to be any bounded open neighborhood of 1. Inductively for n > 1,
choose g, such that g, ¢ (J;_ } g1 V. Then choose an open neighborhood U of 1
with U = U~ and UU C V. Let us see that gyU N g,U = @ ifk < n. If g is in
gxUNg,U, then gxu = g,u’ withu and ' in U, and hence g, isin geUU ™! C g, V.
This contradicts the defining property of g,. Thus the sets g,U are disjoint. The
left Haar measure of their union therefore equals the sum of their left Haar measures,
and their left Haar measures are equal to some positive number, U being a nonempty
open set. Consequently the left Haar measure of G is infinite.

7. For (a), we have

ME)P(G) = [ [¢ IED) dA(y)dp(x) = [ [ TE(xy) dA(y) dp(x)
= [ Jo IEGy) dp () dA(Y) = [ [ Te () dp(x) dA(y)
= MG)p(E).

Therefore A(E)p(G) = L(G)p(E) as asserted.

For (b), let A1 and X, be two left Haar measures. Without loss of generality, we
may assume that 11 (G) = A2(G) = 1. Let p be a right Haar measure (existence by
Theorem 12.1). Applying (a) twice, we obtain A1 (E)p(G) = A (G)p(E) = p(E) =
M (G)p(E) = M (E)p(G), and hence A1 (E) = A2(E) on Baire sets. Consequently
A1 = Ap as regular Borel measures.

8. In (a), both are Haar measures on G of total measure one. Parts (b) and (c)
are special cases of Problems 15-19 of Chapter XI of Basic.
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9. For fixed g in G, we have d;(®(gx)) = dj(P(g) P (x)) = d;(P(x)), and hence
d;(®(-)) and d;(-) are left Haar measures on G. The uniqueness in Theorem 6.8
shows that they are multiples of one another.

10. Under left translation we have (so, 10)(s, 1) = (s08)((s ™ '7os)7). If ¢ is left
translation by (so, 7o), then (ds dt),-1 = d(s0s) d((sYt9s)t) = dsdt,and dsdt is a
left Haar measure. Under right translation we have (s, t)(so, fo) = (s50)((s, 1tso)to).
Thus dsdt goes to d(sso)d((sy 'tso)to) = dsd(sy'tso) = 8(s;"')dsdt, and
&(s)ds dt goes to 5(ss0)8(sal)ds dt = §(s)dsdt. In other words, §(s)ds dt is
a right Haar measure.

11. In (a), we have [}, f(c™'x)dx = [}, f(x)d(cx) = |clv [, f(x)dx for f in
Ceom(V). Hence [cicaly [, f(x)dx = [, f((cico)"'x)dx = [}, f(c5'x) d(c1x) =
leily [y f(cz_lx)dx = |etlvlealv [y f(x)dx. Choosing f with [, f(x)dx # 0,
we obtain [cica|ly = |cil|vicz2ly when ¢; # 0 and ¢; # 0. The equality is trivial
when one or both of ¢; and ¢, are 0, and hence we have |cic|y = |c1|v]|cz|y in all
cases.

To prove continuity, we first check continuity at each ¢y # 0. Let S = support(f),
and let N be a compact neighborhood of ¢ not containing 0. If ¢ is in N, then
f(c™'x) is nonzero only for x in the compact set N'S. Lete > 0 be given. Continuity
of (¢, x) = f(c~'x) allows us to find, for each x in N S, an open subneighborhood
N, of ¢y and an open neighborhood U, of x such that | f(c™!y) — f (co lx)l < € for
ce Nyandy € Uy. Then |f(c™y) — f(co_ly)| < 2¢ forc € Ny and y € U,.
The open sets Uy cover NS. Forming a finite subcover and intersecting the cor-
responding finitely many sets Ny, we obtain an open neighborhood N’ of ¢y such
that | f(c™'y) — f(cgly)| < 2¢ for ¢ € N’ whenever y is in NS. As a result,
¢+ [, f(c™'x)dx is continuous at ¢ = co. Therefore ¢ — [c|v [}, f(x)dx is
continuous at ¢y, and so is ¢ — |c|y.

To prove continuity at ¢ = 0, we are to show that lim._,q fv fc™'x)dx = 0.
Let U be any compact neighborhood of 0 in V. Find a sufficiently small neigh-
borhood N of 0 in V such that ¢ € V implies that ¢ support(f) does not meet
U€. Then ¢~'U€ N support(f) = @. For such c¢’s, we have |fv fc™x) dx| =
| fU fc x) dx| < ||f||sup (dx(U)). The desired limit relation follows.

Finally, even without the continuity at ¢ = 0, these properties imply that |c|y =
|c|" for some real . The continuity at ¢ = O forces + > 0. Then it follows that
lerly < lealv if fer] < |eal.

In (b), V/W is itself a locally compact topological vector space, and its group
operation is addition. With the normalization of Haar measures as in Theorem 6.18,
u becomes a Haar measure on V /W, and we writeitas d (v+ W). Then fv f)dv =
fV/W ([ f+w)dw)d(+W). If we replace f by f(c™! -) and move the c into
the measures, we obtain [}, f (v) d(cv) = fV/W ([ f+w)d(cw))d(c(v+ W))

and therefore |c|y [}, f(v)dv = |cly,w fV/W (lelw [y fv + w)ydw)d® + W).
Hence |c|y = [c|v/wlclw.
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In(c), choose N suchthat 2|y < 2V, If V has an N-dimensional subspace W, then
Proposition 4.5 and Corollary 4.6 show that this subspace is closed and is Euclidean.
Therefore |2|w = 2. Then (b) shows that 2lv,w = 2lv/2lw = 27N2ly < 1.
But this conclusion contradicts the fact that |c|y,w > 1if |c| > 1. We conclude that
dimV < N.

12. By inspection, (£y,, £y,) = (v2, v1) has the properties of an inner product.
The Banach-space norm of ¢, is SUp|y <1 [, (V)| = SUp|y <1 |(v/, v)|. This is
< |lv|l = ||€y|| by the Schwarz inequality, and it is > |v|| = ||, ] because we can
choose v/ = v/||v||.

The contragredient has (®€(x)€,)(v)) = £,(Px"Hv) = (@Y, v) =
V', Dx)v) = Lox)p (V). Hence ®(x)ly = Lo(xy, and (P€(x)€,, P (x)L,) =
(@), D(x)v) = (v, v) = (Ly, Ly).

13. Taking the adjoint of E®(g) = ®'(g)E gives ®(g)*E* = E*®'(g)* forall g.
Since ® is unitary, ®(g) "' E* = E*®'(g)~! forall g, and thus ®(g) E* = E*®'(g).
Then E*E®(g) = E*®'(g)E = ®(g)E*E. By Schur’s Lemma, E*E is scalar, say
equal to c/. Since E is invertible, c is not zero. If v # 0, then clvl? = (el (v), v) =
(E*E(v),v) = (E(v), E(v)) > 0. So ¢ > 0. If \/c denotes the positive square root
of ¢, then F = (/c)~'E exhibits ® and @’ as equivalent, and F is unitary because
F*F = (JO)?E*E =c el = I.

14. The operator ®(p), for p in O(N), makes sense on all of L2(RN), as well as
on the vector space Hj. It was observed in the example toward the end of Section 8
that the Fourier transform F commutes with the action by members of O (N). Thus
we have F(®(p)(hj(x) f(|x]))) = ®(p)F(h;j(x)f(x])). The left side at y equals
the expression Y, ®(0)i; F((hi () f (D)) = Yo @(p)ij Xy hs () fri(yD) =
> (22 ®(0)ij fsi(lyD)hs(y), and the right side is ®(o)( Y, k() fii (Iy)) =
=2 2 PO [ (1Y) = o5 (X, @(0)st fii(1yD)Rs (). The equality of
the two sides gives us, for each |y|, the matrix equality asserted in (a).

Corollary 6.27, the formula of part (a), and the irreducibility of Hy together imply
that F(|y]) is a scalar matrix for each |y|. In other words, f;;(ly]) = g(lyDd;;
for some scalar-valued function g. Then F(h;(x) f(|x[)(y) = >_; hi(y) fij(Iy]) =
Y i higyDédij = hj(y)g(lyl) for all j. Since h is a linear combination of the
hj’s, F(h(x) f (Ix[))(y) = h(y)g(|y]). This proves (b).

For (c), we observe that F(|y]) is continuous if f(|x|) is continuous of compact
support. In fact, the inner product on H can be taken to be integration with dw over
the unit sphere SV ~!. By homogeneity this is the same as the inner product relative
to r =2 dw over the sphere of radius r centered at 0. Then the formula for f;; is

fij ) = fonor Flhj(x) f (X)) (r)h; re)r = dew
= [on1 Fhj(x) f(Ix]) (ro)hi (w)r ™ do

forr > 0, and this is continuous in r since F(h;(x) f (|x])) is continuous on R . Thus
the vector subspace of all f in L2((0, 0o), rN=1%2%¢ dr) for which F(h(x) f(|x|))
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is of the form h(y)g(|y|) contains the dense subspace Ceom((0, 00)). Let £ in
Ceom((0, 00)) tend to f in L2((0, 00), rN=142k dr). Then h(x) ™ (|x|) tends to
h(x) f(x]) in LZ@RN), and F(h(x) f™(|x])) tends to F(h(x) f(|x|)) in norm. A
subsequence therefore converges almost everywhere. Since F(h(x) f () (xD)(y) =
h(y)g™(]y|) almost everywhere, the limit function must be of the form A (y)g(|y|)
almost everywhere.

15. If {v;} is an orthonormal basis of V, then {£,,} is an orthonormal basis of V*,
and (€ (x)Ly;, £y;) = Loy, by,) = (vj, P(x)vj) = (P (x)vj, vj). Summing on j
gives the desired equality of group characters.

16. Following the notation of that example, let 7;;(x) = (v(x)u;, u;), let [
be the left-regular representation, and let ¢, be as in Problem 12. Consider, for
fixed jo, the image of t¢(g)¢,, under the linear extension of the map E’(£,,)(x) =

(z()ujy. up). This is E'(Ey~ ., )(x) = E'(X) &l ) () = Y4 GE Ly (x) =

Yok Ck(tujy, up) = (t(x)uj,, y_ ckux), and hence E'(£,)(x) = (t(x)uj,, v).
Then the image of interest is

E'(t(9)€u,)(x) = E"(€r(gyu;) (x) = (T(x)ujy, T()u;)
= (t(g ™" Wujy, ui) = (1(9)Ti) (x).
Hence [ carries a column of matrix coefficients to itself and is equivalent on such a
column to 7€.

17. In (a), the left-regular representation on G = R/27 Z is given by (1(8) f )(€'?)
= f(e'®). Assuming on the contrary that [ is continuous in the operator norm
topology, choose § > 0 such that |#| < § implies [|/(6) — 1|| < 1. Since |[e"*?|, =1,
we must have [|/(6) (™) — ¢!"?||, < 1 for || < §. Then

|e—in0 o 1|2 — % : |e—in9 o 1|2 d(p — % ffﬂ |ein(<p—9) o eimp|2 d(p <1

for all § with |§] < & and for all n. For large N, 6 = 75 satisfies the condition on 6,
andn = N has |e7"? — 1|2 = | —i — 1|2 = 2, contradiction.

In (b), [|P(&)v—v]* = (@(g)v—v, P(v —v) = |P(g)]|* ~2Re(P(g)v, v) +
lv]|? = 2||v]|> —2Re(P(g)v, v). The weak continuity shows that the right side tends
to 0 as g tends to 1, and hence the left side tends to 0, i.e., ® is strongly continuous.

18. In (a), we apply Problem 15. Let {u;} be an orthonormal basis of the space
of ®. In the formula (®(f)ug, ug) = fG (D (x)ug, ur) f (x) dx, we take f to be of
the form f(x) = (®(x)u;, u;). Substituting and using Schur orthogonality gives
(@ (fuk, ux) = d" (ug, u;)(ug, u;). Summing on k shows that Tr ®(f) = d~'8;;,
and the right side is d~' f(1) for this f. Thus f(1) = d®(f). Passing to a linear
combination of such f’s, we obtain the asserted formula.

Part (b) follows by taking linear combinations of results from (a), and part (c)
follows by applying (b) to a function f* % f, where f*(x) = f(x~!). Part (d)
follows by decomposing the right-regular representation on L?(G) into irreducible
representations and using the identification in Section 8 of the isotypic subspaces.
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19. For (a), h * f(x) = [ h(xy ™) f(Mdy = [h(y™'x) f()dy = f xh(x).

For (b), it is enough to check the assertion for f equal to a matrix coefficient
x = (®(x)uj, u;) = P;;(x) of an irreducible unitary representation ®. If ® has
degree d, then we have

Jo flgxg™Ddg = [ ®ij(gxg™ D dg = Yy [ Pi(9)Pu(x)Pi;(g™") dg
=2k Pr(x) [ Pir()Pji(g) dg = Yoy Pua(X)d ™88k = 8ijd ™ Yoy Pra(x),

as required.

In (c), Corollary 6.33 shows that 4 is the uniform limit of a net of trigonometric
polynomials. Since C(G) is metrizable, & is the uniform limit of a sequence of
trigonometric polynomials #,. If € > O is given, we can find N such thatn > N
implies |h,(y) — h(y)| < € for all y. Then |h,(gxg™") — h(gxg™")| < € and so
| [ hn(gxg™" ) dg— [; h(gxg™") dg| < €. Thefunction H, (x) = [ hy(gxg™") dg
is a linear combination of irreducible characters by (b), and [ G h(gxg~")dg is just
h. Thus A is the uniform limit of the sequence of functions H,, each of which is a
linear combination of characters.

In (d), it is enough to prove that the space of linear combinations of irreducible
characters is dense in the vector subspace of L2 in question. If / is in this sub-
space, choose a sequence of functions /, in C(G) converging to & in L?. Then
H,(x) = fG h,,(gxg_l) dg converges to h in L?, and each H, is continuous and
has the invariance property that H,(gxg~') = H,(x). Hence the vector subspace
of members of C(G) with this invariance property is L> dense in the subspace of
L? in question. By (c), any member of C(G) with the invariance property is the
uniform limit of a sequence of functions, each of which is a finite linear combination
of characters. Since uniform convergence implies > convergence on a space of finite
measure, the space of linear combinations of irreducible characters is L? dense in the
space in question.

20. In(a),thesum ) _,, (d @)2 counts the number of elements in the basis of L2(G)
in Corollary 6.32. Another basis consists of the indicator functions of one-element
subsets of G, and the two bases must have the same number of elements.

In (b), again we have two ways of computing a dimension, one from (d) in the
previous problem, and the other from indicator functions of single conjugacy classes.
The two computations must give the same result.

In (c), representatives of the possible cycle structures are (1234), (123), (12),
(12)(34), (1). By (b), the number of ®®’s is 5. Two of these have degree 1. For the
other three the sums of the squares of the degrees must equal 24 — 1 — 1 = 22. The
only possibility is 22 = 9 4+ 9 + 4, and thus the degrees are 1, 1, 2, 3, 3.

21. Let 2 € G be the set of products ST, and let K = SNT. The group S x T acts
continuously on by (s, f)w = swt ™!, and the isotropy subgroup at 1 is the closed
subgroup diag K. Thus the map (s, t) — st~! descends to a map of (S x T)/diag K
onto 2. Since Q2 is assumed open in G, it is locally compact Hausdorff in the relative
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topology. Then Problem 3 shows that the map of (S x 7T')/diag K onto €2 is open,
and it follows by taking compositions that the multiplication map of S x T to Q is
open.

22. Inthetwo parts, AN and M AN are subgroups closed under limits of sequences,
hence are closed subgroups. Consider the decompositions in (a) and (b). For the

decomposition in (a), we multiply out the relation kga,n, = (f 2) and solve for 6,

x, and y, obtaining

e =+va? + 2, cosfh = e “a, sinf = e *c, y = e *(ab + cd).

Hence we have the required unique decomposition. Since K AN equals all of G,
the image under multiplication of K x AN is open in G. For the decomposition in

(b), we multiply out the relation v;mraxn, = (j z) and solve for ¢, m4, x, and y,

obtaining
+ =sgna, e’ =lal, y=b/a, t =c/a.

Hence we have the required unique decomposition if a # 0, and the decomposition
fails if @ = 0. Since VM AN equals the open subset of G where the upper left entry
is nonzero, the image under multiplication of V. x M AN is open in G.

The group G = SL(2, R) is unimodular, being generated by commutators, and
hence the formula in Theorem 12.9 simplifies to fG fx)dx = foT f(st)d;sdt.
For (a), we apply this formulawith S = K and 7 = AN. The group K is unimodular,
so that d;s becomes d6, and we easily compute that d, f can be taken to be e>* dy dx.
For (b), we apply the formula with S = V and T = MAN. The group V is
unimodular, and we find that the right Haar measure for M AN can be taken to be
e?* dy dx on the m,. part and the same thing on the m_ part.

25. If h is in C ([0, r]), the previous two problems produce a unique f = f; in
C(G) such that fj is constant on conjugacy classes and has h(0) = fj(#p). Define
L(h) = fG fn(x)dx. This is a positive linear functional on C ([0, 7]) and yields
the measure u, by the Riesz Representation Theorem. If f is any member of C(G)
and fo(x) = [; f(gxg™")dg. then [; f(x)dx = [ fo(x)dx and fy is fj, for the
function2(6) = fo(ts). The construction of x makes f[O,TrJ folte)dp = [ fo(x)dx.
Substitution gives f[o,n] [ [ f(gtog™ ) dgldu = [; fo(x)dx = [; f(x)dx.

26. The crux of the matter is (a). The formula of Problem 25, together with the
character formula for yx,,, gives

%0=15Xﬂadx=jhﬂ(8”44”””9+-~+w*m%duwy
This says that f[o,n] du@) =1forn =0, f[o,n] ? 4+ e ydu®) =0forn =1,

and [, -, (€ 41+ e %) du (@) = 0 for n = 2. The middle term of the integrand
for n = 2 has already been shown to produce 1, and thus the n = 2 result may be
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rewrittenas [, | (€?9 +e7219) d11(9) = —1. Forn > 3, comparison of the displayed
formula for n with what it is for n — 2 gives 0 = f[o,n] ("% + e dp(0) + 8,—2.0.
Since n — 2 > 0, we obtain [, _, (@ 4+ e~ du () = 0 forn > 2.

For the rest we replace & by —6 in our integrals and see that the integral
Jicwoy @™ + ") du(=60) is 0 forn = 1 and n > 3, and is —1 for n = 2.
Therefore f;__ (¢ + e~ ) dpu/(9) is 0 forn = 1 and n > 3, and is —1 for
n = 2. We can regard ' as a periodic Stieltjes measure whose Fourier series
may be written in terms of cosines and sines. Since w'(E) = u'(—E), only the
cosine terms contribute. There are no point masses since only finitely many Fourier
coefficients are nonzero. Since cos26 has a cosine series with no other cos k6
contributing, f[_mﬂ] cosnfdu'(0) = —%8,,,2 = —% f[_n’n] cos nf cos 26 dé for
all n > 0. Taking into account that u'([—m, w]) = 1, we conclude from the Fourier
coefficients that du’(0) = 2 (1 — c0s20)df = Lsin?6do. Since [ f(x)dx =
f[_mﬂ] J f(gtog™ ") dg du'(9), substitution into the formula of Problem 25 gives
the desired result.

27. Problem 19d shows that the irreducible characters give an orthonormal basis for
the subspace of L? functions on SU(2) invariant under conjugation. In view of Prob-
lem 264, the restrictions of these characters to the diagonal subgroup T therefore form
an orthonormal basis of the subspace of all functions x in Lz([—n, ], % sinZ 0 d@)
with x(0) = x(—6). Since sin>@ = 1|e!® — e~/ 2, the conditions to have a new x
are that it be a continuous function with x (6) = x (—6) such that

T 0 —if i(+1)0 _ ,—i(n+1)0y _
ST (@ — e ) x O) (! T — o7t DPy —

for every integer n > 0. Using the condition x (8) = x (—6), we can write the Fourier
series of y as yx (0) ~ % + Z,iil ay cosk6. For n > 1, the orthogonality condition
says that ffﬂ x (@) (cos(n + 2)0 — cosnbf) dd = 0. Hence a,4+> = a, forn > 1. By
the Riemann—-Lebesgue Lemma, all @, are O for n > 1. Thus yx is constant. Since
Xo = 1 is already a known character, x = 0.

28. Let F be a compact topological field. If F is discrete, then each one-point
set is open, and the compactness forces F to be finite. Otherwise, every point in F
is a limit point. Take a net {x,} in F' — {0} with limit O, and form the net {x; 1. By
compactness this has a convergent subnet {xa_‘ Ll} with some limit xo. By continuity of
multiplication, {x;ﬂ ! Xg, } converges to Oxg = 0. On the other hand, every term of the
subnet is 1, and we conclude that a net that is constantly 1 is converging to 0. This
behavior means that F' is not Hausdorff, contradiction.

29. In (a), the argument that ¢ — [c|F is continuous and satisfies |cic2|p =
|c1|F|c2|F is the same as in Problem 11a.

For (b), wehaved(cx)/|cx|r = (Ic|r dx)/(|c|r|x|F) = dx/|x|F. For(c), |x[r =
|x|if F =R, and |x|r = |x|? if F = C. For (d), |x|r = |x|, if FF = Q. For (e),
we have I = pZ,, and therefore the Haar measure of / is the product of |p|, = p!

times the Haar measure of Z,. Hence the Haar measure of I is p~ L.



Chapter VI 579

30. In (a), the image of a multiplicative character must be a subgroup of ', and the
only subgroup of ' contained within a neighborhood of radius 1 about the identity
is {1}. Thus as soon as 7 is large enough so that p"Z, is mapped into the unit “ball”
about 1, p,Z, is mapped to 1.

In (b), Q,/Z, is discrete since Z, is open. Hence the cosets of the members of Q
exhaust Q,/Z,, and it is enough to define a multiplicative character of the additive
group Q that is 1 on every member of Q N Z,. Let a/b be in lowest terms with
b > 0 and with |a/b|, = pk. If k < 0, then set go(a/b) = 1. If k > 0, write
b = b'p*. Since b’ and p* are relatively prime, we can choose integers ¢ and d with
b’i)k = 5 + % We set gg(a/b) = 27id/P" | The result
is well defined because if ¢/ p¥ + b'd’ = a, then (¢ — ¢’) p* + (d — d’)b’ = 0 shows
that d — d’ is divisible by p* and hence that e27id/p" = ¢27id'/P"  Ope has to check
that o has the required properties.

In (c), we may assume that ¢ is not trivial. The p-adic number k can be formed by
an inductive construction. Use (a) to choose the smallest possible (i.e., most negative)
integer n such that ¢ is trivial on p"Z,. Then x > ¢(p"x) is trivial on Z, and must
be a power of €™/ on p~!. We match this, adjust g, iterate the construction through
powers of p~!, and prove convergence of the series obtained for k.

cp* + b'd = a, and then

31. Write r in Q as r = +m/n, assume without loss of generality that » # 0,
and factor m and n as products of powers of primes. Only finitely many primes can
appear, and |r|, = 1 if p is prime but is not one of those primes. The only other v is
00, and thus |r|, = 1 except for finitely many v.

32. Withr # 0 and with r = £m/n in lowest terms, factor m and » into products
[ —a;

i ) b b;
of primes as m = ]_[le piandn = [];_, q;. Then |r|p, = p; ™ and |rly; = q;’.

J

Hence

k ! b,
[T o= (TTo)(ITa7) w7 and [Tl = 1o ke = 1
p prime i=1 j=1 veP

33. The product of topological groups is a topological group, and thus each X (S)
is a topological group. The defining properties of a group depend only on finitely
many elements at a time, and these will all be in some X (S). Thus X acquires a
group structure. The operations are continuous because again they can be considered
in a suitable neighborhood of each point, and these points can be taken to be in some
X (S) x X(S) in the case of multiplication, or in some X () in the case of inversion.
Thus X is a topological group. The assertions about the situation with topological
rings are handled similarly.

35. By continuity of translations, it is enough to find an open neighborhood U of 0
in Ag with U NQ = {0}. Since each Ag(S) is open in A, it is enough to find this U
in some Ag(S). We doso for § = {oo}. Let U = (—1/2,1/2) x (X » primeZp). If x
isin U, then |x|, < 1 for all primes p and |x| < 1/2. By Problem 32, x cannot be
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in Q unless x = 0. Hence U N Q = {0}. Proposition 6.3b shows that Q is therefore
discrete.

36. If x = (x,) isin Ag, let p1, ..., p, be the primes p where |x,|, > 1, and let
1Xplp; = p;zj I =TT pj_aj and if we regard r as embedded diagonally in Ag,
then |)c,,r_1 |, < 1forevery prime p. Hence xr—Visin Ag({oo}). Choose an integer
n such that |xeor ~! — n|ee < 1. If we then regard n as embedded diagonally in Ag,
then |n|, < 1 for all primes p, and hence 7 is in Ag({co}). Thus xr~! — nis in the
compact subset K = [—1, 1] x ( X » primeZp) of Ag. The continuous image of K in
Ag/Q is compact, and we have just seen that this image is all of Ag/Q. Thus Ag/Q
is compact.

37. Fix a finite subset S of P containing {oo}. Then the projection of X, _.Qz
to Q is continuous for each v € §. Since also the inclusion QF — Q, is
continuous, the composition X wesQuw — Qy is continuous. Thus the corre-
sponding mapping X , _.Qx — X, _<Q, is continuous. In similar fashion
X ¢ sZy — Zy is a continuous function as a composition of continuous func-
tions. Thus X ¢ sZy = X, ¢ g2y is continuous. Putting these two compositions
together shows that A@(S) — Ag(S) is continuous, and therefore A@(S) — Agis
continuous. Since this is true for each S, it follows that A@ — Ag is continuous.

The topologies on the adeles Ag and the ideles Aé are regular and Hausdorff, and
they are both separable. Hence Ag and Aé are metric spaces, and the distinction
between the topologies can be detected by sequences. Let p, be the n™ prime, and
let x, = (xj,,) be the adele with x,, , = p, if v = p, and x,,, = 1 if v # p,. The
result is a sequence {x,} of ideles, and we show that it converges to the idele (1) in
the topology of the adeles but does not converge in the topology of ideles. In fact,
each x, lies in Ag({oco}), which is an open set in Ag. For each prime p, x, , = 1
if n is large enough, and also x, o = 1 for all n. Since Ag({oo}) has the product
topology, {x,} converges to (1). On the other hand, if {x,} were to converge to some
limit x in Ag), then x would have to lie in some A (), and the ideles x, would have
to be in A@(S) for large n. But (x,,) is not in A@(S) as soon as v is outside S.

39. In (a), let f be in C(K). Corollary 6.7 shows that the map k — kf of K into
the left translates of f is continuous into C (K). The continuous image of a compact
setis compact, and thus f is left almost periodic. Similarly f is right almost periodic.

In(b),letgbein G. Then (gf)(x) = f(g~'x) = F(l(g7'x)) = F(l(g) "1(x)) =
((t(g) F)(t(x)) shows that the set of left translates of f can be regarded as a subset
of the set of left translates of F'. The latter is compact, and hence the closure of the
former is compact.

40. We may view the unitary representation ® as a continuous homomorphism
of G into the compact group K = U(N) for some N. If f(x) = ®(x);;, then
f(x) = F(®(x)), where F : U(N) — C is the (i, j)™ entry function. Thus
Problem 39b applies.
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41. In (a), assume the contrary. Then for some € > 0 and for every neighborhood
N of the identity, there exists gy in N with ||gnf — f||Sup > €. Here {gnf}is anet
in the compact metric space K, and there must be a convergent subnet {gy, f} with
limit some function £ in K. Since |Ign, f — hll,p tends to 0, h isnot f. Thus gy, f
converges uniformly to ~ while, by continuity, tending pointwise to f. Since & # f,
we have arrived at a contradiction.

Part (b) follows from the formula [|go(g1) — g0(82.)llgp = 1815 — 82 llsup:
and part (c) follows from (b), uniform continuity, and completeness of the compact
set K.

42. Part (a) follows from a remark with Ascoli’s Theorem when stated as Theorem
2.56 of Basic: the remark says that if we have an equicontinuous sequence of functions
from a compact metric space into a compact metric space, then there is a uniformly
convergent subsequence. Here if we have a sequence {¢,} of isometries of X onto
itself, then the ¢, are equicontinuous with § = €. Since the domain X is compact
and the image X is compact, the sequence has a uniformly convergent subsequence,
and we readily check that the limit is an isometry. Since every sequence in I" has a
convergent subsequence, I" is compact.

For (b), let members of I" have ¢, — ¢ and v,, — . Then

P(@noYn, @oyr) < p(@n oYn, @po¥)+ pl@y o, @ o).

The first term on the right side equals p (¥, ¥) because ¢, is an isometry, and the
second term equals p(¢,, ¢) because ¥ (x) describes all members of X as x varies
through X. These two terms tend to 0 by assumption and hence ¢, o ¥, — ¢ o ¥.
This proves continuity of multiplication. Similarly inversion is continuous.

For (¢), let y, — y and x,, — x. Then

d(Yn(xn), ¥ (X)) < d(Yn(Xn), ¥ (xn))+d (¥ (Xn), ¥ (X)) < p(¥n, ¥)+d(y (Xn), ¥ (X)),
and both terms on the right side tend to O.

43. In (a), let {g,} be a net convergent to go in G, and form {c(g,)}. Then
P(1(gn)1(80)) =sup, g, [1t(8n)h—1(80)hllup =SUPhek, reGt(8n)h(X)—t(go)h (x)]
= SUPjek, veG 118y ' X) — h(gy ' X)| = supyeq. e |0 (8r ' x) — (vf)(gy ' )| =
SUPyeG, xeG I[f(&y g 1x) — f(y_lgo_lx)|. If this does not tend to O as g, tends to
80, then we can find a subnet of {g, }, which we write without any change in notation,
and some € > 0 such that this supremum is > € for every n. To each such n, we
associate some y, such that sup,.; | f (v, 'y 'x) — f( gy '%)| > €/2. By left
almost periodicity we can find a subnet of {y, f} that converges uniformly to some
function, say H. This function H has to be left uniformly continuous, and we may
suppose that ||y, f — H||g,, < €/8 forn > N. Then n > N implies

sup —
| (g ') — i f)(gg %)

< | (g 'X)—H (g, ' X)|+1H (g, 'x)—H (g ' x)| + 1H(gy 'x)— (v f)(gg ' %)
€+ |H(g, %) — H(gy 'x)| + §.

A

IA
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The left uniform continuity of H implies that the right side is eventually < 3{. This

contradicts the condition sup, g | £ (v; ' g7'%) — f(v;7 gy ') = €/2, and (a) is
proved.

In (b), the action I'y x Ky — Ky is continuous by Problem 42¢, and therefore
y +— v~ !his continuous. Evaluation of members of K + at 1is continuous, and hence
Fy(h) is continuous on I'y. If {g,} is a net with g, f — h, then Fy(h)(ty(go)) =
((tr (80) "' ) (1) = 1im, (17 (0)) ™' gn F)(1) = limy (g £)(g0) = h(g0)-

For (c), we apply (b) with 2 = f. Then f arises from the compact group I'y via
the construction in Problem 39b. Therefore f is right almost periodic.

44. If f is a given almost periodic function, the function F to use takes an element
]_[f,(yf/) to Fr(yr). Then the equality F(¢(x)) = Fr(ty(x)) = f(x) shows that f
arises from the compact group I'.

45. Problem 44 produces an isomorphism of the algebra LAP(G) of almost
periodic functions on G onto C (I"), and the Stone Representation Theorem (Theorem
4.15) produces an isomorphism of LA P (G) with C(S1), where S; is the Bohr com-
pactification of G. The result then follows after applying Problem 23 in Chapter I'V.

46. Finite-dimensional unitary representations of I' give rise to finite-dimensional
unitary representations of G, and thus Corollary 6.33 for I' gives the desired result.

47. Any continuous multiplicative character of K yields a continuous multi-
plicative character of G. Conversely any continuous multiplicative character of G
is almost periodic by Problem 40 and therefore yields a continuous function on
K. The multiplicative property of this continuous function on the dense set p(G),
together with continuity of multiplication on K, implies that the function on K is a
multiplicative character.

Chapter VII

1. If xo is in €2, let ¢ be a compactly supported smooth function on €2 equal to
(x — x0)* in an open neighborhood V of xg. Then 0 = (P (x, D)u)(x) = (a!)ay(x)
on V, and hence a4 (x) =0 for x in V.

2. Within the Banach space C (QCI, R), S is the vector subspace of all functions
u with Lu = 0 on Q. It contains the constants and hence is not 0. The restriction
mapping R : § — C(9€2, R) is one-one by the maximum principle (Theorem 7.12),
and it has norm 1. Let V be the image of R, and let R~!:V — S be the inverse
of R : S — V. The operator R~! has norm 1 as a consequence of the maximum
principle. If e, denotes evaluation at the point p of 2, thene,, oR~!isabounded linear
functional on V of norm 1. The Hahn-Banach Theorem shows that e, o R~! extends
to a linear functional £ on C(9€2, R) of norm 1. We know that £(1) = ¢; o R =
ep(l) = 1. If f > 0 is a nonzero element in C(9€2, R), then 1 — f/||f||Sup has

norm < 1. Therefore |£(1 — f/||f||sup)| <landO < E(f/||f||sup) < 2. Thus the
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linear functional £ is positive. By the Riesz Representation Theorem, £ is given by a
measure (1,. Consequently every u is S has u(p) = fasz u(x)dup(x). Takingu = 1
shows that 1, (3€2) = 1 for every p.

3. In (a), the line integral f‘ (Pdx + Qdy) isequal to

(x,y)|=¢
f02n (e cosb, esinf)e2((e cos ) (—e sinf) + (¢ sinO)(e cos 0)) db,

and the integrand is identically 0. Part (b) is just a computation of partial derivatives.
If (c), we know from Green’s Theorem that for any positive numbers ¢ < R,

(fiemier = fiemime) (Pdx+Qdy) = [fo_i yi<x (52 — 55) dxdy.

With our P and Q, for sufficiently large R, the line integral fl(x WI=R is 0 since P and

0 have compact support, and (a) says that the limit of the line integral 55| isOase

<00 AP _ YPi—X9y
decreases to 0. The function 3% — N T xny?

conclude from the complete additivity of the integral that | fRZ () 4 i) ) dxdy =0.

,\¢2+y2
In (d), with anew P and Q, the line integral g§|<x )=t (P dx + Qdy) is equal to

(x,y)|=¢
is integrable near (0, 0), and we thus

02” @(ecost, esinf)e=2((—e sinf)(—e sin @) + (e cos 0) (e cos 0)) db.

This simplifies to fozn @(ecos B, esin6) d6, which tends to 2w ¢ (0, 0) by continuity
of ¢. Part (e) is just a computation of partial derivatives, and part (f) is proved in the
same way as part (c). '

For (g), we have 27122 = z7!(¢p, + igy) = o (e +igy) = X(ﬁéiif" +

%. Combining (c) and (f) gives [[p 27! g—‘g dxdy = —2m¢(0,0) + i0, and

hence 2 [fp2 271 3¢ = —0(0,0).

For (h), we use (g) and obtain (%—g, o) =—(T, g—?) = — ffRZ (2mz)~! %—‘; dxdy =
®(0,0) = (8, ¢).

4. In(a),letg bein C (RY). Then (D H, ¢)=—(H, ¢')=— [*o H(x)¢'(x)dx
=— fo ¢ ) dx = —limy[px)]g) = ¢(0) = (5, ).

In (b) let ¢ be in C_((—1, 1)). We are to verify that f_ll max{x, 0}¢'(x)dx =

com

—f_ll H(x)p(x)dx, ie., that fol x¢'(x)dx = —fol @(x)dx. This follows from
integration by parts because fol x¢'(x)dx = [x(p(x)](l)—fol ox)dx = — fol @(x)dx.

The answer to (c) is no. If g were a weak derivative, then the left side of the equality
L HG)@ (0 dx = — [1] g(x)p(x) dx would be 0 whenever ¢ € CZ, ((—1, 1))
vanishes in a neighborhood of 0. Then g(x) would have to be 0 almost everywhere
for x # 0, and we would necessarily have 0 = fol o' (x)dx = [(p(x)](l) = —¢(0) for
all o in C_((—1, 1)).

com
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In (d), (Dx(H x 8) ¢) = —(H x 8, Dyp) = — fOOO(Dx(p)()C, 0)dx, and this
= —limy[p(x, O} = ¢(0,0) = (3, ¢).

In (e), the support of H is [0, co) and the singular support is {0}, while for H x §
the support and the singular support are both R x {0}.

5. We apply Lemma 7.8 to R(x) = P(ix). The preliminary step in the proof
multiplies the given distribution f by something so that f has support near 0. We
form e ~/** f as amember of £’ ((—27, 27r)N) and restrict it to a member of P/ (TV).
Then it has a Fourier series e‘“’“‘f ~ 3 dpe’*. Put ¢y = %, o being the
member of RV produced by the lemma. Then |cx| < C(1+ |k|2)1’ for some p, and (b)
produces a distribution S in £’((—27, 27)N) with (S, e~**) = ¢ for all k. Define
u = ' “*S as a member of £'((—2x, 27)N). Let ¥ (x) be a smooth function with
compact support near 0, and extend ¥ to be periodic, i.e., to be in C>°(T"). The
multiple Fourier series of v is then of the form ¥/ (x) = ), yiee' ™ with y; decreasing
faster than any power of |k|. The function ¢ (x) = ¥ (x)e ™ %% isin C*®°((—2x, 27)V)
but is not necessarily periodic. Applying P (D) to u and having the result act on ¢,
we write

(P(D)u, @) = (P(D)u, Y ) yee'®=%) = (P(D)u, Y y—re " *Fe)x),

Since the y; are rapidly decreasing and P (D)u is continuous on C*((—2x, 2)V),
we can interchange the summation and the operation of P(D)u. Thus the right side
of the display is

Yot vk (P(Dyu, e Ty = 37y {u, P(=D)(e™! 00
=Dk vk (e S, P(i(k+a))e_i(k+“)'x) =3, yi(S. P(i(k+a))e ik
= Yk v-kek PGk + ) = 3 vk gty Ptk + @) = 34 y-id.

Now dy = (e~ f, e~'kX) The rapid convergence of the series Y, y—_xe~**"* means
that (e~ f, 1/; > v-kle ‘i“'xf, e Xy =3 y_idy. Therefore (P(D)u, ) =
Yok V—kdk = I £ ) eTIX £ el ) = (f ). Near 0, the function ¢ is
an arbitrary smooth functlon, and thus P(D)u = f near 0.

6. The coefficient of x* in (x; + --- 4+ xy)!%! is the multinomial coefficient
( lel ) = |“| . This is a positive integer, and hence o! < |«|!. F1x1ng || =1 and
putting x; = --- = xy = 1, we obtain the formula N = Z‘a‘:l L and therefore
Z|a|=l (1/a!) = N'/1!. The identity with z can be proved by induction on ¢, the base
case being ¢ = 0, where the expansion is a geometric series. If the case ¢ is known,
we differentiate both sides and divide by ¢ + 1 to obtain the case g 4 1. Alternatively,
one can derive the identity from the binomial series expansion in Section 1.7 of Basic.

7. Here is the solution apart from some details. The argument uses induction, the
base case being m = 1, where the result describes the given system of differential
equations. Assuming that D}" ~!isof the asserted form, we differentiate the expression
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with respect to 7. In the 2m=1 terms of the first kind, the derivative acts on some
expression DYu, giving DY D;u. We substitute for D;u from the given system and
sort out what happens; we get 2" terms involving an x derivative of u and 2! terms
involving a derivative of F. In the 2m=1 _ 1 terms of the second kind, the derivative
acts on some iterated partial derivative of F' and just raises the order of differentiation.
The total number of terms involving F is then 2"~ 4 2m=1 _ 1 =2m _ 1,

8. In (a), just apply Df to the formula for D}"u in the previous problem. The
operator gets applied to each u or F that appears in the formula, and there is no
simplification. Then one evaluates at (0, 0). In (b), the asserted finiteness implies
that the multiple power series

p
DYDPu0.0) \g.m

U(xvt)ZZﬂ Zmzo Blm!

converges when |¢| < r and |x;| < r forall j and that Df D"U(0,0) = DfD,’"u(O, 0)
for all B and m. Then it follows that the sum U (x, ) solves the given Cauchy problem
for these values of (x, ¢). Sincer is arbitrary, the series converges forall (x, t) € CN+l
and the sum U (x, ) solves the Cauchy problem globally.

9. In (a), we consider a single term of the expansion of D/*u(0,0), namely
T - TnD¢u(0,0) = T1-- - T,, D¢ g(0). Here eachof T1, ..., T,, is equal to some
Aj, or to B, and DY is the product over i of the D;, for those T; with T; = Aj,.
The term has ||T; - - - T,, D§ g (0)|l oo < M™|| D% g(0)]» and the boundedness of the
series involving g(0) implies that (a!)~!|| D¢ g(0) ||OOR“"‘ < C. Let k be the number
of factors of 77 - - - T),, equal to B. Then || = m — k, and hence M™|| D% g(0)] o, <
CM"q!R~™=K Each T; equal to Aj, has to be summed over the N values of j;, and
we get a contribution of N~ from all these sums. Finally the number of such terms
involving k factors B is the number of subsets of k elements in a set of m elements
and is (']':), and a! < (m — k)! by Problem 6. The desired estimate results.

In (b), we adjust the above estimate by replacing || D g(0) ||, by |l D?Jrﬁg(O) Il oo
Then Ca!R™"% gets replaced by C(a + B)!R™"*+D where I = |B|. Since
(@+B)! < (m—k+1)!, thetermis < > 3o CM™N™ K (m —k+DI(})R™=++D,

I+m
In (c), we are to sum the product of the estimate in (b) by % , the sum extending
m

overallm > 0, all [ > 0, and all 8 with || = [. Thus we are.to bound

i i 3 M CM™N* " (m — k4 D)!() R~ kD m
== Blm!

CMmNm7k+l(m —k+ l)!(flil)Rf(mfk+l)rl+m

:iii I'm)

3
Il
=}
—
Il
=}
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=C i i [i (m _lk + l) (%)1] MmNmkk]T(mk)rm

m=0 k=0 ~ [=0

> Nr\=m=k=1 pmNm=kg=(m=kypm
=C2.). (1 h ?) k! ’

m=0 k=0

the first and third steps using Problem 6 and the third step requiring the assumption

on R that Nr/R < 1. If we assume in fact that Nr/R < 1/2, then (1 — %)_1 <2,
and the above expression is

00 00 am—k+1 pgm prm—k p—(m—k),.m 00 R 2MrN\m
/RN (27T
o3 SN 5 e (M

m=0 m=0

the second inequality following from the series expansion of the exponential function.
The series on the right is convergent if 2Mr N/R < 1. This proves (c).

In (d), the analog of (a) is to consider a term 77 - - - Ty DY D;"_I_SF , Where each
T; is some Aj, or B. Let k be the number of factors B, so that s — k factors are
some A; and || = s — k. The contributions to DY come from the factors A;; regard
the m — 1 — s contributions to Dl’"_l_s as coming from factors of the identity /. In
this way the two phenomena can be handled at the same time. Ignore the fact that
I commutes with the other matrices; it is easier to treat it as if its occurrences in
different positions were different. The effect is the same as expanding the set of n
matrices A; to include /, yielding a set of N + 1 matrices. The requirement M > 1
makes it so that the estimate ||/v||,, < M|v]|,, is valid for the new member of the
set, as well as the old members. The steps for imitating (b) and (c) are then essentially
the same as before except that m is replaced by m — 1 and N is sometimes replaced
by N + 1.

10. The crux of the matter is to show that if {u"/ (x, y)} solves the Cauchy problem
for the first-order system, then u™/ (x, y) = DL D{u®%(x, y) fori + j < m and hence
u%0(x, y) solves the m™-order equation. The proof proceeds by induction on j.
The case j = 0 is okay because the first-order system has D,u"? = u/+1.0 for
i < m. Suppose the identity holds for some j. Then Dyu’/*! = Dyu*!J from
the system, and this is = D, D,u’"/ by induction. Hence Dy (u"/™! — Dyu’/) =
0, and we obtain u'/*! — Dyu'J = ¢(y). Putx = 0 and get u"/+1(0,y) =
D§+1f<f>(y) = DD} fD(y) = Dyu"/(0, y). Therefore c(y) = 0, and u’/+! =
Dyui- = DiDJT400, This completes the induction.

11. The second index (j in Problem 10) is replaced by an (N — 1)-tuple o =
(o1, ...,an—1). If B # 0, the equation for D u'B is Dutf = Dyju"*“, where j
is the first index for which ; # 0 and where « is obtained from § by reducing the
j™ index by 1. If B = 0, the equations are as in Problem 10. The Cauchy data
are u"#(0, y) = Dy f?(y) except when (i, 8) = (m, 0), and they are the data of
Problem 10 when (i, 8) = (m, 0). The argument now inducts on 81, ..., By—1, and
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the functions c(y) that appear are of the form c(yy, ..., yy—1). The Cauchy data are
for x = 0, and we get an equation c(yy, ..., yy—1) = 0 in one step in each case.

12. The equations Dyu'/ ™! = D,u'*!/ involve first partial derivatives in the y
direction with coefficient 1, and Dy u’ 0 — 3 +1L.0 jnvolves an undifferentiated variable
with coefficient 1. The equation for D, u"™° involves a linear combination of variables
and first partial derivatives in the y direction of variables, plus the term Fy, which is
an entire holomorphic function of (x, y). So the equations of the first-order system
are as in Problems 6-9.

Chapter VIII

1. What needs checking is that the two charts are smoothly compatible. The
set M, N My, is $" — {(0, ..., 0, £1)}, and the image of this under «; and «» is

R"—{(0. ..., 0)}. Puty; = x;/(1=xus1).50that &7 (31, ..., ) = (X1, Xng)-
Then
K20k 'ty ) = 1 /(L Xng1)s o X /(L4 X))

= =xp40)/A H+xp41)s oo, Yo (I = xp41) /(A 4 Xp41)).
To compute (1 — x,41)/(1 + x,41), we take |x| = 1 into account and write 1 =

(2172} x; )=/ Ecl,%ﬂ +Zj;:1 yga—xnﬂﬂ. Then Y 7_; 7 = (1—-x7,)/(1—x,41)* =
+ Xnt1 — Xp+1), an

K20 Oy ) = (1) X s e vn/ et )

The entries on the right are smooth functions of y since y # 0, and the two charts are
therefore smoothly compatible.

3. If itis o-compact, it is Lindelof. If it is Lindelof, countably many charts suffice
to cover X. If there is a countable dense set, then we can choose one chart for each
member of the dense set, and these will have to cover X. This proves (a). For (b),
each chart has a countable base, and the union of these countable bases, as the chart
varies, is a countable base for X.

4. For (a), multiplication is given by polynomial functions, which are smooth.
Inversion, according to Cramer’s rule, is given by polynomial functions and division
by the determinant, and inversion is therefore smooth.

For (b), we have

Agf = @A) = A(f oly) = A(f(g-)) = X Ay 25ED (1)
LJ

3 3((gX)rs 3
= A Y @M (1) = Y Ay (98
LJ

i,j,r,s

= Y (8A)8sj 5 (9) = X (8 A)rs 7 (2).

Jir.s
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For (c), the condition for imoothness,ky Proposition 8.8, is that all inj be smooth
functions. Part (b) gives Ax;j(g) = Ag(x;;) = Zr’s(gA)rSS,-,Sjs = (gA)ij =
> « 8ikAxj, and the right side is a smooth function of the entries of g. For the
left invariance, let F = I, and put g’ = F~'(g) = h™'g. We are to check
that dF)g (A V() = A J(f)if fis deﬁned near g. The left side is equal to
A (folp) = ((dlg)1(A)(f olp) = (dlp)g(dly)1(A)(f), and the right side is
Z (f) = (dlg)1(A)(f). These two expressions are equal by Proposition 8.7.

Parts (d) and (e) amount to the same thmg For (d), the question is whether
Ag0 expraf = (dc),( )(f) The right side is o f(go exptA), and that is why (d)

and (e) amount to the same thing. The left side is Zm (go(exptA) A)” a ~—(goexprA)
by (b), and this expression equals % f(goexptA) by the chain rule and the formula
% exptA = (exptA)A known from Basic.

5. For (a), fix [. Choose, for each p in L;, a compatible chart about p such that the
closure of the domain of the chart is a compact subset of U;. The domains of these
charts form an open cover of L;, and we extract a finite subcover. Taking the union
of such subcovers on /, we obtain the atlas {«,}.

For (b) and (d), the solution will be a translation into the language of smooth
manifolds of a proof given in introducing Corollary 3.19: In (b), let the domains of
the charts constructed at stage [ be M, ..., M, . Lemma 3.15b of Basic constructs
anopen cover {Wy, ..., W,} of L; such that Wj?l is acompact subset of M, : foreach j.
A second application of Lemma 3.15b of Basic produces an open cover {V1, ..., V,.}
of L; such that VjCl is compact and de C W; for each j. Proposition 8.2 constructs

a smooth function g; > 0 that is 1 on de and is O off W;. Then Z;Zl gjis >0
on L; and has compact support in U;zl M,;. If we write {ny} for the union of the

sets {g1, ..., g} as [ varies, then the functions ¢, = 1y / » PRl have the required
properties.

For (c), we apply (b) to the smooth manifold U. The construction in (b) is arranged
so that about each point is an open neighborhood on which only finitely many ¢q’s
can be nonzero. As this point varies through K, the open neighborhoods cover K,
and there is a finite subcover. Therefore only finitely many ¢, ’s have the property
that they are somewhere nonzero on K. The sum of this finite subcollection of all
©q’s 1s then a smooth function with values in [0, 1] that is 1 everywhere on K and
has compact support in U.

For (d), we argue as in (b) with two applications of Lemma 3.15b of Basic to
produce an open cover {Vi, ..., V.} of K such that for each j, de is a compact
subset of W;, whose closure is a compact subset of U;. Part (c) constructs a smooth
function g; > O thatis 1 on de andis O off W;. Then g = Z;zl gjis > O everywhere
on K and has compact support in U;=1 U;. A second application of (c) produces a
smooth function # > 0 on M with values in [0, 1] that is 1 on K and is compactly
supported within the set where g > 0. Then g + (1 — &) is smooth and everywhere
positive on M, and the functions ¢; = g;/(g + (1 — h)) have the required properties.
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doF;
6. In the notation of Proposition 8.6, the matrix [—l ],
Ot 1urseestt)=(x1 (), Xa (P))

which is of size k-by-n, has rank k. Choose & linearly independent columns. Possibly
after a change of notation that will not affect the conclusion, we may assume that

they are the first k columns. Call the n functions yj o F, ..., yx o F, Xg41, ..., X, by
A(fiok™!
the names f1, ..., f,. These are in C*°(M,) and have matrix [%] of the
uj
block form
Gl G
Buj 8uj
0 1
at the point where (u1,...,u,) = (x1(p),...,xn(p)). The upper left corner is

invertible by the condition of rank k, and hence the whole matrix is invertible. Then
the result follows from Proposition 8.4.

0F;
7. In the notation of Proposition 8.6, the matrix [—l ],
Ot 1urseeesttn)=(x1 (), Xn (P))

which is of size k-by-n, has rank n. Choose n linearly independent rows. Since
F; = (y; o F) o k™!, Proposition 8.4 shows that the corresponding functions y; o F
generate a system of local coordinates near p. This proves (a).

8. A little care is needed with the definition of measure O for a manifold because
the sets of measure O that arise are not shown to be Borel sets. However, for points
in the intersection of the domains of two charts x| and «», the change-of-variables
theorem shows that the two versions of Lebesgue measure near the two images in
Euclidean space of a point are of the form dx and («y ok, 1)’()c) dx, and the sets of
measure O are the same for these.

The solution of the problem as written is a question of localizing matters so that
the Euclidean version of Sard’s Theorem (Theorem 6.35 of Basic) applies. For each
point p in M, one can find a chart k), with p € M, and a chart 1), with F(p) € N,
such that F(M,,) S N;,. The Euclidean theorem applies to 4, o F ok . The
separability implies that countably many of these M,,’s cover M. We get measure 0
for the critical values within each F (My,), and the countable union of sets of measure 0
has measure 0.

9. Here we localize and apply Corollary 6.36 of Basic.

10. Thereflexive condition follows with 2 = 1, and the transitive condition follows
by using the composition of two &’s. Strictly equivalent is the condition “equivalent”
with h = 1.

11. Substitution of the definitions gives

2 )i () = ok ool o= T ohyodix = gkix).

This proves the first identity, and the second identity is similar.
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12. For (a), if x lies in M,(_/. N M"i and y lies in F”*, then the only way that 4 can have
the correct mapping function x +— g;(x) is to have gi;(x)(y) = ¢,’{’x_1h¢j,x ).
Therefore we must have h(¢; () = qb,/(’xgkj (x)(y), and & is unique.

In (b), if & exists, then it is apparent from the formula for it that it is a diffeomor-
phism. In this case the function 2~! exhibits the relation “equivalent” as symmetric.

13. For (a), if x lies also in M,; N M"/’ then we have

pi(b) = ¢; [(b) = ¢ [ic¢; | (b) = gji (xX)(pi (b))
and hence

hij (b) = G 8kj () (Pj(B)) = by 8kj (X)&ji (¥) (pi (b)) = by &k (X) (pi (D))
= ¢1 81k (V) 8ki (x) (pi (D)) = ¢y &1 (¥) (pi (b)) = hyi (D).

The sets p_l (MKj N M"L) are open and cover B as j and k vary, and the consistency
condition (x) therefore shows that the functions 4 piece together as a single smooth
function : B — B’.

For (b), let y be in F". Put b = ¢;,(y) in the definition of hy;(b), so that
y= ¢;; (b) = p;(b), and then we have

Grx 'hej () = G h(B) = ¢ Bp 8k (D) (P (D)) = gk (1) (7).

This shows that the functions x +— gi;(x) coincide with the mapping functions of A.

Chapter IX

1. The formula is pjy| = px + @y — %/L({O}), where p is the measure on R
defined by 1) (A) = px(—A).

2. Both sides equal [ ®(x1, ..., x,)dP.

3. For (a), we have 07 = [ (t — E)?du,(t) > /|th|28 (t — E)>du,(t) >
82P({lyn — E| = 8}).

For (b), we calculate

|E(@(yn) — ®(E)| = | [ [@(t) — P(E)]dpn(t)| < [ |@(t) — P(E)| dpan(t)
= Jit—-E|<s +-[\l—E|Z5 < .[\t—E|<5 Ed,an(t) + 2MP({|)’n - El b 8})
<€+ 2Mo,12872.
In (c), let € > 0 be given, and choose the § of continuity for ® and €. Then the

calculation in (b) applies. Since lim 0,12 = 0, the right side is < 2¢ for n large enough.
For such n, we have |E(®(y,)) — ®(E)| < 2e.
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In (d), the argument of (c) depends only on the continuity of ® at E and the global
boundedness of ®. In the situation of Theorem 9.7 with independent identically
distributed random variables x,, we put s, = x; + --- + x,, and take y, = % Sn. We
saw that if E(x;) = E and Var(xy) = o2, then E(y,) = E and Var(y,) = %02.
Thus (c) applies.

4. Part (a) is a direct application of the Kolmogorov Extension Theorem. One
starts with the measure on R! that assigns mass p to {1} and mass 1 — p to {0},
forms the n-fold product to model n independent tosses, and obtains the space for a
sequence of tosses from the Kolmogorov Theorem.

In (b), the meanis p -1+ (1 — p) -0 = p. The computation for the variance is
p-1P+0=p)-0°=p>=p-p>=pl-p.

For (c), the answer is the number of ways of obtaining k heads and n — £ tails in
n tosses, namely (’;), times the probability of getting a specific sequence of k heads
and n — k tails, which is p¥(1 — p)"—*.

In (d), we put y, = 1s,. In view of (¢), E(y,) is Y j_o ®(5)(}) p*(1 — p)" 7,
and (a) shows that ®(E) is ®(p). The variance of y, is @, in view of (b); since
this tends to 0, Problem 3c is applicable and establishes the limit formula.

For (e), we go over the solution of Problem 3. The relevant facts for making
an estimate that is uniform in p are that & is uniformly continuous and that the
convergence of the variance to O is uniform in p.

6. For the regularity any set in F is in some F,. The sets in J,, are of the form
E=E x (X:O:n_HXk) with E € Q™ and v(E) = v,(E). Given € > 0, choose
K compact and U open in Q™ with K € E C U and v,(U — K) < €. In Q, K is
compact, Uis open, K - E C ﬁ,and v(l7 — I’(V) < €.

7. Let E = |2, E, disjointly in F. Since v is nonnegative additive, we have
Z;’;l v(E,) < v(E). For the reverse inequality let ¢ > 0 be given. Choose K
compactand U, openwithK C E, E, C U,,v(U,—E,) < €/2",andv(E—K) < €.
Then K C Uzozl U,, and the compactness of K forces K C Uflvzl U, for some N.
Then v(E) < v(K) +€ < v(UM_ Un) +€ < XN v(U) +€ < X0 v(E) +
2¢ < Y 02 v(E,) + 2¢. Since € is arbitrary, v(E) < > 02 | V(Ey).

8. The key is that €2 is a separable metric space. Every open set is therefore the

countable union of basic open sets, which are in the various F,,’s.

10. The collection of subsets of €2 that are of type J for some countable J is a
o-algebra containing .A’, and thus it contains A.

11. Continuity cannot be ensured by conditions at only countably many points,
as we see by altering the value of the function at a point not in a prospective such
countable set of points.

12. A nonempty set of A that is contained in C must be defined in terms of what
happens at countably many points, and no such conditions are possible, just as in the
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previous problem. So the set must be empty. Since p.(C) is the supremum of p of
all such sets, we obtain p,(C) = 0.

13. If is in C; butnot E, then the uniform continuity of @ means that | , extends
to a member of C. In other words, there is a member o’ of Q that is 0 on J such that
w+ @' isinC. Since C € E, w + ' is in E. The set E is by assumption of type J,
and therefore the sum of any member of E with a member of 2 that vanishes on J is
again in E. Hence w = (v + ') — &' is in E, contradiction.

14. Problem 13 shows that the infimum of p(E) for all E in .4 containing C equals
the infimum over all countable J of p(C;). Under the assumption this infimum is 1.
Thus p*(C) = 1.

15. Proceeding inductively and using the convergence in probability, we can
construct a subsequence {x,, } of {x,} with P(|x,, —x| < 2%y <2 % fork > 1. The
series Z,‘:o:] P(lxp, —x| < 27Ky converges, and the Borel-Cantelli Lemma (Lemma
9.9) shows that except for w in a set Z of measure 0, |x,, (0) — x(w)| > 27* only
finitely often. Thus except when wisin Z, ), |x,, (w) — x(w)| converges. Since

[Xnr (@) = Xn (@) < [y, (@) = x(@)] + 1 (@) — x(@)]

for all k, Y 4 |Xn,,, (@) — xp, (w)| converges. Therefore D, (xpn,,, (@) — Xy (@)
converges. The partial sum of this series through the M term is x, o1 (@) — x5, (@),
and therefore the series ) _; x,, (w) converges for all w notin Z. Since {x,, } converges
to some random variable almost surely, Proposition 9.12 shows that the convergence
is to x almost surely.

16. Chebyshev’s inequality (Section VI.10 of Basic) shows that |, x If >du >
éz,u({x } |f(x)] = 5}) for all £ > 0 on any measure space. We apply this with
@ = P and with f = x,, — c to obtain EZP(|x,, —c| > 5) < E((xp —¢)?) = Var(x,).
The right side tends to O as #n tends to infinity, and thus P(|x,, —c|>£ ) tends to 0.
In other words, {x,} tends to ¢ in probability.

17. Take w, to be a unit mass at {n}, and let & = 0.

18. According to Problem 4, the meanis £ = p, and the varianceis o = p(1— p).
Thus the result follows directly by substituting into Theorem 9.19.

19. In (a), the Binomial Theorem gives > ¢ _ (}) (%)k (1— %)n_k = (% +(1— %))n,
and the right side is just 1. Also Y ;2 % et =eter =1.

In (b), for each k > 0, we have

sy = () () (1= 2)"*

= [tk (U (1 2y

With & fixed and n tending to infinity, the factor in brackets tends to % Thus
lim, pp (k) = % Ake=* = p, (k). The cumulative distribution function F,, of xp
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at each point is the sum of certain values of pj, ; (k), and the cumulative distribution
function of Fy, at that same point is the sum of the corresponding values of p, (k).

Therefore lim,, Fy,, = Fy, pointwise. By definition x;, ; tends to x, in distribution.

In (c), the meanis A, and the variance is A. In fact, we have E (x;) = Zk k i—?e‘k =
e_)‘)»j—)\(zk 2—]:) =e¢*ret = A Also
Var(v) = E(x2) — A2 = Y ke — 32
= e2Y (k(k — 1) + k)2 =22
=W ( L) e A(Ee) — 22 =22+ A —a2 =

20. In (a), consider u(s) = log(l + ¢/s)’ = s(log(s + ¢) — logs). This has
derivative u/(s) = log(s +¢) —logs +s/(s +¢) —s/s =log(1 +¢/s) —c/(s +¢).
Since u”(s) = 1/(s +¢) — 1/s +¢/(s +¢)* = —c?/(s(s + ¢)?) is positive for s > 0,
u'(s) is a strictly decreasing function. By inspection, limg_, y oo u/(s) = 0. Thus
u'(s) > 0 forall s > 0. We conclude that u(s) is an increasing function for s > 0,
and so is its exponential, which is (1 + ¢/s)*.

In (b), we know thatlim,_, 4 oo (14c¢/s)® = €, and (a) says that this is an increasing
limit. Taking reciprocals shows that limg_, 4 5o (1 +¢/s)™* = e~ ¢, a decreasing limit.
If we put ¢ = t2/2 and s = (n — 1)/2, then we obtain

lim (14 .5)" 2 =72,

n— 400 n—1

a decreasing limit. The second statement follows because (1 + %)("_1)/ L.

& a0
2
In (c), we see from (b) that forn > 2, (1 + h) is dominated by the case
n = 2, where the function is (1 + #2)~!/2. Multiplying by (1 + #2)~1/2, we see that

12

(1 +-2)7"% < (1 + 7" forn > 2. The function (1 + 12)~" is integrable, and

—(n=1)/2

thus dominated convergence allows us to conclude that lim,, fR(l + %)_n/ 2dt =

lim, (1 4+ -2 "2 dz. By (b), the right side equals [, e~'*/2 dr, which is v/27.
R n—1 y g q R
Since [ f,(t) dt = 1 for all n, the left side is lim, ¢, !. Thus lim, ¢, ! = v/27.

n
21. Because of the dominated convergence in the previous problem, fah fa(@®)dt
has limit 27)~Y 212/2 dt, and this is just the statement of the convergence in
distribution.

22-23 and 25. The style of argument for these problems is all the same. In the
case of Problem 22, we have

Pla<x+c<by=Pla—c<x <b—c):fabfccf(t)dt:fabf(s—c)ds,

and thus the probability distribution of x 4 c is f(t — x) d¢t. Similarly in Problem 23
the probability distribution of cx is ¢~! f (¢ ~'#) dt, and in Problem 25 the probability
distribution of w,, is — e~11/20%),

Nz

o2
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24. We are to consider

o e~/ Q0% ﬁ e~ =1/ 1f we write
out the convolution of the two functions and complete the square in the exponent, we
see that the result is a multiple of some quadratic exponential, hence is normal. The
means have to add, and the independence implies that the variances have to add, by
a computation in Section 4. Thus the probability distribution of the sum has to be
N(u+ w1, 0% +0'?).

26. The probability distribution of w), is equal to ﬁ e1"/20™ for every n, and
we are considering the limit of a constant sequence.

Chapter X

1. Examination of the proof shows that equality can fail only at one step, and
that the inequality at that step step holds by the Schwarz inequality. For two nonzero
functions, equality holds in the Schwarz inequality if and only if the functions are
proportional to one another. Therefore the condition is that 7 (¢) is proportional to
f(1), i.e., that f'(¢r) = ktf(¢) for some constant k. Solving, we get f(¢) = L
This function is in the Schwartz space if and only if Rek < 0.

2. The function fi(t) = ¢~ !sinmt vanishes at every integer except 0, and the
Fourier transform F f; is supported in [—%, %]. If (1) = fi (%t), then f; vanishes at
every half integer except 0, and the Fourier transform is supported in [—1, 1]. Finally
the function f3 with f3(t) = fo(t — %) vanishes at every half integer except 1, and
the Fourier transform is supported in [—1, 1]. Thus f3 has the required properties.

N .
3. For (b), write v(y) = Y cre 2Ry with ¢y # 0 and cy # 0. Then
k=M
1 = |v(y)|? is a trigonometric polynomial of the form

N N N N —-M '
Z cke—2mky Z c—jeZﬂlJy — Z Z ckae—ZHz(k+l)y.
k=M =M k=M I=—N
The lowest order exponential that appears is e 27N =M) "and it has coefficient

cycy # 0. Since the exponentials are linearly independent, N — M = 0, and
v(y) is a multiple of a single exponential.

4. For (a), define f #(x) = f(—x) for any function f on R. Let V; be the set of
all f# such that f is in V;. Then ¢" and {Vj#} form a multiresolution analysis.

Part (b) is routine.

For (c), the idea is that the Daubechies ¢ is constructed using a function L£(y)
built from all the roots within the unit disk of a certain polynomial Q, while ¢*, apart
from an integer translation, arises from the same construction with the corresponding
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L(y) built from all the roots outside the unit disk. In more detail let Q(z) be as in the
construction of ¢, and define

L1() = [1 7 —ap) [ 2 — B)me.

Jerj| <1 Bk

We set c; = £1(0)~!, and then £(y) = ¢;£1(y) is the function £ that appears in
Proposition 10.34. For each factor of £, we have

(62m'y o Ol) — anniy(a—l - e—27riy) — _a627riy(e—27riy o O[_l).
Taking the product of all the factors, we obtain

E’f(y) = c2e?™PY T (e 270 — o) [ 1 (e7 2™y — Br)™  with ¢y £ 0and p € Z.

eej|>1 Br
Let £5(y) be the product on the right, so that Ef(y) = 2e77PY L5 (y). Now

l + e—27Ti}’

) Lo

mo(y) = (

implies

1+62niy
oy = (L2

)" L)
. iy N
:eZ”’Ny<7l +62 ) ()

4 14+ e 2TY\N
= cwszy(iez ) L)

. 1 1 —2miy N
= e I INEP)Y (%) Lo(y).

Form the & function that corresponds to mj. The exponential ¢>™/(N+P)Y contributes
exactly e>7!(N+P)Y to the infinite product, and F~! carries the exponential to an integer
translation. For the constants we have

1= L£(0) = £0) = ¢1£](0) = c1c2£2(0),

and this is the correct normalization to have in the £ part of the function mg. Conse-
quently ¢* comes from the same construction as ¢ but with the roots o with |e;| > 1
in place of the roots a; with |aj| < 1, possibly in combination with a translation by
the integer N + p.
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5. Let Vj be the subspace of all functions in L?(R) that are a.e. constant on each
interval [n — % ,n+ %) forn € 7Z. Then the integer translates of ¢ form an orthonormal
basis of Vp. We obtain V; by dilation from V as usual, and the resulting sequence
{Vj}jez of spaces forms a multiresolution analysis with ¢.

6. For (a), we have mgo(y) = %(1 +e*Y) = 72 cos 2y and

n .
2" sin2my/2" ] mo~7y)
j=1

. n .
_ 2"e—2my(%+--~+z%>< I cos(zny/zf)) sin(2y/2")
j=1

. n_l j
— 2n—le—2m)’(%+'“+2+l)( l_[ COS(27Ty/2])> Sin(zny/zn_l)
j=I
20 cos2my2) siny/2)
— e 2miy(3+tam) sin(2my).

Therefore

sin(2my/2") ﬁ mo(2—Ty) = e—2niy(%+~--+2%)<3m2”)’)'

Letting n tend to infinity shows that

e i ; 1 — e 47y
= Vo) = ———— = (F]| .
2i(2m) (e ) Ariy (F 0.2 ()

sin2mwy )

h(y) = e_zniy( 5

Thus (p(x) = 1[0,2] (x)

For (b), ¢(x) and ¢ (x — 1) are not orthogonal, since they are > 0 and their supports

overlap. Hypothesis (iii) is not satisfied, since %(1 + ¢*) is not > 0 for |y| < 1

47
merely > 0 .
7. P, f is meaningful for f in L!(R) by Proposition 10.5. The formula is
P f(x) = |Im,k|71 f[ka Sy dy for x € Im,k'
Thus
S N PnFOldx = L illln k17| [, F) Y] < [, 1F G dy.

Summing on k, we obtain

Jg |Pnf)ldx < [p |f()]dy,
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ie., |Pufll; < IIfll;- To prove the convergence in L', we observe from Corollary
10.7 that P, g tends to g uniformly if g is in C¢om(R). Since the convergence all
takes place within a compact set, P,,g tends to g in L' (R). Given f € L'(R) and
€ > 0, choose g € Ccom(R) with [|g — fl, < €/3. If m is taken large enough so that
| Pmg — gll; < €/3, then

1Pof — flly < N Puf — Puglly + 1 Png — glly + 118 — flIy
=20f —glly +11Png — gl
<2/34||Png—gl; <e.
8. From the first formula in the solution of Problem 7, we have f I P,f(x)dx =

flmk f(x)dx. Summing on k then gives [ Py, f(x)dx = [ f(x)dx. Thus the

continuous linear functional £(f) = fR f(x)dx on L'(R) has the property that
Py f) = £(f). If f is a function in L' (R) for which P, f tends to 0 in L' (R),
then the continuity of ¢ says we must have lim,, £(P,, f) = 0 and hence £(f) = 0.
Since £(f) # 0 for f = Ijo,1}, limy— oo Pn f cannot be O for f = I 13-

9. The value of Py, f(3) for this f is 2™ |, x N [0, )|, where
Ingk={yeR|k=<2"y <k+1},

and % is to be in I, . The binary expansion of % comes from the geometric series
% = % + 4% + 41—3 + - -, and the sets [, x containing % are determined as follows.
If m =2riseven, thenk <4"/3 <k + 1fork =4"(;+ 3 + -+ 7). The y’s
that are in I, ; are the ones with k < 4"y < k 4 1, the smallest of which is 47"k,
ie.,y= % + 4% 4+ 4+ 4i,. The interval of such y’s is to be intersected with [0, %),
and the measure of the result is % — (% + 4% +---+ 4%) = % - 1—34*' =47"/3. The
normalization by the factor 2 in the formula for P, f( %) then yields 1/3. So the

value of P, f (%) is % for every even m. A similar computation for odd m gives %
Therefore
liminf P,,(3) = 1 < 2 = limsup P, (3).
10. Let f be in LZ(R) with support in [0, 1]. We can write out the one-sided Haar
series expansion of f as

F@ = 2 (fa S 0I00x0)d3)00, ) + 2 5 (o L O 0) )00

€Z j=0ke

In the first term, fR Fey () dy =0 for k # 0, since f is supported in [0, 1]. In

the second term, fR f(y)t/fj,k(y) dy = 0 unless ‘/fj,k is supported in [0, 1]. The result
is that

flx) = (fpr(—y)dY)ﬁv(X) + . 02]2 ” (f]R W,»,k(y) dy)I//j’k()C).
Vik sfl;p(;rted in0.1]
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This proves that every member of L2([0, 1]) is a limit of linear combinations of the
stated restrictions of functions. The restrictions are orthonormal as well, and hence
they form an orthonormal basis.

11. Let f(x) = f(2x) + f(2x — 1), and let f: Ff. Taking Fourier transforms,
we get

FO) = fo f@o)e™ 0 dx + [, f Qx = De > dx

=3 Jr Fx)e 2Ty dx + e Fr)e2mittDy gy
= LU + e Fdy)

=30+ FGEy)

= LA+ )1+ ) fily)

= ¢ cos(rry /2)e T cos(ry /4) - - e TV cos(ry /2N F(27M).
Thus
F(ysinGry/2")
—xiy/2 —miy/2" —1y o N
= e T2 T/ cos(my/2) cos(my /4) - - - cos(my /2" Y sin(ry /2" )5
x f27"y)
= ¢ TGHIF ) cos(y /2) sin(y/2) i F2 7 Y),
and we obtain

~  sin(my2™)

fO—=

e—niy(%-‘r%-&-'---i-%n) sin(ny)f(z_”y),
Dividing both sides by 7y, we let n tend to infinity with y fixed, and the result is

. —7iy o .
Fiyy = 250 7).
my

since f is continuous at 0. We can rewrite this equality as

_ p2miy __

—————F(0) = (Flpo.;(») F (0).

S = iy

Therefore we can conclude that f is a multiple of /jo 1;-
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12. Taking the inner product of both sides with ® (2x — n) and using the orthog-
onality of the functions ® (2x — k) for k € Z, we obtain

[ @@)PQ2x —n)dx =a, [ ®Q2x —n)?dx = Ja, [ P(x)?dx = La,.
So
an =2 [ ®(x)®Q2x —n)dx = 2/}{32 ®2x —n)dx = [, ®(x — n)dx.
We conclude thatag = 1 anda_; = a; = % The given identity thus has to be
P(x) =d2x) + 3PQ2x — 1) + 1OQ2x + 1),

For % <x < %, the left side is O while the right side is 0 + % +0= %, contradiction.

13. Since v is of class C™, the derivatives of P must match those of v through
order m at x = 0 and x = 1. Then P("(O) =0for0 <k <m, P(1) = 1, and
PO (1) =0for 1 <k < m. The first of these conditions says that P(x) is divisible
by x”*1. Thus P is admissible.

14. The difference of two admissible polynomials is divisible by x”**! and (x—1)™,
hence by x™(x — 1)™. Thus it has degree > 2m + 2. This proves uniqueness of
admissible polynomials of degree < 2m + 1. If P is admissible, then the Euclidean
algorithm allows us to write P(x) = A(x)x"*!(x — 1)"*! + B(x) with B = 0 or
deg B < 2m + 1, and B will be admissible. This proves existence of admissible
polynomials of degree < 2m + 1 under the assumption that an admissible polynomial
of some degree exists.

15. If P(x) is admissible, then sois 1 — P(1 — x). The uniqueness in Problem 14
forces P(x) + P(1 — x) = 1.

16. For (a), the Binomial Theorem gives

(1= gyt = mil (—1)k <m + 1>Zk

k=0 k
)4
=2 (—1)k<’"k+ 1>zk + [P 1]
k=0

m+ 1

= i (—1)pq< )qu + [z,
q=0

the last equality following after the change of indices k = p — gq.
For (b), let D = %. The binomial series, convergent for |z| < 1, is

(1 =)~ = ki & (D =27 D)0)*

1Y L D +2) - (m 4 k)
k=1

% (m + k)zk,
=0\ k
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and the conclusion follows.
For (c), we multiply the results of (a) and (b) and obtain

1 — (1 _ Z)m+l(1 _ Z)—(m+1)

=G (5 E () e

Equating the coefficients of z” on the two sides of the equation gives the desired
result, since the z? term in the product arises exactly when k = [.
m
17. For (a), we set f(x) = x"! and g(x) = > (m,_:k)(l — x)¥. Then we have
k=0

DPP(x) = f DP=(x™ Y Dlg(x)

q=0
with
DP=4(x™ Y = (m + D) (m)(m — 1) -+~ (m — p + g + 2)x" =P+
- (m + 1)!
p—q (m+1 1) =
DF~E(x™T0)(1) nprq D!
Dg(x) = % (=D = 1) (k —q + (1 —x)* 4
k=0
Dig(1) = (”‘”)q!(—nq.
q
So

P (p (m+ 1)! m+q>
prp(y=Y (P) T —1)7q!
W q—o(Q>m—p+q+1)!( q e

p ! m+1 m—l—q)
—q)! 1(—1)
g q'(p — q)'<p—CJ>(p q>< q ¢
=p!Z(—1)q<m+l><m+q>.
4=0 p—q q

For (b), we compute P (1) from (a) with p = O and obtain P (1) = 0!("") (") =
1. We compute PP (1) forl < p < m from (a) with p > 0 and obtain

PO = pty (—1) (’” i 1) (’" - q)
g=0

p—q q

(e ()0
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The sum in parentheses on the right side is 0 by Problem 16¢, and thus P(")(1) = 0 for
p > 0. The polynomial P is manifestly divisible by x”*!, and thus it is admissible.
Since P hasdegree 2m+-1, Problems 14 and 15 show that P is usable as the polynomial
in the definition of the Meyer wavelet of index m.

18. It is enough to treat the scaling function ¢, since the wavelet equation shows
that v is a linear combination of the functions ¢, ,. We have

015 = Jyet FOOIPA+ 3Dy + X fors o) [FOOIPA +37)" dy.
j=

Since (1 4+ y2)* < 25 for |y| < 1, the first term on the right side is < 2°¢ fR | Fol|?dy
and is harmless. The sum on the right side is

o [ 2V —j 2j\s
5};”(@)(“/4’”\” J(1 4223,

and this is finite by the ratio test if the equal quantities

> 2/ (JATN) I 25T = 3 (JaN) @)

j=1 j=1

are finite, and in turn these quantities are finite if 4° < +/ N. Takinglog, of both sides
shows that a sufficient condition for finiteness is that s < % log, (7w N), as required.

19. Problem 12c from Chapter III says that the members of H*(R) are of class
C"ifs > % + m. Thus we want % +m < }Llogz(nN) or

m < }Tlogz(nN) — % = %(logz(nN) —log24) = }Tlogz(nN/4).








