
APPENDIX A

Radon transform and propagation of singularities
in Rn

In Theorem 5.2 of Chap. 4, we proved the singularity expansion of the Radon
transform for an asymptotically hyperbolic metric using the parametrics for the
perturbed wave equation. It is also the case for the wave equation in the asymp-
totically Euclidean space. In this appendix, we state the precise results as well
as the relations between the Radon transform, the asymptotic profiles of the wave
equation and scattering matrices in a general short-range perturbation regime. The
main results are Theorem 1.14, Lemma 1.17, which can be utilized directly in the
inverse scattering for the wave equation, and Theorems 6.7, 6.10, which show how
the Radon transform is related with the propagation of singularities.

The Radon transform associated with the Euclidean metric is defined by

(R0f) (s, θ) =
∫

s=x·θ
f(x)dΠx, s ∈ R, θ ∈ Sn−1,

dΠx being the measure induced on the hyperplane {x ∈ Rn; s = x · θ} from the
Lebesgue measure dx on Rn. This is rewritten as

(R0f) (s, θ) = (2π)(n−1)/2

∫ ∞

−∞
eiskf̂(kθ)dk,

where f̂ is the Fourier transform:

f̂(ξ) = (2π)−n/2

∫

Rn

e−ix·ξf(x)dx.

Let us consider the Riemannian metric on Rn satisfying the following condition:

(0.1) |∂α
x (gij(x) − δij)| ≤ Cα(1 + |x|)−1−�0−|α|, ∀α,

where �0 > 0 is a constant. In Chap. 2, §7, we have already constructed a general-
ized Fourier transformation F (±) for ∆g. As in Chap. 2, §7, we construct F± from
F (±), and define the modified Radon transform R± by

R±f(s, θ) =
1√
2π

∫ ∞

−∞
eisk(F±f)(k, θ)dk.

For the Euclidean Laplacian in Rn this turns out to be

R± =
(
∓ ∂s + 0)

n−1
2 R0.

The main issue of this chapter is the singular support theorem for R±. We
construct ϕ(x, θ) ∈ C∞(Rn × Sn−1) such that

|∂α
θ ∂β

x (ϕ(x, θ) − x · θ)| ≤ Cαβ(1 + |x|)−|β|−�0 ,
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208 A. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN Rn

and it solves the eikonal equation

gij(x)(∂iϕ(x, θ))(∂jϕ(x, θ)) = 1, ∂i = ∂/∂xi,

in an appropriate region in Rn. We put Σ(s, θ) = {x ∈ Rn; s = ϕ(x, θ)}, which
describes a wave front of a plane wave solution to the wave equation ∂2

t u = ∆gu.
Then by observing the propagation of singularities, we obtain the following theorem:
Let R+(s, θ, x) be the distribution kernel of R+. Then if we fix s > 0 large enough,
we have the following singularity expansion:

R+(s, θ, x) ∼
∞∑

j=0

(s − ϕ(x, θ))−
n+1

2 +j
− rj(x, θ).

Let Σ(s) be the envelope of the family of hypersurfaces {Σ(s, θ) ; θ ∈ Sn−1},
which describes a spherical wave front. We then show that f (satisfying a suitable
condition on the wave front set) is piecewise smooth near Σ(σ) with interface Σ(σ)
if and only if

(
R+f

)
(s) is piecewise smooth near {s = σ} with interface s = σ.

Moreover we also obtain the singularity expansion of R+f in terms of spherical
wave solution to the eikonal equation.

1. Fourier and Radon transforms for perturbed metric

1.1. Spectral properties. The Laplace-Beltrami operator ∆g is symmetric
in L2(Rn;

√
g(x)dx). To avoid the denstity

√
g(x), we apply a unitary transforma-

tion : u → ug(x)1/4, and consider the differential operator

H = −g(x)1/4∆gg(x)−1/4 = −
n∑

i,j=1

aij(x)∂i∂j +
n∑

i=1

bi(x)∂i + c(x)

on L2(Rn; dx). Note that aij(x) = gij(x) and aij(x) − δij , bi(x), c(x) satisfy

|∂α
x a(x)| ≤ Cα(1 + |x|)−|α|−1−�0 , ∀α.

We put

H0 = −∆ = −
n∑

i=1

(∂/∂xi)2, V = H − H0,

R0(z) = (H0 − z)−1, R(z) = (H − z)−1.

Theorem 1.1. (1) σ(H) = σac(H) = [0,∞).
(2) σp(H) = σsc(H) = ∅.
(3) For any λ > 0 and f, g ∈ B, there exists a limit

lim
�→0

(
R(λ ± i�)f, g

)
=:

(
R(λ ± i0)f, g

)
.

(4) For any 0 < a < b < ∞, there exists a constant C > 0 such that

‖R(λ ± i0)f‖B∗ ≤ C‖f‖B, a < λ < b.

(5) For any f, g ∈ B, (R(λ ± i0)f, g) is a continuous function of λ > 0.

The proof is omitted. The limiting absorption principle in weighted L2 spaces
was proved in, e.g., [58], and in B − B∗ spaces by Agmon and Agmon-Hörmander
[55], and [71].
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1. FOURIER AND RADON TRANSFORMS FOR PERTURBED METRIC 209

1.2. Generalized Fourier transform. Let us recall the notation in Chap.
2, §7. For k ∈ R \ {0} and f ∈ B, we define

(
F0(k)f

)
(ω) = (2π)−n/2

∫

Rn

e−ikω·xf(x)dx.

It has the following properties

F0(k) ∈ B(B; L2(Sn−1)),

(1.1) F0(−k) = JF0(k),

J being the anti-podal operator defined by

(1.2)
(
Jψ

)
(ω) = ψ(−ω).

We put
Ĥ>0 = L2((0,∞);L2(Sn−1); kn−1dk),

Ĥ<0 = L2((−∞, 0);L2(Sn−1); |k|n−1dk).
Then the operator (F0f)(k) := F0(k)f is uniquely extended to a unitary operator
from L2(Rn) to Ĥ>0. It is also extended to a unitary operator from L2(Rn) to
Ĥ<0. With these properties in mind, we define the generalized Fourier transform
F (±)(k) by the following formula:

F (±)(k) = F0(k)
(
1 − V R((k ± i0)2)

)
.

Note that (k + i0)2 = k2 + i0 for k > 0 and (k + i0)2 = k2 − i0 for k < 0. By (1.2)
we have

(1.3) F (+)(−k) = JF (−)(k).

By Theorem 2.7.11, F (±) is uniquely extended to a unitary operator from L2(Rn)
to Ĥ>0 and diagonalizes H, and F (±) is also unitary from L2(Rn) to Ĥ<0.

Remark. One can also prove that
(
F (±)f

)
(k, θ) is smooth with respect to k and θ.

In fact, let ϕ(λ) ∈ C∞
0 ((0,∞)), f(x) ∈ C∞

0 (Rn) and put g(ξ) =
(
F (±)(k)ϕ(L)f

)
(ω)

with k = |ξ|, ω = ξ/|ξ|. Then g(ξ) ∈ C∞(Rn). For the case of the Schrödinger
operator −∆ + V where V is a real-valued potential, we have proven this property
in [59] by using a parametrics at infinity of the time evlolution equation. One
can repeat the same argument by using the geometrical optics solutions to be
constructed in §3 of this chapter.

The following theorem is proved in the same way as in [132].

Theorem 1.2. For k ∈ R \ {0} and f ∈ B

R((k + i0)2)f(x) � C0(k)r−(n−1)/2eikr
(
F (+)(k)f

)
(ω),

where r = |x|, ω = x/r, and

C0(k) =
√

π

2
(−ik + 0)(n−3)/2.

Here f � g means that

lim
R→∞

1
R

∫

|x|<R

|f(x) − g(x)|2dx = 0.
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210 A. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN Rn

1.3. Wave operators and scattering matrix. The wave operator W± for
the Schrödinger equation is defined by the following strong limit in L2(Rn):

W± = s − lim
t→±∞

eitHe−itH0 .

It is well-known that this limit exists and regarding F0 and F (±) as unitary from
L2(Rn) to Ĥ>0, we have the following relation

(1.4) W± =
(
F (±)

)∗F0.

The wave operator for the wave equation is usually defined by the energy norm.
We can also employ the following equivalent operator

(1.5) s − lim
t→±∞

eit
√

He−it
√

H0 = W± =
(
F (±)

)∗F0.

The point is that the limit in the left-hand side exists, and coincides with the wave
operator for the Schrödinger equation. This fact, called the invariance principle, is
known to hold in a broad situations (see e.g. [80], p. 579). The equality (1.5) can
of course be proved directly by using F (±) (see e.g. [102]).

As a by-product, one can show that the solution u(t) of the wave equation{
∂2

t u = −Hu,

u(0) = f, ∂tu(0) = −i
√

Hf

behaves as follows

‖u(t) − e−it
√

H0f±‖L2 → 0 as t → ±∞,

where f± =
(
F0

)∗F (±)f . Therefore F (±) represents the far field behavior of waves.
The same fact can be proven for the Schrödinger equation.

Definition 1.3. Regarding F0 and F (±) as unitary from L2(Rn) to Ĥ>0, we
define the scattering operator S, its Fourier transform Ŝ, and the physical S-matrix
Ŝphy(k) by

S =
(
W+

)∗
W−, Ŝ =

(
F0

)∗
SF0 = F (+)

(
F (−)

)∗
.

Ŝphy(k) = I − πikn−2F (+)(k)V F0(k)∗, k > 0.

Lemma 1.4. Ŝphy(k) is unitary on L2(Sn−1) for any k > 0, and
(
Ŝf

)
(k) = Ŝphy(k)f(k), ∀f ∈ Ĥ>0, a.e. k > 0,

F (+)(k) = Ŝphy(k)F (−)(k), ∀k > 0.

Definition 1.5. For k > 0, we define the geometric scattering matrix Ŝgeo(k)
by

Ŝgeo(k) = Ŝphy(k)J.

The following theorem is proved in the same way as in [132], (see also [60],
[62]).

Theorem 1.6. Let k > 0, and put

N (k) = {u ∈ B∗; (H − k2)u = 0}.
(1) We have

N (k) = F (±)(k)∗
(
L2(Sn−1)

)
.
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1. FOURIER AND RADON TRANSFORMS FOR PERTURBED METRIC 211

(2) For any u ∈ N (k) there exist ϕ± ∈ L2(Sn−1) such that

(1.6) u(x) � ei(kr−(n−1)π/4)

r(n−1)/2
ϕ+(ω) +

e−i(kr−(n−1)π/4)
r(n−1)/2

ϕ−(ω),

where r = |x|, ω = x/r.
(3) For any ϕ− ∈ L2(Sn−1), there exist a unique u ∈ N (k) and ϕ+ ∈ L2(Sn−1)
such that the expansion (1.6) holds. Moreover they are related as follows :

ϕ+ = Ŝgeo(k)ϕ−.

1.4. Modified Radon transform. It is convenient to change the definition
of the generalized Fourier transform slightly. For k ∈ R \ {0}, we define

F±(k) =
1√
2
(∓ik + 0)(n−1)/2F (±)(k),

F0(k) =
1√
2
(−ik + 0)(n−1)/2F0(k),

and put
(
F±f

)
(k) = F±(k)f ,

(
F0f

)
(k) = F0(k)f . Note that by (1.3)

(1.7) F+(−k) = JF−(k).

Theorem 1.7. (1) F± : L2(Rn) → L2(R; L2(Sn−1); dk) is an isometry. More-
over we have

(F±Hf) (k) = k2 (F±f) (k).

(2) For k > 0, we have

F+(k) = (−i)n−1Ŝphy(k)JF+(−k).

Consequently, the range of F± has the following characterization:

g ∈ RanF+ ⇐⇒ (−i)n−1Ŝphy(k)Jg(−k) = g(k), k > 0,

g ∈ RanF− ⇐⇒ (−i)n−1Ŝphy(k)g(k) = Jg(−k), k > 0.

(3) Let r+ (r−) be the projection onto Ĥ>0 (Ĥ<0). Then we have

(1.8) W+ = 2
(
F+

)∗
r+F0, W− = 2

(
F+

)∗
r−F0,

(1.9) W+ = 2(−i)n−1
(
F−

)∗
r−F0, W− = 2in−1

(
F−

)∗
r+F0.

Proof. Theorem 2.7.11 proves (1). Lemma 1.4 and (1.3) imply Ŝphy(k)JF (+)(−k)
= F (+)(k) for k > 0, which proves (2). The formula (1.4) proves (1.8) for W+. For
f, g ∈ B, we have by using (1.3) and (1.4) for W−(

W−f, g) = (F0f,F (−)g)

=
∫ ∞

0

(F0(k)f,F (−)(k)g)kn−1dk

=
∫ 0

−∞
(JF0(k)f, JF (+)(k)g)|k|n−1dk

=
∫ 0

−∞
((−ik + 0)(n−1)/2F0(k)f, (−ik + 0)(n−1)/2F (+)(k)g)dk

= 2
(
(F+)∗r−F0f, g).
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212 A. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN Rn

This proves (1.8) for W−. By a similar computation using

(∓ik + 0)α = e∓sgn(k)απi/2|k|α, sgn(k) = k/|k|,
we have
(
W+f, g) =

∫ ∞

0

(F0(k)f,F (+)(k)g)kn−1dk

=
∫ 0

−∞
(JF0(k)f, JF (−)(k)g)|k|n−1dk

=
∫ 0

−∞
((ik + 0)(n−1)/2F0(k)f, (ik + 0)(n−1)/2F (−)(k)g)dk

= (−i)n−1

∫ 0

−∞
((−ik + 0)(n−1)/2F0(k)f, (ik + 0)(n−1)/2F (−)(k)g)dk

= 2(−i)n−1
(
(F−)∗r−F0f, g),

which proves (1.9) for W+. Finally by (1.4)
(
W−f, g) =

∫ ∞

0

(F0(k)f,F (−)(k)g)kn−1dk

=
∫ ∞

0

((ik + 0)(n−1)/2F0(k)f, (ik + 0)(n−1)/2F (−)(k)g)dk

= in−1

∫ ∞

0

((−ik + 0)(n−1)/2F0(k)f, (ik + 0)(n−1)/2F (−)(k)g)dk

= 2in−1
(
(F−)∗r+F0f, g),

which proves (1.9) for W−. �

As a consequence of Theorem 1.7 (2), we have

g ∈ RanF0 ⇐⇒ g(−k,−ω) = in−1g(k, ω), k > 0.

The projection onto the range of F0 is written as follows.

Lemma 1.8. We define the operator J̃ by (J̃f)(k, ω) = f(−k,−ω). Then

F0(F0)∗ =
1
2

+
1
2
(
(−i)n−1r+ + in−1r−

)
J̃ .

Proof. We put
(
U0f

)
(k, ω) = 1√

2
|k|(n−1)/2f̂(kω). Then U0 is an isometry from

L2(Rn) to L2(R; L2(Sn−1); dk) and

g ∈ RanU0 ⇐⇒ g = J̃g.

Since U0(U0)∗ is the projection onto the range of U0, we have

U0(U0)∗ =
1
2
(1 + J̃).

Let h = ζ1/2r+ + ζ
1/2

r−, ζ = e−(n−1)πi/2. Then we have F0 = hU0, hence

F0(F0)∗ = hU0(U0)∗h∗.

As can be checked easily

(1.10) J̃r± = r∓J̃ .

Using these formulas we obtain the lemma by a direct computation. �
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1. FOURIER AND RADON TRANSFORMS FOR PERTURBED METRIC 213

Corollary 1.9.

(1.11) F+ = r+F0(W+)∗ + r−F0(W−)∗,

(1.12) F− = in−1r+F0(W−)∗ + (−i)n−1r−F0(W+)∗.

Proof. By (1.8), F0

(
W±

)∗ = 2F0(F0)∗r±F+. By Lemma 1.8 and (1.10) we
have

r±F0(F0)∗r± =
1
2
r±.

This proves (1.11). By (1.9), we have F0(W+)∗ = 2in−1F0(F0)∗r−F−, and F0(W−)∗ =
2(−i)n−1F0(F0)∗r+F−. Therefore

r−F0(W+)∗ = in−1r−F−, r+F0(W−)∗ = (−i)n−1r+F−.

Hence (1.12) follows. �

Definition 1.10. The modified Radon transform R± is defined by

(R±f) (s) =
1√
2π

∫ ∞

−∞
eiks (F±f) (k)dk.

By (1.7) and Theorem 1.7, we have

Theorem 1.11. R± : L2(Rn) → L2(R; L2(Sn−1); dk) is an isometry and

(R±Hf) (s) = −∂2
s (R±f) (s).

Moreover
(R+f) (−s) = J (R−f) (s).

Definition 1.12. For an open interval I ⊂ R, let Ĥm(I) be the set of functions
φ(s, ω) satisfying ∑

0≤j≤m

∫

I

∥∥∂j
sφ(s, ·)

∥∥2

L2(Sn−1)
ds < ∞.

If I = R, we simply write Ĥm, in which case m can be any real number by passing
to the Fourier transformation.

Lemma 1.13. For any m ≥ 0 we have

f ∈ Hm ⇐⇒ R±f ∈ Ĥm.

Proof. A direct consequence of Theorem 1.11. �

1.5. Asymptotic profiles of solutions to the wave equation. The fol-
lowing theroem is proved in the same way as Theorem 2.8.9.

Theorem 1.14. For x ∈ Rn, we write r = |x|, ω = x/r. Then for f ∈ L2(Rn),
we have as t → ∞

∥∥∥
(
cos(t

√
H)f

)
(x) − r−(n−1)/2

√
2

(R+f) (r − t, ω)
∥∥∥ → 0,

∥∥∥
(
sin(t

√
H)f

)
(x) − i r−(n−1)/2

√
2

(
h
(
− i

∂

∂s

)
R+f

)
(r − t, ω)

∥∥∥ → 0,

where ‖ · ‖ is the L2(Rn)-norm, and h(k) = 1 (k > 0), h(k) = −1 (k < 0).
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214 A. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN Rn

1.6. Relation between scattering operators. The scattering operator is
also defined by the Radon transform, namely

Definition 1.15. SR = R+ (R−)∗ .

The following lemma follows easily from Theorem 1.11 and Lemma 1.13.

Lemma 1.16. (1) SR is a partial isometry with initial set Ran
(
R−

)
and final

set Ran
(
R+

)
.

(2) ∂2
sSR = SR∂2

s .
(3) SRĤm ⊂ Ĥm, ∀m ≥ 0.

The relation to the scattering operator S in Definition 1.3 is as follows.

Lemma 1.17. Let F1 be the 1-dimensional Fourier transform, r± the projection
in Theorem 1.7 (3) and J̃ as in Lemma 1.8. Then we have

F1SR(F1)∗ = (−i)n−1r+F0S(F0)∗r+ + in−1r−F0S
∗(F0)∗r− +

1
2
J̃ .

Proof. Since F1SR(F1)∗ = F+(F−)∗, the lemma follows from Corollary 1.9. �

2. Asymptotic solutions

2.1. Geometrical optics. In this section we construct an asymptotic solution
to the equation

−∆g

(
eikϕa

)
= k2eikϕa,

k ∈ R being a large parameter. We put a =
∑N

j=0 k−jaj . Then we have

e−ikϕ(−∆g − k2)eikϕa = k2
[
gαβ(∂αϕ)(∂βϕ) − 1

]
a − ikTa − ∆ga

= k2
[
gαβ(∂αϕ)(∂βϕ) − 1

]
a − ikTa0

− i
N−1∑
j=0

k−j(Taj+1 − i∆gaj) − ik−N∆gaN ,

(2.1)

where T is the following differential operator

T = 2gαβ(∂αϕ)∂β + ∆gϕ.

We define the Hamiltonian h(x, p) by

h(x, p) =
1
2
gij(x)pipj .

Our aim is to constrcut a real function ϕ(x, θ) ∈ C∞(Rn×Sn−1) which behaves
like x ·θ+O(|x|−�0) as |x| → ∞, and solves the eikonal equation h(x,∇xϕ) = 1/2 in
the region {x · θ + |x⊥|/� > R}, where x⊥ = x− (x · θ)θ, and R, 1/� are sufficiently
large constants. We shall parametrize the bicharacteristics by the asymptotic data
at infinity.

We fix θ ∈ Sn−1 arbitrarily. We seek a solution x(t), p(t) of the Hamilton-Jacobi
equation

(2.2)
dx

dt
=

∂h

∂p
,

dp

dt
= −∂h

∂x
,

having the following asymptotics:

x(t) = tθ + y + O(t−�0), p(t) = θ + O(t−1−�0), (t → ∞)
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2. ASYMPTOTIC SOLUTIONS 215

for some y ∈ Rn. A simple calculation shows that x(t) satisfies the following
integral equation

x(t) = tθ + y +
∫ ∞

t

(s − t)
d2x(s)

ds2
ds.

Since Hamilton’s equation (2.2) coincides with the equation of geodesic, we have

d2xk

dt2
= −Γk

ij

dxi

dt

dxj

dt
= −Γk

ijg
iαgjβpαpβ ,

Γk
ij being Christoffel’s symbol. In view of these formulas, we put

z(t) = x(t) − tθ − y,

Ak(t, s, y, θ; z, p) = (t − s)Γk
ij(sθ + y + z)giα(sθ + y + z)gjβ(sθ + y + z)pαpβ ,

Bk(s, y, θ; z, p) =
1
2

∂gij

∂xk
(sθ + y + z)pipj ,

A = (A1, · · · , An), B = (B1, · · · , Bn),

and consider the integral equation

(2.3)




z(t) =
∫ ∞

t

A(t, s, y, θ; z(s), p(s))ds,

p(t) = θ +
∫ ∞

t

B(s, y, θ; z(s), p(s))ds.

We fix a sufficiently small � > 0. For a sufficiently large R > 0, let ΩR,�(θ) be the
region defined by

ΩR,�(θ) = {(t, y, z) ; t + |y|/� > R, y · θ = 0, |z| < 3}.

Then taking R large enough we have by a simple computation

(2.4) |tθ + y + z| ≥ C(|t| + |y| + R), ∀(t, y, z) ∈ ΩR,�(θ),

where the constant C is independent of (t, y, z) ∈ ΩR,�(θ) and R > 0. We put

X(t) = (z(t), p(t)),

and define the non-linear map L(X) by

L(X)(t, y, θ) =
(∫ ∞

t

A(t, s, y, θ; z(s), p(s))ds,

∫ ∞

t

B(s, y, θ; z(s), p(s))ds

)
.

We parametrize y in the following way. Take vectors e1(θ), · · · , en−1(θ) so that
e1(θ), · · · , en−1(θ) and θ form an orthonormal basis of Rn. Then if y · θ = 0, y is
written as y =

∑n−1
i=1 yiei(θ). This (y1, · · · , yn−1) gives the desired parametrization.

Note that e1(θ), · · · , en−1(θ) can be chosen to be smooth with respect to θ ∈ Sn−1

(at least locally). We put

|X|∞ = sup
(t,y,z)∈ΩR,�(θ)

|X(t)|.

Lemma 2.1. Suppose |X|∞ < 2, |X̃|∞ < 2. Then the following inequalities
hold: ∣∣∂m

t ∂α
y L(X)(t, y, θ)

∣∣ ≤ Cmα(|t| + |y| + R)−�0−m−|α|, ∀m,α,
∣∣∣L(X)(t, y, θ) − L(X̃)(t, y, θ)

∣∣∣ ≤ C(|t| + |y| + R)−�0 |X − X̃|∞.
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Proof. This is a direct consequence of (2.4) and the estimate ∂α
x Γk

ij(x) =
O(|x|−2−�0−|α|), which follows from (0.1). �

We now put X0 = (0, θ) and take R > 0 large enough. Then by Lemma 2.1
and the standard method of iteration, there exists a unique solution X(t, y, θ) of
the integral equation

X = X0 + L(X)
in the region {t + |y|/� > R, y · θ = 0} satisfying∣∣∂m

t ∂α
y (X(t, y, θ) − X0)

∣∣ ≤ Cmα(|t| + |y| + R)−�0−m−|α|, ∀m, α.

Returning back to the equation (2.2), we have proven the following lemma.

Lemma 2.2. Take θ ∈ Sn−1 arbitrarily and R > 0 large enough. Then there
exists a unique solution x(t, y, θ), p(t, y, θ) of the equation (2.2) such that in the
region {t + |y|/� > R, y · θ = 0} it satisfies∣∣∂m

t ∂α
y (x(t, y, θ) − tθ − y)

∣∣ ≤ Cmα(|t| + |y| + R)−�0−m−|α|, ∀m, α,
∣∣∂m

t ∂α
y (p(t, y, θ) − θ)

∣∣ ≤ Cmα(|t| + |y| + R)−1−�0−m−|α|, ∀m, α.

Proof. By differentiating the integral equation (2.3), we have

dxk

dt
= θk +

∫ ∞

t

Γk
ijg

iαgjβpαpβds,

(2.5)
dpk

dt
= −1

2
∂gαβ

∂xk
pαpβ = − ∂h

∂xk
.

Therefore we have to show that

gkαpα = θk +
∫ ∞

t

Γk
ijg

iαgjβpαpβds.

Since both sides tend to θk as t → ∞, we have only to show that their time
derivatives coincide. By (2.5), the formula to show is

∂gkα

∂xi
giβ − 1

2
gki ∂gαβ

∂xi
= −Γk

ijg
iαgjβ ,

which follows from a direct computation and the formula

∂gij

∂xm
= −gik

(
∂gkr

∂xm

)
grj .

The estimates of x(t), p(t) are easy to derive. �
Lemma 2.3. As a 2-form on the region {(t, y) ; t + |y|/� > R, y · θ = 0}, we

have
n∑

i=1

dpi(t, y, θ) ∧ dxi(t, y, θ) = 0.

Proof. Without loss of generality we assume θ = (0, · · · , 0, 1) and put y =
(u1, · · · , un−1, 0), t = un. Then we have∑

i

dpi ∧ dxi =
∑
j<k

[p, x]jkduj ∧ duk,

[p, x]jk =
∂p

∂uj
· ∂x

∂uk
− ∂p

∂uk
· ∂x

∂uj
.
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Noting that

∂

∂t

(
∂p

∂uj
· ∂x

∂uk

)
= − ∂2h

∂xi∂xm

∂xm

∂uj

∂xi

∂uk
+

∂2h

∂pi∂pm

∂pi

∂uk

∂pm

∂uj

is symmetric with respect to j and k, we have

∂

∂t
[p, x]jk = 0.

By Lemma 2.2, [p, x]jk → 0 as t → ∞. Hence [p, x]jk = 0, which proves the
lemma. �

For x ∈ Rn, we put x⊥ = x − (x · θ)θ and define the region �R,�(θ) by

�R,�(θ) = {x ∈ Rn ; x · θ + |x⊥|/� > R}.

In the coordinates with basis θ, e1(θ), · · · , en−1(θ), the differential of the map
(t, y) → x(t, y, θ) is I + O(R−�0). Therefore the following lemma holds.

Lemma 2.4. For large R > 0, the map (t, y) → x(t, y, θ) is a diffeomorphism
and its image includes �2R,�(θ).

Let t = t(x, θ), y = y(x, θ) be the inverse of the map : (t, y) → x(t, y, θ). We
put p(x, θ) = p(t(x, θ), y(x, θ), θ) for the sake of simplicity. Lemma 2.3 implies
d(

∑
j pj(x, θ)dxj) = 0, which shows

(2.6)
∂pj(x, θ)

∂xi
=

∂pi(x, θ)
∂xj

.

We put

f(x, θ) = p(x, θ) − θ =
∫ ∞

t

∂h

∂x

(
x(s, y, θ), p(s, y, θ)

)
ds

∣∣∣
t=t(x,θ),y=y(x.θ)

,

and define Ψ(x, θ) by

Ψ(x, θ) = x · θ −
∫ ∞

0

f(x + tθ, θ) · θdt.

Lemma 2.5. On �2R,�(θ), we have

(2.7) ∇xΨ(x, θ) = p(x, θ),

(2.8) h(x,∇xΨ(x, θ)) = 1/2,

(2.9) |∂α
x (Ψ(x, θ) − x · θ)| ≤ Cα(1 + |x|)−�0−|α|, ∀α.

(2.10) Ψ(x, θ) = t(x, θ).

27600106 メモアール32巻.indd   223 2014/05/19   17:01:36



218 A. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN Rn

Proof. Letting f = (f1, · · · , fn), we have
∂fj

∂xi
(x, θ) =

∂fi

∂xj
(x, θ) by (2.6). We

then have
∂Ψ
∂xi

= θi −
∫ ∞

0

∑
j

∂fj

∂xi
(x + tθ, θ)θjdt

= θi −
∫ ∞

0

∑
j

∂fi

∂xj
(x + tθ, θ)θjdt

= θi −
∫ ∞

0

d

dt
fi(x + tθ, θ)dt

= θi + fi(x, θ)
= pi(x, θ),

which proves (2.7). Since x(t), p(t) solve the equation (3.2), h(x(t), p(t)) is a con-
stant. Letting t → ∞, this constant is seen to be equal to 1/2, which together with
(2.7) proves (2.8). The estimate (2.9) follows from Lemma 2.1. By (2.7), we have

∂Ψ
∂t

= (∂iΨ)
∂xi

∂t
= gij (∂iΨ) (∂jΨ) = 1.

Therefore Ψ = t + t0(y, θ) for some t0(y, θ). However by Lemma 3.2, x(t, y, θ) · θ =
t + O(t−�0), which implies t0(y, θ) = Ψ − x · θ + O(t−�0) = O(t−�0). Therefore
t0(y, θ) = 0, which proves (2.10). �

The equality (2.6) yields the following corollary.

Corollary 2.6. For any smooth function f(x) on Rn, we have

∂

∂t
f(x(t, y, θ))

∣∣∣
t=t(x,θ),y=y(x,θ)

= gij(x)
∂Ψ(x, θ)

∂xj

∂f(x)
∂xi

.

By the above construction, Ψ(x, θ) is actually a function on the fibered space
{(θ, x) ; θ ∈ Sn−1, x ∈ ∆2R,�(θ)} and satisfies

|∂α
θ ∂β

x (Ψ(x, θ) − x · θ)| ≤ Cαβ(1 + |x|)−�0−|β|, ∀α, β.

Definition 2.7. We take χ∞(t) ∈ C∞(R) and χ(t) ∈ C∞(R) such that
χ∞(t) = 1, (t > 3R), χ∞(t) = 0, (t < 2R), χ(t) = 1, (t > −1 + 2�),
χ(t) = 0, (t < −1 + �), where 1/R and � > 0 are sufficiently small constants.
We define

ϕ(x, θ) = x · θ + χ∞(|x|)χ(x̂ · θ)
(
Ψ(x, θ) − x · θ

)
,

ϕ±(x, ξ) = ±|ξ|ϕ(x,±ξ̂ ), ξ̂ = ξ/|ξ|.

The following lemma is a direct consequence of the above definition.

Theorem 2.8. (1) ϕ±(x, ξ) ∈ C∞(Rn × (Rn \ {0})) and
∣∣∣∂α

ξ ∂β
x

(
ϕ±(x, ξ) − x · ξ

)∣∣∣ ≤ Cαβ |ξ|1−|α|(1 + |x|)−�0−|β|.

(2) If |x| > 3R and ±x̂ · ξ̂ > −1 + 2�, it satisfies the eikonal equation

h(x,∇xϕ±(x, ξ)) = |ξ|2/2.

(3) ϕ−(x, ξ) = −ϕ+(x,−ξ).
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2.2. Asymptotic solutions. We employ the above ϕ(x, θ) as ϕ in (2.1). Let-
ting

(2.11) a0(x, θ) = exp
(∫ ∞

t

1
2
(∆gϕ)(x(s, y, θ), θ)ds

) ∣∣∣
t=t(x,θ),y=y(x,θ)

,

and using Corollary 2.6, we have

Ta0(x, θ) = 0 for |x| > 3R, x̂ · θ > −1 + 2�.

By Theorem 2.8 (1), a0(x, θ) satisfies

|∂α
θ ∂β

x (a0(x, θ) − 1) | ≤ Cαβ(1 + |x|)−|β|−�0 .

We integrate the higer order transport equation

Taj − i∆gaj−1 = 0, j ≥ 1

in a similar manner, and obtain

|∂α
θ ∂β

x aj(x, θ)| ≤ Cαβ(1 + |x|)−j−|β|−�0 .

Let χ(t), χ�(t) ∈ C∞(R) be such that χ(t) = 1 (t > 4), χ(t) = 0 (t < 3), χ�(t) =
1 (t > −1 + 3�), χ�(t) = 0 (t < −1 + 2�). We put

(2.12) a(x, k, θ) = g(x)1/4χ�(x̂ · θ)
∞∑

j=0

k−jaj(x, θ)χ(�j |x|)χ(�j |k|).

By a suitable choice of the sequence �0 > �1 > · · · → 0, this series converges and
defines a smooth function. We finally define

a±(x, ξ) = a(x,±|ξ|,±ξ̂ ).

The following lemma holds.

Lemma 2.9. (1) On Rn × Rn, a±(x, ξ) satisfies

|∂α
ξ ∂β

x a±(x, ξ)| ≤ Cαβ(1 + |ξ|)−|α|(1 + |x|)−|β|.

(2) Let g±(x, ξ) = e−iϕ±(x,ξ)(L − |ξ|2)eiϕ±(x,ξ)a±(x, ξ). Then it satisfies
∣∣∂α

ξ ∂β
x g±(x, ξ)

∣∣ ≤ CαβN (1 + |ξ|)−N (1 + |x|)−N

for any N > 0 in the region |x| > 4R, ±x̂ · ξ̂ > −1 + 3�.

3. Fourier integral operators and functional calculus

3.1. Product formula for FIO. Lets us recall the theory of FIO’s. Since
we need precise product formulas, we employ the computation by [86], [87]. For
m ∈ R, let Sm be the class of symbols defined by

Sm � p(x, ξ) ⇐⇒
∣∣∂α

ξ ∂β
x p(x, ξ)

∣∣ ≤ Cαβ(1 + |ξ|)m−|α|, ∀α, β.

The phase function ϕ(x, ξ) ∈ C∞(Rn×Rn) is assumed to be real-valued and satisfy
the following conditions (3.1) ∼ (3.4) for a sufficiently small constant δ0 > 0:

(3.1) ϕ(x, ξ) − x · ξ ∈ S1,

(3.2)
∣∣∇ξ (ϕ(x, ξ) − x · ξ)

∣∣ < δ0,

(3.3)
∣∣∇x (ϕ(x, ξ) − x · ξ)

∣∣ < δ0(1 + |ξ|),
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(3.4)
∣∣∣∣

∂2

∂x∂ξ
ϕ(x, ξ) − I

∣∣∣∣ < δ0.

We define FIO’s Iϕ,a, Iϕ∗,a by

Iϕ,au(x) = (2π)−n

∫∫

Rn×Rn

ei(ϕ(x,ξ)−y·ξ)a(x, ξ)u(y)dydξ,

Iϕ∗,au(x) = (2π)−n

∫∫

Rn×Rn

ei(x·ξ−ϕ(y,ξ))a(y, ξ)u(y)dydξ.

We put Dx = −i∂x and define the ψDO p(x, Dx) with symbol p(x, ξ) by

p(x,Dx)u(x) = (2π)−n

∫∫

Rn×Rn

ei(x−y)·ξp(x, ξ)u(y)dydξ.

Using the conditions (3.1) ∼ (3.4) we can prove the following lemma.

Lemma 3.1. (1) The map Rn � ξ → η = ∇xϕ(x, ξ) ∈ Rn is a global diffeo-
morphism on Rn. Letting its inverse by ξ(x, η), we have

ξ(x, η) − η ∈ S1,

C−1(1 + |η|) ≤ 1 + |ξ| ≤ C(1 + |η|).
(2) The map Rn � x → y = ∇ξϕ(x, ξ) is a global diffeomorphism on Rn. Letting
x(y, ξ) be its inverse, we have

x(y, ξ) − y ∈ S0,

C−1(1 + |y|) ≤ 1 + |x| ≤ C(1 + |y|).

In the following Theorem 3.2, all symbols c(x, ξ) belong to Ss1+s2 and have the
following asymptoic expansion:

(3.5) c(x, ξ) ∼
∞∑

j=1

cj(x, ξ), cj(x, ξ) ∈ Ss1+s2−j .

Theorem 3.2. Let a ∈ Ss1 , b ∈ Ss2 . Then we have the following formulas.

(3.6)




Iϕ,aIϕ∗,b = c(x,Dx),

c(x, η) ∼ a(x, ξ)b(x, ξ) det
(

∂2

∂x∂ξ
ϕ(x, ξ)

)−1
∣∣∣∣∣
ξ=ξ(x,η)

+ · · · ,

where ξ(x, η) is the inverse map of η = ∇xϕ(x, ξ),

(3.7)




Iϕ∗,aIϕ,b = c(x, Dx),

c(y, ξ) ∼ a(x, ξ)b(x, ξ) det
(

∂2

∂x∂ξ
ϕ(x, ξ)

)−1
∣∣∣∣∣
x=x(y,ξ)

+ · · · ,

where x(y, ξ) is the inverse map of y = ∇ξϕ(x, ξ),

(3.8)

{
Iϕ,ab(x,Dx) = Iϕ,c,

c(x, ξ) ∼ a(x, ξ)b(∇ξϕ(x, ξ), ξ) + · · · ,
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(3.9)

{
a(x,Dx)Iϕ,b = Iϕ,c,

c(x, ξ) ∼ a(x,∇xϕ(x, ξ))b(x, ξ) + · · · .

For the proof, see [86], Theorems 2.1 ∼ 2.4. We need the following explicit
form of the asymptotic expansion (3.5) later. We put

∇̃ξϕ(x, ξ, η) =
∫ 1

0

(∇ξϕ) (x, tξ + (1 − t)η)dt,

∇̃xϕ(x, y, ξ) =
∫ 1

0

(∇xϕ) (tx + (1 − t)y, ξ)dt.

Then c(x, ξ) in (3.8) has the following asymptotic expansion:

(3.10) c(x, η) ∼
∑
α

1
α!

∂α
ξ

{
a(x, ξ)(Dα

x b)(∇̃ξϕ(x, ξ, η), η)
} ∣∣∣

ξ=η
,

and c(x, ξ) in (3.9) has the following asymptotic expansion:

(3.11) c(x, ξ) ∼
∑
α

1
α!

Dα
y

{(
∂α

ξ a
)
(x, ∇̃xϕ(x, y, ξ))b(y, ξ)

} ∣∣∣
y=x

,

(see [86], (2.41), (2.57)).

3.2. Functional calculus. In Chap. 3, §2, we have introduced the almost
analytic extension F (z) of f(t). By the construction procedure, we see that ∂tF (t+
is) is an almost analytic extension of f �(t). Let

(3.12) X = (1 + |x|2)1/2, Λ = (1 + |Dx|2)1/2.

Lemma 3.3. Let f(t) ∈ C∞
0 (R). Then we have for any N > 0

(3.13) f(H) = f(H0) +
N∑

n=1

pn(x,Dx)f (n)(H0) + RN ,

where pn(x,Dx) =
∑

|α|≤µ(n) a
(n)
α (x)Dα

x such that |∂β
x a

(n)
α (x)| ≤ Cαβ(1+|x|)−|β|−1−�0 ,

and RN satisfies

(3.14) XNΛNRNΛNXN ∈ B(L2(Rn)).

Proof. We first prove the lemma with the property (3.14) replaced by

(3.15) XNRNXN ∈ B(L2(Rn)).

We prove the case N = 1. By the resolvent equation, we have

(z − H)−1 − (z − H0)−1 = (z − H)−1V (z − H0)−1

= V (z − H)−1(z − H0)−1 + [(z − H)−1, V ](z − H0)−1

= V (z − H0)−2 + K(z),

K(z) = V (z − H)−1V (z − H0)−2

+ (z − H)−1[H,V ](z − H)−1(z − H0)−1.

Therefore by virtue of Lemma 3.2.1

f(H) − f(H0) = V
1

2πi

∫

C

∂zF (z)(z − H0)−2dzdz

+
1

2πi

∫

C

∂zF (z)K(z)dzdz.

(3.16)
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Since ∂tF (t + is) is an almost analytic extension of f �(t), we have by integration
by parts

f �(H0) =
1

2πi

∫

C

∂z∂tF (z)(z − H0)−1dzdz

=
1

2πi

∫

C

∂zF (z)(z − H0)−2dzdz.

Therefore the 1st term of the right-hand side of (3.16) is equal to V f �(H0). If Pj

is a differential operator of order j = 1, 2 with bounded coefficients, we have by
passing to the spectral decomposition

‖Pj(z − H)−1‖ ≤ C |Im z|−1(1 + |z|)j/2.

We then have
‖XK(z)X‖ ≤ C|Im z|−p(1 + |z|)p,

for some p ≥ 2. Since F (z) satisfies |∂zF (z)| ≤ C|Im z|p(1+ |z|)s−p−1 for any s < 0,
the remainder term has the desired estimate (3.15). The proof for N ≥ 2 is similar.

Now for f ∈ C∞
0 (R) we take χ ∈ C∞

0 (R) such that χ(t) = 1 on supp χ. We
multiply (3.13) by the expansion

χ(H) = χ(H0) +
N∑

j=1

χ(j)(H0)qj(x,Dx) + (R̃N )∗,

with qj(x, Dx) and R̃N having the above mentioned properties. We then have

f(H0)χ(H) = f(H0) + f(H0)(R̃N )∗.

Since R̃N satisfies (3.15), one can prove that f(H0)(R̃N )∗ satisfies (3.14). One can
deal with pn(x,Dx)f (n)(H0)χ(H) and RNχ(H) in a similar manner. �

4. Parametrices and regularizers

We construct parametrices for the wave equation in the form of a FIO using ϕ±
and a± in §2. Recall that ϕ±, a± contain cut-off functions. Here we need another
cut-off function which restricts x and ξ in a smaller region. Let R and � be as
in Definition 2.7. Take χ∞(t), χ(t) ∈ C∞(R) such that χ∞(t) = 1 (t > 10R),
χ∞(t) = 0 (t < 9R), χ(t) = 1 (t > −1 + 5�), χ(t) = 0 (t < −1 + 4�), and put

(4.1) χ±(x, ξ) = χ∞(|x|)χ∞(|ξ|)χ(±x̂ · ξ̂ ).

Definition 4.1. Let ϕ±, a± be as in Theorem 2.8 and Lemma 2.9, and χ± as
in (4.1). We define a FIO U±(t) by

U±(t) = Iϕ±,a±e−it
√

H0Iϕ∗
±,χ± .

In the following, ‖ · ‖ denotes either the operator norm ‖T‖B(L2(Rn)) of a
bounded operator T on L2(Rn) or the L2-norm ‖u‖L2(Rn) of a vector u ∈ L2(Rn).
There will be no fear of confusion. We put

G+(t) =
d

dt

(
eit

√
HU+(t)

)
.

Let X and Λ be as in (3.12).

Lemma 4.2. For any N > 0, there exists a constant CN > 0 such that

‖ΛNG+(t)ΛNXN‖ ≤ CN (1 + t)−N , t > 0.
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Proof. We have

G+(t) = eit
√

H

(
i
√

HU+(t) +
d

dt
U+(t)

)
.

We decompose this operator into two parts and make use of the tools in §3.

Low energy part. First we deal with the low energy part. We take χ0(t) ∈ C∞(R)
such that χ0(t) = 1 (t < 1), χ0(t) = 0 (t > 2) and consider ΛNeit

√
H
√

Hχ0(H)U+(t).
Noting that

ΛNeit
√

H
√

Hχ0(H)U+(t) = ΛN (1 + H)−N/2eit
√

H(1 + H)N/2
√

Hχ0(H)U+(t),

we have only to show

(4.2) ‖χ0(H)U+(t)ΛNXN‖ ≤ CN (1 + t)−N , ∀t,N > 0.

We decompose χ0(H)U+(t) into two parts:

(4.3) χ0(H)U+(t) = χ0(H)Iϕ+,a+ · e−it
√

H0Iϕ∗
+,χ+ .

Proposition 4.3. χ0(H)Iϕ+,a+ΛNXN ∈ B(L2(Rn)), ∀N > 0.

Proof. Lemma 3.3 entails the asymptotic expansion

(4.4) χ0(H) = χ0(H0) +
N∑

n=1

pn(x,Dx) + RN ,

(4.5) pn(x, ξ) = 0 for |ξ| > 2, XNΛNRNΛNXN ∈ B(L2(Rn)).

By the construction of a+(x, ξ) in §2 (see (2.12)), |ξ| ≥ 1/�0 and |x| ≥ 1/�0 on
supp a+(x, ξ). Therefore in the expression

(4.6)
∫∫

e−ix·ηχ0(|η|2)eiϕ+(x,ξ)a+(x, ξ)(1 + |ξ|2)N/2(1 − ∆ξ)N/2f̂(ξ)dξdx,

which is the Fourier transform of χ0(L0)Iϕ+,a+ΛNXNf , the phase has the following
estimate ∣∣∇x

(
x · η − ϕ+(x, ξ)

)∣∣ ≥ C(1 + |ξ|), C > 0.

Using the differential operator

P = i
∣∣η −∇xϕ+(x, ξ)

∣∣−2(
η −∇xϕ+(x, ξ)

)
· ∇x,

and integration by parts, we can then rewrite (4.6) as∫∫
e−i(x·η−ϕ+(x,ξ))χ0(|η|2)

(
P ∗)2N

a+(x, ξ)(1 + |ξ|2)N/2(1 − ∆ξ)N/2f̂(ξ)dξdx.

Since |
(
P ∗)2N

a+(x, ξ)| ≤ CN (1+ |x|)−2N (1+ |ξ|)−2N , by integrating by parts with
respect to ξ, the proposition is proved if χ0(H) is replaced by χ0(H0) . By (4.5) one
can prove the same result if χ0(H0) is replaced by pn(x,Dx) or RN . This proves
the above proposition. �

By (4.3) and Proposition 4.3, the proof of (4.2) is reduced to the following
Proposition.

Proposition 4.4.

‖X−NΛ−Ne−it
√

H0Iϕ∗
+,χ+ΛNXN‖ ≤ CN (1 + t)−N , ∀t,N > 0.
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224 A. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN Rn

Proof. We estimate the phase function of

e−it
√

H0Iϕ∗
+,χ+f = (2π)−n

∫∫
ei(x·ξ−t|ξ|−ϕ+(y,ξ))χ+(y, ξ)f(y)dydξ.

First we have
|∇ξ(t|ξ| + ϕ+(y, ξ))| ≥ |tξ̂ + y| − C|y|−�0 .

Here the localization with respect to the directions of y and ξ plays an important
role. Since ξ̂ · ŷ > −1 + 4� on suppχ+(y, ξ), we have

|tξ̂ + y|2 = t2 + 2t|y|ξ̂ · ŷ + |y|2

≥ t2 − 2t|y|(1 − 4�) + |y|2

≥ 4�(t2 + |y|2).
By choosing R large enough, we have

(4.7) |∇ξ(t|ξ| + ϕ+(y, ξ))| ≥ C(t + |y|)
with a constant C > 0 independent of y and t > 0. Integration by parts then proves
the proposition. �

High energy part. Next we consider i
√

H(1 − χ0(H))U+(t) +
d

dt
U+(t). By the

definition of g+ in Lemma 2.9, we have

(4.8) HIϕ+,a+ − Iϕ+,a+H0 = Iϕ+,g+ ,

which implies

Iϕ+,a+(H0 − z)−1 − (H − z)−1Iϕ+,a+ = (H − z)−1Iϕ+,g+(H0 − z)−1.

We put f(t) = t−1/2(1−χ0(t)) and let F (z) be its almost analytic extension. Then
we have by virtue of Lemma 4.3

(4.9) f(H)Iϕ+,a+ − Iϕ+,a+f(H0) = B,

B =
1

2πi

∫

C

∂zF (z)(H − z)−1Iϕ+,g+(H0 − z)−1dzdz.

Using this formula, we then have
√

H(1 − χ0(H))Iϕ+,a+ = f(H)HIϕ+,a+

= f(H)Iϕ+,a+H0 + f(H)Iϕ+.g+

= Iϕ+,a+f(H0)H0 + BH0 + f(H)Iϕ+,g+ ,

where we have used (4.8), (4.9) in the first and second lines. Therefore we have

i
√

H(1 − χ0(H))U+(t) +
d

dt
U+(t)

= iBH0e
−it

√
H0Iϕ∗

+,χ+ + if(H)Iϕ+,g+e−it
√

H0Iϕ∗
+,χ+

− iIϕ+,a+

√
H0χ0(H0)e−it

√
H0Iϕ∗,χ+ .

(4.10)

The third term of the right-hand side vanishes, since χ0(|ξ|2)χ+(y, ξ) = 0. Let us
consider the second term. Taking notice of the relation

ΛNeit
√

Hf(H) = ΛN (1 + H)−N/2 · eit
√

H · f(H)(1 + H)N/2Λ−N · ΛN ,

we have only to show the following
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Proposition 4.5.

‖ΛNIϕ+,g+e−it
√

H0Iϕ∗
+,χ+ΛNXN‖ ≤ CN (1 + t)−N , ∀t,N > 0.

Proof. We choose ψ1(t), ψ2(t) ∈ C∞(R) such that ψ1(t) + ψ2(t) = 1 (t ∈ R),
ψ1(t) = 1 (t < −1 + 3�), ψ1(t) = 0 (t > −1 + 7�/2), and put

Jk(t)f = (2π)−n

∫∫
ei(ϕ+(x,ξ)−t|ξ|−ϕ+(y,ξ))ψk(x̂ · ξ̂ )g+(x, ξ)χ+(y, ξ)f(y)dydξ.

Then Iϕ+,g+e−it
√

L0Iϕ∗
+,χ+ = J1(t)+J2(t). Note that x̂ · ξ̂ > −1+3� on the support

of ψ2(x̂· ξ̂), on which region g+(x, ξ) decays rapidly in x and ξ by Lemma 3.9. Using
(4.7) and integrating by parts, we then have

‖ΛNJ2(t)ΛNXN‖ ≤ CN (1 + t)−N , ∀t, N > 0.

We next show that on the support of the integrand of J1(t)

(4.11) |∇ξ(ϕ+(x, ξ) − t|ξ| − ϕ+(y, ξ))| ≥ C(t + |x| + |y|)
for a constant C > 0. Once this is proved, one can prove

‖ΛNJ1(t)ΛNXN‖ ≤ CN (1 + t)−N , ∀t,N > 0

by integration by parts. To prove (4.11), we put

D+ = {y ∈ Rn ; ŷ · ξ̂ > −1 + 4�}, D− = {x ∈ Rn ; x̂ · ξ̂ < −1 + 7�/2}.
Then there exists 0 < c0 < 1 such that

y · x ≤ c0|y||x| if y ∈ D+, x ∈ D−.

We also see that y + tξ̂ ∈ D+ if y ∈ D+, t ≥ 0. Therefore

|y + tξ̂ − x|2 ≥ (1 − c0)(|y + tξ̂ |2 + |x|2).

In the proof of Proposition 5.4, we have already seen that |y + tξ̂| ≥ C(t + |y|) for
some C > 0. This proves (4.11). �

It remains to consider the first term of the right-hand side of (4.10).

Proposition 4.6.

‖ΛNBH0e
−it

√
H0Iϕ∗

+,χ+ΛNXN‖ ≤ CN (1 + t)−N , ∀t,N > 0.

Proof. We rewrite BH0e
−it

√
H0Iϕ∗

+,χ+ as

1
2πi

∫

C

(
∂zF (z)

)
|Im z|−m(1 + |z|)m−1 · |Im z|(H − z)−1

· Iϕ+,g+ ·
(

|Im z|
1 + |z|

)m−1

(H0 − z)−1L0e
−it

√
H0Iϕ∗

+,χ+dzdz,

m being an arbitrily chosen integer. By the property of almost analytic exten-
sion,

(
∂zF (z)

)
|Im z|−m(1 + |z|)m−1 is integrable, and ‖|Im z|(H − z)−1‖ is uni-

formly bounded on C. We show that by taking m large enough, one can deal
with |Im z|m−1(1 + |z|)−m+1(H0 − z)−1L0 like a ψDO with smooth symbol whose
operator norm is uniformly bounded in z. To show this, we have only to prove

(4.12)
(

|Im z|
1 + |z|

)|α|+1

|∂α
ξ (|ξ|2 − z)−1| ≤ C(1 + |z|)−1,
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where C is a constant independent of ξ ∈ R and z ∈ C \ R. In fact, one can show
by induction that

∂α
ξ (|ξ|2 − z)−1 =

|α|∑
n=1

Pn(ξ)
(|ξ|2 − z)n+1

,

where Pn(ξ) is a polynomial of order n. Using the inequality |ξ| ≤ C(1+ |z|+ ||ξ|2−
z|), we have |Pn(ξ)| ≤ C((1 + |z|)n + ||ξ|2 − z|n), which implies

|∂α
ξ (|ξ|2 − z)−1| ≤ C

|α|+1∑
n=1

(1 + |z|)n−1

||ξ|2 − z|n
.

This proves (4.12). Then by the same computation as in the proof of Proposition
4.5, we can prove the desired estimate. �

The proof of Lemma 4.2 is now completed. �

Lemma 4.7. For any f ∈ L2(Rn) we have in the sense of L2(Rn)

U±(t)f = e−it
√

H0Iϕ∗
±,χ±f + o(1), t → ±∞.

Proof. We have only to prove that

Iϕ±,a±e−it
√

H0g = e−it
√

H0g + o(1), as t ±∞

for g satisfying ĝ(ξ) = χ∞(ξ)ĝ(ξ) ∈ C∞
0 (Rn). We prove the case as t → ∞. Take

χ0(t), χ1(t) ∈ C∞(R) such that χ0(t) + χ1(t) = 1 (t ∈ R), χ0(t) = 1 (t < 1/3),
χ0(t) = 0 (t > 2/3). Then we have

χ0

( |x|
t

)
Iϕ+,a+e−it

√
H0g = (2π)−n/2

∫

Rn

ei(ϕ+(x,ξ)−t|ξ|)χ0

( |x|
t

)
a+(x, ξ)ĝ(ξ)dξ.

Since ∇ξ(ϕ+(x, ξ) − t|ξ|) = x − tξ̂ + O(|x|−�0), we have

|∇ξ(ϕ+(x, ξ) − t|ξ|)| ≥ Ct

for some constant C > 0 on the support of the integrand. By integration by parts,
we then have

‖χ0

( |x|
t

)
Iϕ+,a+e−it

√
H0g‖ ≤ CN t−N , ∀N, t > 0.

We rewrite χ1(
|x|
t )Iϕ+,a+e−it

√
H0g as above. Since a+(x, ξ) = χ(�0|ξ|)χ�(x̂ · ξ̂ ) +

O(|x|−�0) (see (2.12)), and the integral over the region {x̂ ·ξ < 0} disappears (which
is proven by the same method of integration by parts), we have

χ1

( |x|
t

)
Iϕ+,a+e−it

√
H0g = (2π)−n/2

∫

Rn

ei(ϕ+(x,ξ)−t|ξ|)χ1

( |x|
t

)
χ(�0|ξ|)ĝ(ξ)dξ + o(1).

In (4.1), we take R large enough so that χ∞(|ξ|) = χ∞(|ξ|)χ(�0|ξ|). Then we have
χ(�0|ξ|)ĝ(ξ) = χ∞(|ξ|)ĝ(ξ) = ĝ(ξ). Therefore

χ1

( |x|
t

)
Iϕ+,a+e−it

√
H0g = χ1

( |x|
t

)
e−it

√
H0g + o(1)

= e−it
√

H0g + o(1),

which proves the lemma �
Let Ĥm be the Sobolev space in Definition 1.12.
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Definition 4.8. (1) An operator R is called a regularizer of order N if it satisfies

R ∈
∞
∩

m=−∞
B(Hm ; Hm+N ) or R ∈

∞
∩

m=−∞
B(Hm ; Ĥm+N ).

If N can be taken arbitarily large, R is simply called a regularizer.
(2) A ψDO P+ (P−) is called an approximate outgoing (incoming) projection if its
symbol p+(x, ξ) (p−(x, ξ)) has the form

p±(y, ξ) = χ±(x, ξ)
∣∣∣
x=x±(y,ξ)

,

where χ±(x, ξ) is specified in (4.1), and x±(y, ξ) is the inverse function of y =
∇ξϕ±(x, ξ).

Let W± be the wave operator defined in Subsection 1.3.

Theorem 4.9. For any N > 0, there exist an approximate outgoing (incoming)
projection P+ (P−) and a regularizer of order N , which is denotede by RN

± , such
that

W±P± = Iϕ±,a±P± + RN
± .

Proof. We consider W+. Lemmas 4.2 and 4.7 imply

(4.13) W+Iϕ∗
+,χ+ = Iϕ+,a+Iϕ∗

+,χ+ +
∫ ∞

0

G+(t)dt,

the 2nd term of the right-hand side being a regularizer. In the following we use the
abbreviation

b
∣∣∣
x+(y,ξ)

= b(x, ξ)
∣∣∣
x=x+(y,ξ)

.

We now put b0(x, ξ) = det
(
∂2ϕ+/∂x∂ξ

)∣∣∣
x+(y,ξ)

, and let

Iϕ∗
+,χ+Iϕ+,b0 = c+(x, Dx).

Then we have modulo a regularizer

W+c+(x,Dx) ≡ Iϕ+,a+c+(x,Dx).

By virtue of (4.7), c+(x, ξ) has an asymptotic expansion

c+(y, ξ) ∼ χ+

∣∣∣
x+(y,ξ)

+ c1(y, ξ) + · · · , c1 ∈ S−1.

Let χ̃+(x, ξ) be a function similar to χ+(x, ξ) such that χ+(x, ξ) = 1 on supp χ̃+(x, ξ).
Namely, we slightly shrink the support of χ+. Let q1 ∈ S−1 and Q1 be a ψDO with
symbol χ̃

∣∣∣
x+(y,ξ)

+ q1(y, ξ). Then the symbol of c+(x,Dx)Q1 has an asymptotic

expansion

χ+

∣∣∣
x+(y,ξ)

χ̃+

∣∣∣
x+(y,ξ)

+ χ+

∣∣∣
x+(y,ξ)

q1 + c1χ̃+

∣∣∣
x+(y,ξ)

+
∑
|α|=1

∂α
ξ χ+

∣∣∣
x+(y,ξ)

· Dα
y χ̃+

∣∣∣
x+(y,ξ)

mod S−2.

We choose q1 as follows:

q1 = − 1

χ+

∣∣∣
x+(y,ξ)


c1χ̃+

∣∣∣
x+(y,ξ)

+
∑
|α|=1

∂α
ξ χ+

∣∣∣
x+(y,ξ)

· Dα
y χ̃+

∣∣∣
x+(y,ξ)


 .
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Since χ+ = 1 on supp χ̃+, q1(y, ξ) is smooth and

Iϕ∗
+,χ+Iϕ+,c+Q1 = c̃+(x,Dx),

c̃+(y, ξ) ∼ χ+

∣∣∣
x+(y,ξ)

+ c2(y, ξ) + · · · , c2 ∈ S−2.

Repeating this procedure, we complete the proof the theorem. �

5. Propagation of singularities

5.1. Singularity expansions I. We show how R+ describes the singularities
of solutions to the wave equation. We start with the following lemma, which can
be proved easily by integration by parts.

Lemma 5.1. The integral operator defined by

(Af) (s, ω) =
∫ ∞

−∞

∫

Rn

eik(s−ω·y)a(s, ω, k, y)f(y)dkdy

(s ∈ R1, ω ∈ Sn−1) is a regularizer if there exist constants ν ∈ R and C0 > 0 such
that

(5.1)
∣∣∣∂α

s ∂β
k ∂γ

y a(s, ω, k, y)
∣∣∣ ≤ Cαβγ(1 + |k|)ν−β , ∀α, β, γ,

(5.2) |s − ω · y| ≥ C0(1 + |s| + |y|)
on the support of a(s, ω, k, y).

By Corollary 1.9, we have the following expression:
(
R+f

)
(s) =

1√
2π

∫ ∞

0

eiks (F0(W+)∗f) (k)dk

+
1√
2π

∫ 0

−∞
eiks (F0(W−)∗f) (k)dk.

(5.3)

We take χR(s) ∈ C∞(R) such that χR(s) = 0 (s < 15R), χR(s) = 1 (s > 20R),
and study the singularity of χR(s)R+f(s) with respect to s.

Lemma 5.2. We take N > 0 large enough. Then there exist approximate
outgoing, incoming projections P+, P− such that

(5.4) χR(s)
∫ ∞

0

eiksF0(k)(W+)∗dk ≡ χR(s)
∫ ∞

0

eiksF0(k)P ∗
+Iϕ∗

+,a+dk,

(5.5) χR(s)
∫ 0

−∞
eiksF0(k)(W−)∗dk ≡ χR(s)

∫ 0

−∞
eiksF0(k)P ∗

−Iϕ∗
−,a−dk

modulo regularizers of order N .

Proof. We compute the first term of the right-hand side of (5.3). Let χ∞(t)
and χ(t) be as in (4.1). Modulo a regularizer, we can insert χ∞(|Dx|) between
F0(k) and (W+)∗. Let Q0 and Q∞ be defined by

Q0f(x) = (2π)−n

∫∫
ei(x−y)·ξ(1 − χ∞(|x+(y, ξ)|)

)
χ∞(|ξ|)f(y)dydξ,

Q∞f(x) = (2π)−n

∫∫
ei(x−y)·ξχ∞(|x+(y, ξ)|)χ∞(|ξ|)f(y)dydξ,
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where x±(y, ξ) is the inverse function of y = ∇ξϕ±(x, ξ). Then we have

(5.6) χR(s)
∫ ∞

0

eiksF0(k)Q0fdk =
∫ ∞

0

∫

Rn

eik(s−ω·y)a(s, ω, k, y)f(y)dydk,

a(s, ω, k, y) =
χR(s)√
2(2π)n/2

(−ik + 0)(n−1)/2(1 − χ∞(|x+(y, kω)|))χ∞(k).

Since |y| ≤ 11R on the support of a(s, ω, k, y), the condition (5.2) is satisfied.
Moreover by differentiating y = ∇ξϕ+(x, ξ), we have∣∣∂m

k ∂γ
y x+(y, kω)

∣∣ ≤ Cmγ(1 + |k|)−m, ∀m ≥ 1, ∀γ,

from which one can show that the condition (5.1) is also satisfied. Hence by Lemma
5.1, (5.6) is a regularizer.

Therefore we have only to consider

(5.7) χR(s)
∫ ∞

0

eiks
(
F0Q∞(W+)∗f

)
(k)dk.

We put χ−(t) = 1 − χ(t) and let Q− be defined by

Q−f(x) = (2π)−n

∫∫
ei(x−y)·ξχ∞(|x+(y, ξ)|)χ∞(|ξ|)χ−

( x+(y, ξ)
|x+(y, kω)|

· ξ

|ξ|
)
f(y)dydξ.

Then the operator (5.7) is split into two parts:

χR(s)
∫ ∞

0

eiks
(
F0P

∗
+(W+)∗f

)
(k)dk + χR(s)

∫ ∞

0

eiks
(
F0Q−(W+)∗f

)
(k)dk.

The second term is rewritten as, up to a constant,

χR(s)
∫ ∞

0

∫

Rn

eik(s−ω·y)χ−
( x+(y, kω)
|x+(y, kω)|

· kω

|kω|
)
· · · dkdy,

which is a regularizer by virtue of Lemma 5.1, since s > 15R and ω · y ≤ −|y|/2 on
the support of the integrand. By Theorem 4.9,

P ∗
+(W+)∗ ≡ P ∗

+Iϕ∗
+,a+

modulo a regularizer of order N . We have thus proved (5.4).
Next we consider the second term of the right-hand side of (5.3). We repeat

the same arguments as above with x+(y, ξ) replaced by x−(y, ξ) and
∫ ∞
0

· · · dk by∫ 0

−∞ · · · dk. Let χ+(t) = 1 − χ(−t) and Q+ be defeined by

Q+f(x) = (2π)−n

∫∫
ei(x−y)·ξχ∞(|x−(y, ξ)|)χ∞(|ξ|)χ+

( x−(y, ξ)
|x−(y, kω)|

· ξ

|ξ|
)
f(y)dydξ.

Then as above, we are led to consider

χR(s)
∫ 0

−∞
eiks

(
F0P

∗
−(W−)∗f

)
(k)dk + χR(s)

∫ 0

−∞
eiks

(
F0Q+(W−)∗f

)
(k)dk

modulo a regularizer. Since k < 0 this time, we have

χ+

( x−(y, kω)
|x−(y, kω)|

· kω

|kω|
)

= χ+

(
− x−(y, kω)

|x−(y, kω)|
· ω

)
,

on which support, we have ω·y ≤ −|y|/2. Therefore the second term is a regularizer.
Again using Theorem 4.9, we have

P ∗
−(W−)∗ ≡ P ∗

−Iϕ∗
−,a−
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modulo a regularizer of order N . We have thus derived (5.5) �

Let (s)α
− be the homogeneous distribution defined in Chap.4, §5.

Lemma 5.3. Let χ∞(k) be as in (4.1), and put

(5.8) Dj(s) =
1
2π

∫ ∞

−∞
eiks (−ik + 0)

n−1
2 −j

χ∞(|k|)dk.

Then we have
Dj(s) =

(
s
)−n+1

2 +j

− + Ψ0(s),

where Ψ0(s) is a polynomially bounded smooth function on R.

Proof. Letting ψ0(t) be the Fourier transform of 1 − χ∞(|k|), we have

Dj(s) =
(
s
)−n+1

2 +j

− − 1√
2π

∫ ∞

−∞

(
s + t

)−n+1
2 +j

− ψ0(t)dt,

from which the lemma follows immediately. �
In the following we use the notation ∼ in the same meaning as in (3.5). Namely

c(x, ξ) ∼
∞∑

j=0

|ξ|−jcj(x, ξ̂)

if and only if

∣∣∂α
ξ ∂β

x

(
c(x, ξ) −

N−1∑
j=0

|ξ|−jcj(x, ξ̂)
)∣∣ ≤ CαβN |ξ|−N−|α|, |ξ| > 1

holds for any α, β and N . Note that this asymptotic expansion can be differentiated
term by term with respect to x and ξ.

By Theorem 3.2, we have for some b±(x, ξ) ∈ S0,

(5.9) Iϕ±,a±P± = Iϕ±,b± .

Lemma 5.4. There exist bj(x, θ) (j = 0, 1, 2, · · · ) such that b±(x, ξ) have the
following asymptotic expansions as |ξ| → ∞:

(5.10) b±(x, ξ) ∼
∞∑

j=0

(±|ξ|)−jbj(x,±ξ̂ ),

(5.11) b0(x, θ) = g(x)1/4a0(x, θ)χ∞(|x|)χ(x̂ · θ),
where a0(x, θ) is given in (2.11) and χ∞, χ are given in (4.1).

Granting this lemma for the moment, we state the main theorem of this section.

Theorem 5.5. Let R+(s, θ, x) be the distribution kernel of R+. Then there
exist s0 > 0 such that for any N > (n + 1)/2, the follolwing expansion holds for
s > s0:

R+(s, θ, x) =
N−1∑
j=0

(s − ϕ(x, θ))−
n+1

2 +j
− rj(x, θ) + r(N)(s, θ, x),

where (s0,∞) � s → r(N)(s, θ, x) ∈ D�(Sn−1×Rn) is in Cµ(N), µ(N) is the greatest
integer ≤ N − (n + 1)/2, ϕ(x, θ) is given by Definition 2.7, and

(5.12) rj(x, θ) = 2−1/2(2π)(1−n)/2i−jbj(x, θ),
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bj(x, θ) being given in Lemma 5.5.

Proof. First let us note that

(5.13) ϕ−(x, kθ) = kϕ+(x, θ) for k < 0,

(5.14) b−(x, kθ) ∼
∞∑

j=0

k−jbj(x, θ) as k → −∞.

In fact by Theorem 2.8 (3) we have for k < 0

ϕ−(x, kθ) = −ϕ+(x,−kθ) = −ϕ+(x, |k|θ) = −|k|ϕ+(x, θ) = kϕ+(x, θ),

which proves (5.13). By (5.10) we have as k → −∞

b−(x, kθ) ∼
∞∑

j=0

(−|k|)−jbj

(
x,− kθ

|kθ|
)

=
∞∑

j=0

k−jbj(x, θ)

which proves (5.14).
Take f ∈ C∞

0 (Rn). Since ϕ+(x, θ) = ϕ(x, θ) by Definition 2.7, using (5.10) we
have as k → ∞

F0(k)
(
Iϕ+,b+

)∗
f

=
1√

2(2π)n/2

(
− ik + 0

)(n−1)/2
∫

Rn

e−iϕ+(x,kθ)b+(x, kθ)f(x)dx

∼ 1√
2(2π)n/2

∞∑
j=0

∫

Rn

e−ikϕ(x,θ)
(
− ik + 0

)n−1
2 −j

χ∞(k)i−jbj(x, θ)f(x)dx,

where χ∞(k) is as in (4.1). Here we have used the fact that

(−ik + 0)α(−ik)m = (−ik + 0)α+m if 0 �= k ∈ R, α ∈ R, m ∈ Z.

By (5.13) and (5.14), we have as k → −∞

F0(k)
(
Iϕ−,b−

)∗
f

=
1√

2(2π)n/2

(
− ik + 0

)(n−1)/2
∫

Rn

e−iϕ−(x,kθ)b−(x, kθ)f(x)dx

∼ e−(n−1)πi/4

√
2(2π)n/2

∞∑
j=0

∫

Rn

e−ikϕ(x,θ)
(
− ik + 0

)n−1
2 −j

χ∞(k)i−jbj(x, θ)f(x)dx.

Using (5.3), Lemma 5.2 and (5.9), we have

χR(s)R+f(s) ≡ χR(s)√
2π

∫ ∞

0

eiksF0(k)
(
Iϕ+,b+

)∗
fdk

+
χR(s)√

2π

∫ 0

−∞
eiksF0(k)

(
Iϕ−,b−

)∗
fdk

modulo a regularizer of order N . We replace F0(k)
(
Iϕ±,b±

)∗ by the above asymp-
totic expansion to obtain

χR(s)R+f(s) ≡ χR(s)√
2(2π)(n+1)/2

N∑
j=0

∫ ∞

−∞

∫

Rn

eik(s−ϕ(x,θ))

· (−ik + 0)
n−1

2 −jχ∞(k)i−jbj(x, θ)f(x)dxdk
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modulo a term sufficiently regular in s. Performing the integral in k and using
Lemma 5.3, we have

χR(s)R+f(s) ≡ χR(s)√
2(2π)(n+1)/2

N∑
j=0

∫

Rn

(
s − ϕ(x, θ)

)−n+1
2 +j

− i−jbj(x, θ)f(x)dx,

modulo a term sufficiently regular in s, which proves the asymptotic expansion of
R+(s, θ, x). �

It remains to prove Lemma 5.4. Let (∇ξϕ±
)−1(x, ξ) the inverse of the map

: x → ∇ξϕ±(x, ξ). Then by (4.1), the symbol p±(x, ξ) of P± is written as

(5.15) p±(x, ξ) = χ± ◦
(
∇ξϕ±

)−1(x, ξ).

Now in view of (3.10), we have

(5.16) b±(x, η) ∼
∑
α

1
α!

∂α
ξ

{
a±(x, ξ)

(
Dα

x p±
)(
∇̃ξϕ±(x, ξ, η), η

)} ∣∣∣
ξ=η

.

Each term of the right-hand side consists of a sum of functions homogeneous in η.
We rearrange them as

(5.17) b±(x, η) ∼
∞∑

j=0

|η|−jb
(j)
± (x, η̂),

and compare (5.16) and (5.17) to obtain

b
(0)
± (x, θ) = g(x)1/4χ�(±x · θ)a0(x,±θ)p±

(
∇̃ξϕ±(x, ξ, η), η

)∣∣∣
ξ=η=θ

,

where we have used (2.12). Since

∇̃ξϕ±(x, ξ, η)
∣∣∣
ξ=η

=
(
∇ξϕ±

)
(x, η),

we have by (5.15)

p±
(
∇̃ξϕ±(x, ξ, η), η

)∣∣∣
ξ=η=θ

= χ±(x, θ),

which proves (5.11).
To prove (5.10), we make the following definition. Two functions f+(x, ξ) and

f−(x, ξ) are said to be compatible if there exist fj(x, θ) (j = 0, 1, 2, · · · ) such that
f±(x, ξ) have the following asymptotic expansion as |ξ| → ∞:

f±(x, ξ) ∼
∞∑

j=0

(
± |ξ|

)−j
fj(x,±ξ̂ ).

Lemma 5.6. (1) If f+(x, ξ) and f−(x, ξ) are compatible, so are ∂α
ξ f+(x, ξ) and

∂α
ξ f−(x, ξ).

(2) If f+(x, ξ) and f−(x, ξ) as well as g+(x, ξ) and g−(x, ξ) are compatible, so are
f+(x, ξ)g+(x, ξ) and f−(x, ξ)g−(x, ξ).
(3) ∂β

ξ

(
Dα

x p+

)(
∇̃ξϕ+(x, ξ, η), η

)∣∣∣
ξ=η

and ∂β
ξ

(
Dα

x p−
)(
∇̃ξϕ−(x, ξ, η), η

)∣∣∣
ξ=η

are com-

patible.
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Proof. The assertions follow from a direct computation. In order to prove (1),
we let ∂i = ∂/∂ξi and take notice of

∂if+(x, ξ) ∼
∞∑

m=0

|ξ|−m−1
{
− mξ̂ifm(x, ξ̂ ) +

n∑
j=1

(
∂jfm

)
(x, ξ̂ )(δij − ξ̂iξ̂j)

}
,

∂if−(x, ξ) ∼
∞∑

m=0

(−|ξ|)−m−1
{
mξ̂ifm(x,−ξ̂ ) +

n∑
j=1

(
∂jfm

)
(x,−ξ̂ )(δij − ξ̂iξ̂j)

}
.

The assertion (2) is obvious. To show (3), note that by Definition 3.7

∂iϕ−(x, ξ) = −ξ̂iϕ(x,−ξ̂) +
n∑

j=1

(
∂ϕ

∂ξj

)
(x,−ξ̂)(δij − ξ̂iξ̂j) = (∂iϕ+) (x,−ξ).

Since ∇ξϕ± are homogeneous of degree 0, this means that ∇ξϕ+(x, ξ) and ∇ξϕ−(x, ξ)
are compatible. Since Dα

x p+(x, ξ) and Dα
x p−(x, ξ) are compatible, one can prove

(3) inductively. �
By Lemma 5.6 and (5.16), b±(x, ξ) are compatible. This proves Lemma 5.4.

5.2. Recovering partial regularities near infinity. Let us rewrite Theo-
rem 5.6 in the operator form. Let Dj(s) and rj(x, θ) be as in (5.8) and (5.12),
rspectively. We put

(
R(j)

+ f
)

(s, θ) =
∫

Rn

Dj(s − ϕ(x, θ))rj(x, θ)f(x)dx.

Lemma 5.7. (1) For any j,m ≥ 0, we have R(j)
+ ∈ B(Hm; Ĥj+m).

(2) Let χR(s) be as in Lemma 5.2. Then for any N

χR(s)R+ ≡ χR(s)
N−1∑
j=0

R(j)
+

modulo a regularizer of order N .

Proof. To prove the assertion (1), we have only to note that the operator∫

Rn

e−iϕ(x,ξ)rj(x, ξ/|ξ|)χ∞(|ξ|)f(x)dx

is L2-bounded. The assertion (2) has been proven in Theorem 5.5. �
The purpose of this section is to prove Lemma 1.13 in a localized form. Let

us recall that the stationary phase method shows the scattered waves propagate to
infinity along the directions close to ξ̂ = ±x̂. With this in mind, we prepare the
following notion.

Definition 5.8. For a constant 0 < δ < 1, let S(δ) be the set of symbols
p(x, ξ) ∈ S0 such that supp p ⊂ {(x, ξ) ; |x̂ · ξ̂ | < δ}. We say that f ∈ L2(Rn) is
regular in non-scattering region if there exists 0 < δ < 1 such that p(x,Dx)f ∈
H∞(Rn), ∀p(x, ξ) ∈ S(δ).

If f is regular in non-scattering region, its wave front set, denoted by WF (f),
satisfies WF (f) ∩ {|x̂ · ξ̂| < δ} = ∅. As an example, let BR = {x ∈ Rn; |x| < R}.
If f ∈ H∞(BR) and f(x) = 0 for |x| > R, by the stationary phase method, f(x) is
shown to be regular in non-scattering region (see Lemma 6.8). The necessity of this
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notion will be made clear in the proof of Lemma 5.9. We put Ĥm(s > σ) = Ĥm(Iσ)
and Hm(|x| > ρ) = Hm(Bc

ρ), where Iσ = (σ,∞) and Bc
ρ = {x ∈ Rn; |x| > ρ}.

Lemma 5.9. There exist constants ρ > σ > 0 such that the following assertion
holds: If f ∈ L2(Rn) is regular in non-scattering region and R(0)

+ f ∈ Ĥm(s > σ)
for some m ≥ 0, then f ∈ Hm(|x| > ρ). Moreover ρ can be chosen arbitrarily close
to σ.

Proof. The proof is complicated and is split into several parts. Let χ(s) ∈
C∞(R) be such that χ(s) = 1 (s > σ + 2), χ(s) = 0 (s < σ + 1), where σ > 0 will
be determined later. We put

u(s, θ) = χ(s)
∫ ∞

−∞

∫

Rn

eik(s−ϕ(x,θ))(−ik + 0)
n−1

2 χ∞(|k|)r0(x, θ)f(x)dxdk,

and assume that u ∈ Ĥm. We take ψ0(t), ψ∞(t) ∈ C∞(R) such that ψ0(t) +
ψ∞(t) = 1 (t ∈ R), ψ∞(t) = 1 (t > 2), ψ∞(t) = 0 (t < 1), and c0(t), c1(t) ∈ C∞(R)
such that c0(t) + c1(t) = 1 (t ∈ R), c1(t) = 1 (|t| > δ/2), c1(t) = 0 (|t| < δ/4),
where δ is the constant appearing in the assumption of regularity in non-scattering
region for f . We split f(x) into 3 parts :

f(x) = ψ∞(|x|)c1(x̂ · θ)f(x) + ψ0(|x|)f(x) + ψ∞(|x|)c0(x̂ · θ)f(x).

1st Step. We put

u1(s, θ) = χ(s)
∫ ∞

−∞

∫

Rn

eik(s−ϕ(x,θ))(−ik + 0)
n−1

2 χ∞(|k|)

·r0(x, θ)ψ∞(|x|)c0(x̂ · θ)f(x)dxdk,

and show that u1 ∈ Ĥ∞. This is proved if we show

v1(x) := (2π)−n

∫∫

Rn×Rn

ei(x·ξ−ϕ(y,ξ))χ∞(|ξ|)r0(y,±ξ̂ )ψ∞(|y|)c0(±ŷ · ξ̂ )f(y)dydξ

is in H∞. In view of (3.6), we have

w1 := Iϕ,1v1 = Pf,

where, modulo a regularizer, P is a ψDO whose symbol is supported in the region
{|x̂ · ξ̂| < δ}. Therefore w1 ∈ H∞, since f is regular in non-scattering region.
Computing Iϕ∗,1w1 and using (3.7), we then have

(1 + P1 + P2 + · · · )v1 = g,

where Pi ∈ S−i and g ∈ H∞. By multiplying suitable ψDO’s, we have v1 ∈ H∞.

2nd Step. Next we consider

χ(s)
∫ ∞

−∞

∫

Rn

eik(s−ϕ(x,θ))(−ik + 0)
n−1

2 χ∞(|k|)r0(x, θ)

·
[
ψ∞(|x|)c1(x̂ · θ) + ψ0(|x|)

]
f(x)dxdk.

(5.18)

Let χ̃(s) ∈ C∞(R) be such that χ̃(s) = 1 (s > σ), χ̃(s) = 0 (s < σ − 1). By
integration by parts, the operator

χ(s)
∫∫

eik(s−ϕ(x,θ)) (1 − χ̃(ϕ(x, θ))) · · · dxdk

is a regularizer. In fact, since ϕ(x, θ) < σ, we have |s − ϕ(x, θ)| ≥ C(s + |x|) for a
constant C > 0 thanks to the factor ψ∞(|x|)c1(x̂ · θ) + ψ0(|x|).
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We are thus led to consider

u2(s, θ) =χ(s)
∫ ∞

−∞

∫

Rn

eik(s−ϕ(x,θ))(−ik + 0)
n−1

2 χ∞(|k|)

· χ̃(ϕ(x, θ))r0(x, θ)
[
ψ∞(|x|)c1(x̂ · θ) + ψ0(|x|)

]
f(x)dxdk,

which belongs to Ĥm. Here we choose σ large enough so as to be able to apply
Lemma 2.4, and make the change of variables x → (t, y) = (t(x, θ), y(x, θ)). Since
t(x, θ) = ϕ(x, θ) by virtue of Lemma 2.5, the above integral is rewritten as

(5.19)
1
2π

χ(s)
∫∫

eik(s−t)q0(t, k, y, θ)f̃(t, y, θ)dkdtdy =: v2(s, θ),

q0(t, k, y, θ) =2π(−ik + 0)
n−1

2 χ∞(|k|)
· χ̃(t)r0(x, θ) [ψ∞(|x|)c1(x̂ · θ) + ψ0(|x|)]J(t, y, θ),

(5.20)

J(t, y, θ) being the Jacobian of the map : x → (t, y), and in the expression of q0,
x should be read as x(t, y, θ), f̃(t, y, θ) = f(x). This reduces the problem to the
1-dimensional ψDO calculus.

Let Q0 be the 1-dimensional ψDO with symbol q0(t, k, y, θ), where y, θ are
regarded as parameters. Then (5.19) reads∫

χ(s)
(
Q∗

0f̃(·, y, θ)
)

(s)dy = v2(s, θ),

where v2 ∈ Ĥm. By ψDO calculus, we have modulo Ĥm+1

(5.21)
∫

χ(s)
(
Q∗

0f̃(·, y, θ)
)

(s)dy ≡
∫ (

P ∗
0 f̃(·, y, θ)

)
(s)dy ∈ Ĥm,

where the symbol of P0 is the product of χ(t) and q0(t, k, y, θ), namely, it is obtained
with χ̃(t) replaced by χ(t) in (5.20). Passing to the Fourier transformation with
respect to s in (5.21), we get∫∫

e−ikt(−ik + 0)
n−1

2 χ∞(|k|)χ(t)r0(x, θ)

· [ψ∞(|x|)c1(x̂ · θ) + ψ0(|x|)]J(t, y, θ)f̃(t, y, θ)dtdy =: w(k, θ),

where w(k, θ) satisfies∫
(1 + |k|)2m‖w(k, ·)‖2

L2(Sn−1)dk < ∞.

Transforming back to the original variable x, we get

(−ik + 0)
n−1

2 χ∞(|k|)
∫

e−ikϕ(x,θ)χ(ϕ(x, θ))r0(x, θ)

· [ψ∞(|x|)c1(x̂ · θ) + ψ0(|x|)] f(x)dx = w(k, θ).
(5.22)

We try to regard (5.22) as a FIO putting ξ = kθ. Here we must note that the term
χ(ϕ(x, θ)) behaves like

|∂α
θ χ(ϕ(x, θ))| ≤ Cα(1 + |x|)|α|,

which seems to cause a trouble in defining a suitable class of symbols. However
thanks to the locaization factor ψ∞(|x|)c1(x̂ · θ) + ψ0(|x|), the amplitude b(x, θ) of
(5.22) has the estimate

|∂α
θ ∂β

x b(x, θ)| ≤ Cαβ(1 + |x|)−|β|.
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In fact, by the estimate (2.9), on the support of χ�(ϕ(x, θ)), |x · θ| is bounded. Due
to the locaization factor ψ∞(|x|)c1(x̂ · θ) + ψ0(|x|), if |x · θ| is bounded so is x.
Therefore, the derivatives of χ(ϕ(x, θ)) does no harm to our analysis. This is the
reason why we have introduced the notion of regularity in non-scattering region.

3rd Step. We consider (5.22) separately in the region k > 0 and k < 0. For ±k > 0,
we put k = ±|ξ| and θ = ±ξ̂. Then we can rewrite (5.22) as∫

e−iϕ±(x,ξ)p±(x, ξ)f(x)dx = g±(ξ),

where p±(x, ξ) ∈ S0 has its support in the region ±x̂ · ξ̂ > δ/3 and g±(ξ) satisfies
(1 + |ξ|)mg±(ξ) ∈ L2(Rn). We now mulitiply eiϕ±(x,ξ) and integrate in ξ. Then we
have by FIO calculus

q±(x,Dx)χ(|x|)f ∈ Hm,

where q±(x, ξ) ∈ S0, q±(x, ξ) = 1 for ±x̂ · ξ̂ > δ and |x| > 1, q±(x, ξ) = 0 for
±x̂ · ξ̂ < δ/5 and |x| > 1, and χ(t) ∈ C∞(R) such that χ(t) = 1 (t > σ + 2),
χ(t) = 0 (t < σ + 1). Taking into account that f is regular in non-scattering
region, we finally prove that f ∈ Hm(|x| > ρ) for ρ = s + 2. By examining the
proof, we see that ρ can be chosen arbitrarily close to σ. �

Theorem 5.10. There exist ρ > σ > 0 such that if f is regular in non-scattering
region and R+f ∈ Ĥm(s > σ) for some m ≥ 1, then f ∈ Hm(|x| > ρ). Moreover
ρ can be chosen arbitrarily close to σ.

Proof. If R+f ∈ Ĥ1(s > σ), we have R(0)
+ f ∈ Ĥ1(s > σ) by Lemma 5.6 (1).

Therefore the case m = 1 follows from Lemma 5.9. Let us assume the theorem
when m = k−1. Then if R+f ∈ Ĥk(s > σ), we have f ∈ Hk−1(|x| > ρ). Therefore
if j ≥ 1, we have R(j)

+ f ∈ Ĥk(s > σ), which implies that R(0)
+ f ∈ Ĥk(s > σ). By

Lemma 5.9, we have f ∈ Hk(|x| > ρ), which completes the proof. �

6. Singular support theorem

6.1. Envelope. Let us first recall the classical notion of envelope. Let U and
Ω be open sets in Rn and Rn−1, respectively. Suppose a real-valued function
φ(x, ω) ∈ C∞(U × Ω) satisfies

(6.1) det
(
∇xφ,

∂

∂ω1
∇xφ, · · · ,

∂

∂ωn−1
∇xφ

)
�= 0, x ∈ U, ω ∈ Ω,

(6.2) det
(

∂2φ

∂ωi∂ωj

)

1≤i,j≤n−1

�= 0, x ∈ U, ω ∈ Ω.

Given an interval I ⊂ R, we consider a family of surfaces

Σ(s, ω) = {x ∈ U ; φ(x, ω) = s} , s ∈ I, ω ∈ Ω.

Assume that for x ∈ U there exists a unique solution ω(x) to the system of equations

(6.3)
∂φ

∂ω1
(x, ω) = · · · =

∂φ

∂ωn−1
(x, ω) = 0.

Then the envelope Σ(s) of
{
Σ(s, ω)

}
ω∈Ω

is defined by

Σ(s) = {x ∈ U ; φ(x, ω(x)) = s}.
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6. SINGULAR SUPPORT THEOREM 237

We put y = (s, ω) and f(x, y) =
(
f1(x, y), · · · , fn(x, y)

)
, where

fi(x, y) = ∂φ(x, ω)/∂ωi, (1 ≤ i ≤ n − 1), fn(x, y) = φ(x, ω) − s.

Then the equation for the envelope and the conditions (6.1), (6.2) are rewritten as

f(x, y) = 0, det
(

∂f

∂x

)
�= 0, det

(
∂f

∂y

)
�= 0.

Hence by the implicit function theorem the map : U � x → y(x) = (s(x), ω(x)) ∈
I × Ω is a diffeomorphism. Let X(s, ω) be its inverse.

Lemma 6.1. Let gij(x)dxidxj be a Riemannian metric on U and put h(x, ξ) =
1
2gij(x)ξiξj. Assume that φ(x, ω) satisfies the eikonal equation

(6.4) h(x,∇xφ(x, ω)) = 1/2, x ∈ U, ω ∈ Ω.

(1) We put Φ(x) = φ(x, ω(x)). Then Φ(x) also satisfies the eikonal equation

h(x,∇xΦ(x)) = 1/2, x ∈ X.

(2) Let P (s, ω) = (∇xΦ) (X(s, ω)). Then we have for s ∈ I and ω ∈ Ω,

(6.5)




∂

∂s
X(s, ω) =

(
∂h

∂ξ

)
(X(s, ω), P (s, ω)),

∂

∂s
P (s, ω) = −

(
∂h

∂x

)
(X(s, ω), P (s, ω)).

Proof. By virtue of (6.3), we have

(6.6) ∇xΦ(x) = (∇xφ) (x, ω(x)),

which implies (1). We let k(x, ω) = (∇xφ) (x, ω) and differentiate (6.4) by ωj to
have (

∂h

∂ξ

)
(x, k(x, ω)) · ∂k

∂ωj
(x, ω) = 0, 1 ≤ j ≤ n − 1.

Using (6.6), we have P (s, ω) = k(X(s, ω), ω), hence

(6.7)
(

∂k

∂ωj

)
(P (s, ω), ω) ·

(
∂h

∂ξ

)
(X(s, ω), P (s, ω)) = 0, 1 ≤ j ≤ n − 1.

On the other hand, we have by differentiating
(
∂φ/∂ωj

)
(X(s, ω), ω) = 0 by s

(6.8)
(

∂k

∂ωj

)
(X(s, ω), ω) · ∂X

∂s
(s, ω) = 0, 1 ≤ j ≤ n − 1.

By (6.1), ∂k/∂ω1, · · · , ∂k/∂ωn−1 are linearly independent. Therefore by (6.7) and
(6.8) we have

∂X

∂s
(s, ω) = λ(s, ω)

(
∂h

∂ξ

)
(X(s, ω), P (s, ω))

for some scalar function λ(s, ω). Differentiating s = φ(X(s, ω), ω) with respect to
s, we then have

1 = k · ∂X

∂s
= λk ·

(
∂h

∂ξ

)
(X, k) = 2λh(X,P ) = λ.
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Finally by differentiating Pi(s, ω) = (∂φ/∂xi) (X(s, ω), ω) we have

∂

∂s
Pi(s, ω) =

∑
j

(
∂2φ

∂xi∂xj

)
(X(s, ω), ω)

∂Xj

∂s
(s, ω)

=
(

∂k

∂xi

)
(X(s, ω), ω) ·

(
∂h

∂ξ

)
(X(s, ω), P (s, ω))

= −
(

∂h

∂xi

)
(X(s, ω), P (s, ω)),

since by differentiating h(x, k(x, ω)) = 1/2, we get(
∂h

∂xi

)
(x, k(x, ω)) +

(
∂h

∂ξ

)
(x, k(x, ω)) · ∂k

∂xi
(x, ω) = 0. �

Let us note that by (6.6), Σ(s, ω) is tangent to Σ(s) at X(s, ω).

We now put
Σ(±)(s, θ) = {x ∈ Rn; ϕ±(x, θ) = s} ,

and construct the envelope of
{
Σ(±)(s, θ)

}
θ∈Sn−1 . Since ϕ+(x, θ) = −ϕ−(x,−θ) by

Theorem 2.8 (3), we have

Σ(+)(s, θ) = Σ(−)(−s,−θ).

Therefore we have only to consider ϕ+(x, θ) = ϕ(x, θ). For ϕ(x, θ), the assumptions
(6.1), (6.2) are satisfied on the region {|x| > r0} × Sn−1, where r0 > 0 is chosen
largre enogh. We consider the equation

(6.9) ∇θϕ(x, θ) = 0, x · θ > 0,

∇θ being the gradient on Sn−1, which corresponds to (6.3). If ϕ(x, θ) = x · θ, the
solution is unique and given by θ = x̂. Since ∂α

x (ϕ(x, θ)− x · θ) = O(|x|−|α|−�0), we
see that (6.9) has a unique solution θ(x) = x̂+O(|x|−�0). Let s(x) = ϕ(x, θ(x)) and
X(s, θ) be the inverse of the map : x → (s(x), θ(x)). We summarize the properties
of these diffeomorphisms in the following theorem. We put Σ(s, θ) = Σ(+)(s, θ).

Theorem 6.2. There exist r0 > 0 and s0 > 0 for which the following assertions
hold.
(1) For any x ∈ Rn such that |x| > r0, there exists a unique θ(x) ∈ Sn−1 satsifying(
∇θϕ

)
(x, θ(x)) = 0 and θ(x) · x > 0. We define

Φ(x) = ϕ(x, θ(x)) for |x| > r0,

and extend it smoothly for |x| ≤ r0 so that Φ(x) is monotone increasing with respect
to |x|. Then Φ(x) ∼ |x| as |x| → ∞ and satisfies the eikonal equation

gij(x)(∂iΦ(x))(∂jΦ(x)) = 1 for |x| > r0.

(2) For any s > s0, the set

Σ(s) = {x ∈ Rn; Φ(x) = s}
is a strictly convex compact hypersurface.
(3) For any s > s0 and x ∈ Σ(s), Σ(s) is tangent to Σ(s, θ(x)) at x. Moreover θ(x)
is a unique point θ in Sn−1 such that Σ(s) is tangent to Σ(s, θ) at x. We also have
for |x| > r0

(6.10) max
θ∈Sn−1

ϕ(x, θ) = Φ(x),
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and the maximum is attained if and only if θ = θ(x).
(4) For any s > s0 and θ ∈ Sn−1, there exists a unique X(s, θ) ∈ Σ(s) such that
Σ(s, θ) is tangent to Σ(s) at X(s, θ). We also have for any θ ∈ Sn−1

(6.11) max
x∈Σ(s)

ϕ(x, θ) = s = Φ(X(s, θ)),

and the maximum is attained if and only if x = X(s, θ).
(5) For any s > s0, the map

Sn−1 � θ → X(s, θ) ∈ Σ(s)

is a diffeomorphism and its inverse is given by

Σ(s) � x → θ(x) ∈ Sn−1.

(6) The map
X : (s0,∞) × Sn−1 � (s, θ) → X(s, θ) ∈ Rn

is a diffeomorphism whose image contains the region {x ; |x| > r0}. The inverse of
this map is

X−1 : x →
(
Φ(x), θ(x)

)
.

It has the following estimates (x̂ = x/|x|)

(6.12) |∂α
x (Φ(x) − |x|)| ≤ Cα(1 + |x|)−�0−|α|, ∀α,

(6.13) |∂α
x (θ(x) − x̂)| ≤ Cα(1 + |x|)−1−�0−|α|, ∀α.

(7) The diffeomorphism X−1 gives the geodesic polar coordinates in a neighborhood
of infinity, and in this coordinate system the Riemannian metric G = gij(x)dxidxj

takes the following form

X∗G = (ds)2 +
n−1∑
i,j=1

hij(s, θ)dθidθj .

Proof. As is noted above ϕ(x, θ) = x·θ for the Euclidean metric, hence θ(x) = x̂,
Φ(x) = |x|, and the theorem is obvious. The assertion (1) follows from Lemma 6.1.
Since Σ(s) is a slight perturbation of sphere, (2) follows. The first part of the
assertion (3) is obvious. We shall prove (6.10). If ϕ(x, θ) attains its maximum at θ,
(∇θϕ)(x, θ) = 0 holds. This equation has two solutions θ̃± such that ±x · θ̃± > 0.
The Hessian matrix of ϕ(x, θ) at θ̃+ (θ̃−) is negative (positive) definite. Hence
the maximum is attained at θ̃+, furthermore, θ̃+ = θ(x). The first part of (4) is
obvious. At the point x where ϕ(x, θ) attains its maximum on Σ(s), ∇xΦ(x) and
∇xϕ(x, θ) are propotional. This is just the point on which two surfaces Σ(s) and
Σ(s, θ) are tangent each other, hence (6.11) holds. The mapping properties in (5)
and (6) are clear. From the equation ∇θϕ(x, θ) = 0, we get ∇θx̂ · θ = O(|x|−1−�0),
from which (6.13) follows. The estimate (6.12) then follows from Theorem 2.8 (1).
Let us prove (7). By the equation (6.5), X(s, θ) is a geodesic. Hence (s(x), θ(x))
are geodesic polar coordinates. We put xi = θi(x) (1 ≤ i ≤ n − 1), xn = Φ(x).
Then the associated Riemannian metric gij is computed as follows :

gnn = gij ∂xn

∂xi

∂xn

∂xj
= gij (∂iΦ) (∂jΦ) = 1,

gnk = gij ∂xn

∂xi

∂xk

∂xj
= gij (∂iΦ) (∂jθk) = 0,
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for 1 ≤ k ≤ n − 1. Here we have used the equation (7.5) and

0 =
∂θk

∂s
=

∂θk

∂xm

∂Xm

∂s
= (∂mθk) gimPi = 0.

This proves (7). �

Corollary 6.3. For large |x|, we have ϕ(x, θ) ≤ Φ(x), and the equality holds if
and only if θ = θ(x), equivalently, x = X(s, θ) for some s > s0.

6.2. Singularity expansions II. Our next aim is to compute an asymptotic
expansion around s = σ of the integral (coupling of distribution and test function,
actually)

(6.14)
∫

Rn

(s − ϕ(x, θ))α
−(σ − Φ(x))β

+f(x)dx, f ∈ C∞
0 (Rn).

For any θ ∈ Sn−1, we have constructed a bicharacteristic x(t, y, θ), p(t, y, θ) having
the properties in Lemma 2.2. We use the variables t, y to calculate (6.14), which
is possible by virtue of Lemma 2.4. In perfoming the computation below it will
be helpful to recall that for the Euclidean metric

∑n
i=1(dxi)2, x(t, y, θ) = tθ + y,

θ · y = 0, ϕ(x, θ) = x · θ and Φ(x) = |x|.
Let Φ̃(t, y, θ) = Φ(x(t, y, θ)). Then since t = ϕ(x, θ) by Lemma 2.5 we have by

Corollary 6.3
Φ̃(t, y, θ) − t = Φ(x) − ϕ(x, θ) ≥ 0,

and for a fixed t the last equality holds only at one point, which we denote by
y(t, θ). At y(t, θ) the surface t = Φ(x) is tangent to the surafce t = ϕ(x, θ).
Therefore (t, y(t, θ)) is the coordiante of X(t, θ) given in Theorem 6.2 (4). By the
Taylor expansion with respect to y we have

Φ̃(t, y, θ) − t =
1
2
〈A(y − y(t, θ)), y − y(t, θ)〉 + O(|y − y(t, θ)|3),

as y → y(t, θ), where

A = A(t, θ) =

(
∂2Φ̃

∂yi∂yj
(t, y(t, θ), θ)

)

is a positive definite matrix and 〈 , 〉 is the Euclidean inner product of Rn−1. By
the Morse lemma, one can find a function z = z(t, y, θ) defined in a neighborhood
of y(t, θ) such that

Φ(x) = Φ̃(t, y, θ) = t +
1
2
〈A(t, θ)z, z〉,

and z = y − y(t, θ) + O(|y − y(t, θ)|2). We now make a new change of variables:
x → (t, z) and put f̃(t, z, θ) = f(x). We denote by

JP (t, z, θ) = |det (∂x/∂(t, z)) |

the associated Jacobian. (Here the subscript P menas that we are using the plane
wave like characteristic surface t = ϕ(x, θ)). Then we have∫ (

s − ϕ(x, θ)
)α

−

(
σ − Φ(x)

)β

+
f(x)dx

=
∫∫ (

s − t
)α

−

(
σ − t − 1

2
〈A(t, θ)z, z〉

)β

+
f̃(t, z, θ)JP (t, z, θ)dtdz.

(6.15)
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We say that g(s, θ) admits the asymptotic expansion

g(s, θ) ∼
∞∑

k=0

(σ − s)λ+k
+ gk(θ), gk ∈ C∞(Sn−1)

around s = σ, if there exists �0 > 0 with the following property. For any N > 0,
there exist GN (s, θ),HN (s, θ) ∈ C∞(R; L2(Sn−1)) such that

g(s, θ) =
N−1∑
k=0

(σ − s)λ+k
+ gk(θ) + (σ − s)λ+N

+ GN (s, θ) + HN (s, θ)

holds for |s−σ| < �0. Similarly, we say that f(x) admits the asymptotic expansion

f(x) ∼
∞∑

k=0

(σ − Φ(x))λ+k
+ fk(θ), fk(θ) ∈ C∞(Σ(σ))

around Φ(x) = σ, where Σ(σ) = {σ = Φ(x)} and θ denotes the local coordinate on
Σ(σ), if there exists �0 > 0 with the following property. For any N > 0, there exist
GN (x), HN (x) ∈ C∞(Rn) such that

f(x) =
N−1∑
k=0

(σ − Φ(x))λ+k
+ fk(θ) + (σ − Φ(x))λ+N

+ GN (x) + HN (x)

holds when |Φ(x) − σ| < �0.

Lemma 6.4. Let g(t, z) ∈ C∞
0 (R × Rn−1), and σ > 0 be a sufficiently large

constant. Then if β > −1, we have the following asymptotic expansion around
s = σ

∫∫ (
s − t

)α

−

(
σ − t − 1

2
〈A(t, θ)z, z〉

)β

+

g(t, z)dtdz

∼
∞∑

k=0

(σ − s)α+β+ n+1
2 +k

+

(
P

(α,β)
k g

)
(σ, 0),

(6.16)

where P
(α,β)
k is a differential operator having the following form

(6.17) P
(α,β)
k =

∑
m+|γ|/2≤ k,

|γ|=even

Ckmγ(α, β)pkmγ(σ, θ)∂m
t ∂γ

z .

If |γ| = m = k = 0, we have

(6.18) C000(α, β)p000(σ, θ) = (2π)
n−1

2 detA(σ, θ)−1/2.

Proof. First let us note that the left-hand side of (6.16) vanishes if s > σ. For
s < σ, we put � = σ − s, s − t = �ρ, z =

√
2�(1 + ρ)A(t, θ)−1/2w and

g�(ρ,w) = g
(
σ − �(1 + ρ),

√
2�(1 + ρ)A(σ − �(1 + ρ), θ)−1/2w

)

· det A(σ − �(1 + ρ), θ)−1/2.
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Note that since σ ≥ t + 1
2 〈Az, z〉 ≥ t, we have σ − t = �(1 + ρ) ≥ 0. Then the

left-hand side of (6.16) is rewritten as

2
n−1

2
Γ(β + n+1

2 )
Γ(β + 1)

�α+β+ n+1
2

×
∫ 0

−1

∫

|w|<1

(ρ)α
−(1 + ρ)β+ n−1

2
+ (1 − |w|2)β g�(ρ,w) dρ dw.

(6.19)

Since A(t, θ) is a positive definite matrix and smooth in t, so is A(t, θ)−1/2. This
follows from the well-known Dunford-Taylor integral of bounded operators (see e.g.
p. 44 of [80]). We put δ =

√
�(1 + ρ) and expand g�(ρ,w) into a Taylor series

with respect to δ to see that each term of the expansion consists of the product of
a function of σ, θ and

(6.20) δ2p+|γ|wγ (∂m
s ∂γ

z g) (σ, 0), m ≤ p.

In fact, we first expand g
(
σ − δ2, δy

)
to obtain terms like δ2m+|γ|yγ(∂m

s ∂γ
z g)(σ, 0),

and next expand y =
√

2A(σ − δ2, θ)−1/2w and detA(σ − δ2, θ)−1/2 to have (6.20).
We replace g�(ρ, w) in (6.19) by this asymptotic expansion. If |γ| is odd,

∫
(1 −

|w|2)βwγdw = 0. Therefore, letting k = p + |γ|/2 and rearranging the terms, we
obtain (6.16). To compute (6.18), we have only to use (5.1) and the formula

∫

|w|<1

(1 − |w|2)βdw = π
n−1

2
Γ(β + 1)

Γ(β + n+1
2 )

.

Here we have assumed β > −1 to guarantee the convergence of the integral �

Lemma 6.5. Let σ > 0 be sufficiently large, and assume that β > −1. Then
for any f(x) ∈ C∞

0 (Rn), we have the following asymptotic expansion around s = σ:

(6.21)
∫ (

s − ϕ(x, θ)
)α

−

(
σ − Φ(x)

)β

+
f(x)dx ∼

∞∑
k=0

(
σ − s

)α+β+ n+1
2 +k

+
g
(α,β)
k (σ, θ).

Each term of the expansion (6.21) is represented by a differential operator M
(α,β)
k

on R × Sn−1 in the following way:

g
(α,β)
k (σ, θ) =

(
M

(α,β)
k f ◦ X

)
(σ, θ),

where X(s, θ) is the diffeomorphism in Theorem 6.2 (6). In the local coordinates
M

(α,β)
k has the following expression

(6.22) M
(α,β)
k =

∑
j+|γ|/2≤k

Ckjγ(α, β)mkjγ(s, θ)∂j
s∂γ

θ .

In particular,

(6.23) M
(α,β)
0 = (2π)

n−1
2 det (A(σ, θ))−1/2

JP (σ, 0, θ).

Proof. We plug (6.15) with (6.16). Let X : (s, θ) → X(s, θ) be the diffeomor-
phism in Theorem 6.2 (6). In the (t, y) coordinate system employed to derive (6.15),
the condition z = 0 and t = σ means that y = y(σ, θ) and ϕ(x(σ, y, θ), θ) = σ, which
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represents the point X(σ, θ). Therefore each term of the asymptotic expansion
(6.21) is a derivative of f(x) evaluated at x = X(σ, θ). Moreover

∂t

∣∣∣
t=s,y=y(s,θ)

=
n∑

i,j=1

gij(X(s, θ))
(

∂ϕ

∂xj

)
(X(s, θ), θ)

∂

∂xi

=
n∑

i,j=1

gij(X(s, θ))
(

∂Φ
∂xj

)
(X(s, θ))

∂

∂xi
,

which is equal to ∂s in the coordinate system (s, θ) = X−1(x). Thus we have the
asymptotic expansion (6.21). The formulas (6.22) and (6.23) follow from (6.17) and
(6.18). �

The first term M
(α,β)
0 is written by geometric quantities. By a simple compu-

tation one can show that

(detA(σ, θ))−1/2 = |∇xΦ(x)|−(n−1)/2

(
detHPS

( ∂x

∂yi
,

∂x

∂yj

))−1/2 ∣∣∣
x=X(σ,θ)

,

HPS = HP −HS ,

where x = x(t, y, θ), HP and HS are second fundamental forms on {σ = ϕ(x, θ)}
and {σ = Φ(x)} induced from the Euclidean metric, and

JP (σ, 0, θ) =
∣∣G(x)−1∇xΦ(x)

∣∣ (detGS(x))1/2
∣∣∣
x=X(σ,θ)

,

where G(x) =
(
gij(x)

)
, and GS(x) is the matrix of first fundamental form on

{σ = Φ(x)} induced from the Euclidean metric.

Theorem 6.6. Let σ > 0 be sufficiently large and λ > −1/2. Then for any
f ∈ C∞

0 (Rn), we have the following asymptotic expansion around s = σ

(
R+(σ − Φ(x))λ

+f
)
(s, θ) ∼

∞∑
k=0

(σ − s)λ+k
+ g

(λ)
k (σ, θ).

Proof. This follows from Theorem 5.5 and Lemma 6.5. Note that (σ −
Φ(x))λ

+f ∈ L2(Rn) if λ > −1/2. �

In order to prove the converse of Theorem 6.6, we expand (σ−Φ(x))λ
+f(x) into

an asymptotic series
∑∞

k=0(σ − Φ(x))λ+k
+ fk(x) and study the relations between fk

and gk. We compute in the following way. For f(x) ∈ C∞
0 (Rn), take χ(x) ∈

C∞
0 (Rn) such that χ(x) = 1 on supp f . Then by Taylor expansion

(σ − Φ(x))λ
+f(x) =

N∑
j=0

(σ − Φ(x))λ+j
+ f

(σ)
j χ(x) + FN (x),

where f
(σ)
j is a smooth function on {σ = Φ(x)} and FN (x) is a compactly supported

Cµ(N)-function, where µ(N) → ∞ as N → ∞. This implies modulo Cµ(N)-function

(
R+

(
(σ − Φ(x))λ

+f(x)
))

(s, θ) ≡
N∑

j=0

(
R+

(
(σ − Φ(x))λ+j

+ f
(σ)
j χ(x)

))
(s, θ),
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and up to a smooth function the right-hand side is equal to
∑
i,j

∫
(s − ϕ(x))−

n+1
2 +i

− (σ − Φ(x))λ+j
+ rif

(σ)
j dx

near s = σ, since χ(x) ≡ 1 near {σ = Φ(x)}. Omitting the cut-off function χ(x),
we express this computation as

(
R+

(
(σ − Φ(x))λ

+f(x)
))

(s, θ) ∼
∞∑

j=0

(
R+

(
(σ − Φ(x))λ+j

+ f
(σ)
j

))
(s, θ),

which will not give a confusion.
In order to write down the expansion it is convenient to use the diffeomorphism

X(s, θ) in Theorem 6.2 (6). We insert the asymptotic expansion

(
(σ − Φ(x))λ

+f ◦ X
)
(s, θ) ∼

∞∑
k=0

(σ − s)λ+k
+ fk(σ, θ)

into the formula in Theorem 6.6 and obtain
(
R+

( ∞∑
k=0

(σ − Φ(x))λ+k
+ f∗

k

))
(τ, θ) ∼

∞∑
k=0

(σ − τ)λ+k
+ gk(λ, σ, θ),

where f∗
k = fk◦X−1. Note that we fix σ and regard f∗

k as a function on {σ = Φ(x)}.
Let us look at gk(λ, σ, θ) more precisely. Using Theorem 5.5 and Lemma 6.5, we
have

(
R+

( ∞∑
α=0

(σ − Φ)λ+α
+ f∗

α

))
(τ, θ)

∼
∞∑

k=0

(σ − τ)λ+k
+

∑
α+β+γ=k

g
(−n+1

2 +β,λ+α)
γ (σ, θ),

g
(−n+1

2 +β,λ+α)
γ (σ, θ) = M

(−n+1
2 +β,λ+α)

γ rβf∗
α ◦ X.

Therefore we have

gk(λ, σ, θ) =
k∑

α=0


 ∑

β+γ=k−α

M
(−n+1

2 +β,λ+α)
γ rβ


 f∗

α ◦ X.

Hence we have the following formula

gk(λ, σ, θ) = P
(k)
0 (λ)fk(σ, θ) + P

(k−1)
2 (λ)fk−1(σ, θ)

+ · · · + P
(0)
2k (λ)f0(σ, θ),

(6.24)

where P
(j)
2(k−j)(λ) is a differential operator with respect to θ, and P

(k)
0 is the operator

of multiplication by

(6.25) P
(k)
0 (σ, θ) = (2π)

n−1
2 det A(σ, θ)−1/2JP (σ, 0, θ)r0(X(σ, θ), θ).

Using (6.25), one can solve (6.24) with respect to fj to have

fk(λ, σ, θ) = Q
(k)
0 (λ)gk(σ, θ) + Q

(k−1)
2 (λ)gk−1(σ, θ)

+ · · · + Q
(0)
2k (λ)g0(σ, θ),

(6.26)
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6. SINGULAR SUPPORT THEOREM 245

where Q
(j)
2(k−j)(λ) is a differential operator with respect to θ, and

Q
(k)
0 (σ, θ) = 1/P

(k)
0 (σ, θ).

Theorem 6.7. Let σ > 0 be sufficiently large and λ > −1/2. Given any g(s, θ)
having the following asymptotic expansion around s = σ

g(s, θ) ∼
∞∑

k=0

(σ − s)λ+k
+ gk(θ)

with gk(θ) ∈ C∞(Sn−1), there exists f(x) such that around s = σ

(R+f) (s, θ) ∼
∞∑

k=0

(σ − s)λ+k
+ gk(θ),

and f(x) admits the asymptotic expansion

(6.27) f(x) ∼
∞∑

k=0

(σ − Φ(x))λ+k
+ fk(θ)

around Σ(σ), θ being the local coordinates on Σ(σ). Furthermore

g0(θ) = N(σ, θ)f0(X(σ, θ)),

N(σ, θ) being given by (6.25). This f(x) is unique in the sense that if there exist
two such f (1)(x) and f (2)(x), f (1)(x) − f (2)(x) is smooth. In particular, f (1)(x)
and f (2)(x) have the asymptotic expansion as in (6.27) with the same fk(θ).

Proof. By (6.26), one can construct fk(θ). Using Borel’s procedure we then
construct f(x) having the asymptotic expansion f(x) ∼

∑∞
k=0(σ − Φ(x))λ+k

+ fk(θ).
Suppose there exist two such f (1) and f (2). As is seen by the lemma below, f (1)−f (2)

is regular in non-scattering region, hence it is in H∞ by Theorem 5.11. �

Lemma 6.8. For σ > 0 large enough, let u(x) = (σ − Φ(x))µ
+f(x), where

f(x) ∈ C∞(Rn) wwhose support is sufficiently close to {σ = Φ(x)}, and µ > −1/2.
Then u(x) is regular in non scattering region.

Proof. Let P be the ψDO with symbol p(x, ξ) ∈ S0 such that for some 0 <

δ < 1, supp p(x, ξ) ⊂ {|x̂ · ξ̂| < δ}. Then by using the polar coordinates (s, θ) in
Theorem 6.2 (6),

P̂ u(ξ) = (2π)−n/2

∫

Φ(x)<σ

e−ix·ξp(x, ξ)u(x)dx

=
∫ σ

0

∫

Sn−1
e−iX(s,θ)·ξ(σ − s)µp(X(x, θ), ξ)g(s, θ)dsdθ,

with suitable g(s, θ) ∈ C∞. We apply the stationary phase method (as |ξ| → ∞)
to the integral on Sn−1. Since X(s, θ) is close to sθ, the critical points are close to
±ξ̂, on which p(X(s, θ), ξ) vanishes. Therefore above integral is rapidly decreasing
in ξ. �

27600106 メモアール32巻.indd   251 2014/05/19   17:02:05



246 A. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN Rn

6.3. Singular support theorem. The following Theorem 6.10 will elucidate
how the modified Radon transform describes the propagation of singularities for
the wave equation.

Definition 6.9. Assume Σ(t) ⊂ {|x| > r0}. A function f(x) ∈ L2(Rn) is said
to be piecewise H∞(|x| > r0) with interface Σ(t) if there exist f1, f2 ∈ H∞(|x| > r0)
such that f =

(
t − Φ(x)

)0

+
f1 +

(
t − Φ(x)

)0

−f2 on |x| > r0. Similarly a function

f(s) ∈ L2(R; L2(Sn−1)) is said to be piecewise Ĥ∞(s > s0) with interface s = t (>
s0) if there exist f1, f2 ∈ Ĥ∞(s > s0) such that f = (t − s)0+f1 + (t − s)0−f2 for
s > s0.

Theorem 6.10. Pick r0, s0 > 0 large enough, and let t > max {r0 + 1, s0 + 1}.
Assume that f ∈ L2(Rn) is regular in non-scattering region. Then f is piecewise
H∞(|x| > r0) with interface Σ(t) if and only if R+f is piecewise Ĥ∞(s > s0) with
interface s = t.

Proof. Suppose f is piecewise H∞(|x| > r0) with interface Σ(t). Up to an
H∞-function, f is equal to (t − Φ(x))0+f̃(x) with f̃ ∈ H∞(Rn). By Theorem 5.5,
(R+f)(s, θ) is smooth with respect to s if s �= t. By Theorem 6.6, (R+f)(s, θ) ∼∑

k≥0(t − s)k
+gk(θ) around s = t. Therefore R+f is piecewise Ĥ∞(s > s0) with

interface s = t.
Conversely, suppose R+f is piecewise Ĥ∞(s > s0) with interface s = t. Up to

an Ĥ∞-function, (R+f)(s, θ) ≡ (t− s)0+g(s, θ) with g ∈ Ĥ∞(s > s0). By Theorem
6.7, there exists f̃ such that (R+f̃)(s, θ) ∼ (t − s)0+g(s, θ) around s = t. Then
R+(f − f̃) ∈ Ĥ∞(s > s0). By Theorem 5.10, f − f̃ ∈ H∞(|x| > r0). This shows
that f is piecewise H∞(|x| > r0) with interface Σ(t). �

The meaning of Theorem 6.10 in propagation of singularities is as follows. We
put v(t, s) =

(
R+∂tu(t)

)
(s) for the solution u(t) to the wave equation ∂2

t u = Hu
with initial data u(0) = 0, ∂tu(0) = f . Then v(t, s) solves the 1-dimensional wave
equation {

(∂2
t − ∂2

s )v(t, s) = 0,

v(0, s) =
(
R+f

)
(s), ∂tv(0, s) = 0,

hence is written as

v(t, s) =
1
2

(
(R+f)(s + t) + (R+f)(s − t)

)
.

If σ is sufficiently large, t ≥ 0 and f is regular in non-scattering region, we then see
that f is piecewise Hm(|x| > r0) with interface Σ(σ) if and only if (R+∂tu(t))(s)
is piecewise Ĥm(s > s0) with interface s = t + σ, which is equivalent to that ∂tu(t)
is piecewise Hm(|x| > t + r0) with interface Σ(t + σ).
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