APPENDIX A

Radon transform and propagation of singularities
in R"

In Theorem 5.2 of Chap. 4, we proved the singularity expansion of the Radon
transform for an asymptotically hyperbolic metric using the parametrics for the
perturbed wave equation. It is also the case for the wave equation in the asymp-
totically Euclidean space. In this appendix, we state the precise results as well
as the relations between the Radon transform, the asymptotic profiles of the wave
equation and scattering matrices in a general short-range perturbation regime. The
main results are Theorem 1.14, Lemma 1.17, which can be utilized directly in the
inverse scattering for the wave equation, and Theorems 6.7, 6.10, which show how
the Radon transform is related with the propagation of singularities.

The Radon transform associated with the Euclidean metric is defined by

(Rof) (s,0) = /_ \ f(z)dll,, scR, HcS" 1

dIl, being the measure induced on the hyperplane {x € R"; s = x - 0} from the
Lebesgue measure dz on R™. This is rewritten as

(Rof) (s,0) = (2m)(n=D/2 /OO e"* F(kO)dk,

where f is the Fourier transform:

~

foy =ery [ e e
Let us consider the Riemannian metric on R" satisfying the following condition:
(0.1) 105 (935 () = 8i5) < Ca(1+|a)) 717071 Va,

where €y > 0 is a constant. In Chap. 2, §7, we have already constructed a general-
ized Fourier transformation F(&) for Ay. Asin Chap. 2, §7, we construct 4 from
F&F) and define the modified Radon transform R by

— e (F. k,0)dk.
= _MEDR)
For the Euclidean Laplacian in R™ this turns out to be

The main issue of this chapter is the singular support theorem for R4y. We
construct ¢(z,6) € C°(R™ x S"~1) such that

10502 (0 (2,0) — 3 0)] < Cop(1+ |z])~ 11—,

Rif(sa 9) =

n—

1
2 Ro.
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208 A. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN R"

and it solves the eikonal equation

97 (2)(0ip(,0))(050(2,0)) =1, 9; = 9D,
in an appropriate region in R". We put X(s,0) = {z € R";s = ¢(z,0)}, which
describes a wave front of a plane wave solution to the wave equation 97u = Agu.
Then by observing the propagation of singularities, we obtain the following theorem:
Let R4 (s, 0, x) be the distribution kernel of R. Then if we fix s > 0 large enough,
we have the following singularity expansion:

s L+1
Ri(s,0,0) ~ Y (s —p(a.0)" = 7rj(z,0).

=0

Let X(s) be the envelope of the family of hypersurfaces {X(s,0) ; 6 € S"~1},
which describes a spherical wave front. We then show that f (satisfying a suitable
condition on the wave front set) is piecewise smooth near (o) with interface (o)
if and only if (R f)(s) is piecewise smooth near {s = o} with interface s = o.
Moreover we also obtain the singularity expansion of R f in terms of spherical
wave solution to the eikonal equation.

1. Fourier and Radon transforms for perturbed metric

1.1. Spectral properties. The Laplace-Beltrami operator A, is symmetric
in L2(R"; \/g(z)dx). To avoid the denstity /g(x), we apply a unitary transforma-
tion : u — ug(z)'/*4, and consider the differential operator

H = —g(z)"*Agg(x)~/* = - Z aij(2)0;0; +Zb )0i + c(x

4,j=1
on L?(R™;dz). Note that a;;(z) = ¢" () and a;j(x) — 0;;, bi(z), c(z) satisfy
05 a(@)] < Ca(l + |z, va
We put

Hy=—A ==Y (9/0x;)®, V =H— H,

Ro(z) = (Ho—2)"', R(z)=(H —2)""
Theorem 1.1. (1) 0(H) = 04.(H) = [0, 00).

(2) op(H) = 05c(H) = 0.
(8) For any A > 0 and f,g € B, there exists a limit

lirr(l) (R(ALie)f,g) = (R(A£40)f,g).

(4) For any 0 < a < b < oo, there exists a constant C' > 0 such that
[RAA£0)flls- < C|flls, a<A<b.

(5) For any f, g € B, (R(A£1i0)f,g) is a continuous function of XA > 0.

The proof is omitted. The limiting absorption principle in weighted L? spaces
was proved in, e.g., [58], and in B — B* spaces by Agmon and Agmon-Hérmander
[65], and [71].
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1.2. Generalized Fourier transform. Let us recall the notation in Chap.
2, 87. For k € R\ {0} and f € B, we define

(FO(k)f) (w) = (2m) /2 / e £ (1) dx.

n

It has the following properties
FO(k) € B(B; L*(S"71)),

(1.1) FOo—k) = JF°k),
J being the anti-podal operator defined by

(1.2) (JY) (w) = ¥(—w).
We put

Hso = L*((0,00); L2(S™1); k"~ Ldk),
Heo = L*((—00,0); L*(S™1); k[~ *dk).
Then the operator (FOf)(k) := F°(k)f is uniquely extended to a unitary operator

from L?(R") to Hso. It is also extended to a unitary operator from L?(R") to

Ho. With these properties in mind, we define the generalized Fourier transform
FH) (k) by the following formula:

FE (k) = FOk) (1 — VR((k £i0)2)).

Note that (k +i0)% = k2 + 0 for k > 0 and (k +1i0)? = k% — 40 for k < 0. By (1.2)
we have

(1.3) FO(=k) = JF (k).
By Theorem 2.7.11, F*) is uniquely extended to a unitary operator from L?(R™)

to ﬁ>0 and diagonalizes H, and F#) is also unitary from L?(R™) to 7-Al<0.

Remark. One can also prove that (}"(i)f) (k, 6) is smooth with respect to k and 6.
In fact, let p(A) € C5°((0,00)), f(z) € C5°(R™) and put g(¢) = (F) (k)p(L) f) (w)
with £ = [¢], w = &/|§]. Then g(§) € C>*°(R"). For the case of the Schrédinger
operator —A + V' where V is a real-valued potential, we have proven this property
in [59] by using a parametrics at infinity of the time evlolution equation. One
can repeat the same argument by using the geometrical optics solutions to be
constructed in §3 of this chapter.

The following theorem is proved in the same way as in [132].

Theorem 1.2. For k€ R\ {0} and f € B
R((k +i0)%) f(w) 2= Co(k)r= =172 (FO (1) ) (w),
where r = |x|, w = x/r, and

Co(k) = \/Z(ik +0)(n=3)/2,

Here f ~ g means that

Jim ;/ £(z) — g(z)2dz = 0.
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1.3. Wave operators and scattering matrix. The wave operator Wy for
the Schrédinger equation is defined by the following strong limit in L?(R™):
Wy =s— lime'HemitHo,

t—too

It is well-known that this limit exists and regarding F° and F*) as unitary from
L?(R™) to Hsg, we have the following relation

(1.4) Wy = (F&) 70,

The wave operator for the wave equation is usually defined by the energy norm.
We can also employ the following equivalent operator

(1.5) s — lim e!VHe=itVHo _ yy7, — (F&)* 70,

t—+oo

The point is that the limit in the left-hand side exists, and coincides with the wave
operator for the Schrédinger equation. This fact, called the invariance principle, is
known to hold in a broad situations (see e.g. [80], p. 579). The equality (1.5) can
of course be proved directly by using F*) (see e.g. [102]).

As a by-product, one can show that the solution u(t) of the wave equation

0?u = —Hu,
{u(O) =f, Ow(0)=—iVHSf
behaves as follows
lu(t) — e ™o fi]l2 >0 as t— oo,

where fL = (f 0)*.7: () f. Therefore F(&) represents the far field behavior of waves.
The same fact can be proven for the Schrodinger equation.

Definition 1.3. Regarding F° and F*) as unitary from L*(R™) to Hwo, we
define the scattering operator S, its Fourier transform S, and the physical S-matrix

~

Sphy (k) by
S = (Wy) W, S = (FOY'SFO = FH (FN™
Spny(k) = I = mik" 2FO ()VFO(R)*, k> 0.
Lemma 1.4. §phy(k:) is unitary on L2(S™1) for any k > 0, and
(S)(k) = Suny (B)F(R),  Vf € Hso, ae. k>0,
FO (k) = Spy (k) F(R), k>0,
Definition 1.5. For k& > 0, we define the geometric scattering matrix §geo(kz)

by
Sgeo(k) = Sphy(k)J.

The following theorem is proved in the same way as in [132], (see also [60],
[62]).
Theorem 1.6. Let k > 0, and put
N (k) = {u € B*;(H — k*)u = 0}.
(1) We have
N (k) = F® (k)" (L*(S"7).
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(2) For any u € N (k) there exist o4 € L*(S™™1) such that
ei(k'r—(n—l)ﬂ/4) 6—i(kr—(n—1)7r/4)

(1.6) u(r) ~ WQPAW) + ey R (w),

where r = |z|, w=x/r.
(3) For any ¢_ € L*(S"1), there exist a unique u € N'(k) and ¢, € L?*(S"1)
such that the expansion (1.6) holds. Moreover they are related as follows :

P+ = Sgeo(K)p—

1.4. Modified Radon transform. It is convenient to change the definition
of the generalized Fourier transform slightly. For k € R\ {0}, we define

1 .
E(q:mw)( D2 FE) (1),

Folk) = %(—z‘k +0)(n= /20 (k).

Fi(k) =

and put (Fuf)(k) = Fi(k)f, (Fof)(k) = Fo(k)f. Note that by (1.3)
(1.7) Fo(—k) = JF_(k).

Theorem 1.7. (1) Fi : L*(R") — L?(R; L?(S™"~1);dk) is an isometry. More-
over we have

(FLHS) (k) = k* (F.f) (k).
(2) For k > 0, we have

Fi(k) = (=)" " Spny (k) JF 1 (—F).
Consequently, the range of F1+ has the following characterization:
gE€RanFy <= (—i)" 'Sy (k) Jg(—k) = g(k), k >0,
geRanF_ > (—i)" 'Sy, (k)g(k) = Jg(—k), k> 0.
(3) Let ry (r_) be the projection onto Hso (H<o). Then we have
(1.8) Wi =2(F) ryFo, Wo =2(F) r_F,

(1.9) Wi =2(=i)" N (F) r_Fo, Wo =2""H(F) ryp Fo.

Proof. Theorem 2.7.11 proves (1). Lemma 1.4 and (1.3) imply §phy(k)Jf(+)(—k)
= FH) (k) for k > 0, which proves (2). The formula (1.4) proves (1.8) for W, . For
f,g € B, we have by using (1.3) and (1.4) for W_

W_f.g) = (F°f,F7yg)
-/ T (O 1, FO (kg kN

I
K

(
= (F+)r-7:0f>)

0
JFOk) f, JFE (k) g)|k|"dk

—ik 4 0) " V2EE) £, (—ik + 0) V2 FED) (k) g)dk
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This proves (1.8) for W_. By a similar computation using
(il + 0)* = eFEnami/2 ko son (k) — k/|K,

we have

(Wifg) = k) f, F ) (k)g)k™ " dk
(JFO k) f, JF ) (k)g)|k|" " dk

((ik + 0)"=V2F0 (k) £, (ik + 0) "= V2 F) (k) g)dk

Il

= (=)™ 1/ ((—ik + 0)" V2 F0 (R £, (ik + 0) = Y/2F ) (k) g)dk

2(=i)" " ((F-)r-Fof.g),
which proves (1.9) for W,.. Finally by (1.4)

(W_f,g) = / (FOR) £, 7O (k)g) k" dk

= / Oo((ik: +0)=V2E0E) £, (ik + 0)" Y2 F) (k) g)dE
0

S / ((=ik +0) "= D2FO(k) £, (ik + 0) "= D2F ) (k) g)dk
0

= 2in_1((‘7:*)*r+]:0f7 9)7
which proves (1.9) for W_. O

As a consequence of Theorem 1.7 (2), we have
g € Ran Fy <= g(—k,—w) =i"g(k,w), k>0.
The projection onto the range of Fy is written as follows.

Lemma 1.8. We define the operator J by (Jf)(k,w) = f(—k, —w). Then
1 1 ~
fo(fo)* = B + 5((—1')”_17’+ + Z'n_l’l“,).].
Proof. We put (Up f)(k,w) = %|k\("_1)/2f(kw). Then Uj is an isometry from
L?(R™) to L*(R; L?(S™1); dk) and
geRanlUy < g = jg.

Since Uy(Up)* is the projection onto the range of Uy, we have
1 ~
Uog(Up)" = 5(1 +J).
Let h = ¢Y%r, + 21/27“,, ¢ = e (=D7/2 Then we have Fy = hlUp, hence
Fo(Fo)" = hUy(Up)*h*.
As can be checked easily
(1.10) Jry =r=J.

Using these formulas we obtain the lemma by a direct computation. O
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Corollary 1.9.
(1.11) f+ :7”+‘7:0(W+)*+7'7.7:0(W7)*,

(1.12) Fo =" Fo(Wo)* + (=) Fo(W4 )™,

Proof. By (1.8), Fo(W4)" = 2F(Fo)*r+F.. By Lemma 1.8 and (1.10) we
have

1
reFo(Fo) re = s

This proves (1.11). By (1.9), we have Fo (W )* = 2" L Fo(Fo)*r_F_, and Fo(W_)* =
2(—i)" Y Fo(Fo)*ry F_. Therefore

r_FoWo) =i r F o, ri Fo(W_)* = (—i)" 'ry F_.
Hence (1.12) follows. O
Definition 1.10. The modified Radon transform R is defined by

(Ref)(s) = \/127 /_ O:O e®s (Fuf) (k)dk.

By (1.7) and Theorem 1.7, we have
Theorem 1.11. Ry : L2(R") — L?(R; L*(S"1); dk) is an isometry and
(ReH ) (s) = =03 (R f) (5)-
Moreover
(R4 f) (=s) = J(R-[) ()-
Definition 1.12. For an open interval I C R, let H™(I) be the set of functions

¢(s,w) satisfying
; 2
S [ lo0ts. ) agusyds < o

0<j<m

If I = R, we simply write H ™ in which case m can be any real number by passing
to the Fourier transformation.

Lemma 1.13. For any m > 0 we have
feHm:)RifefIm.
Proof. A direct consequence of Theorem 1.11. O

1.5. Asymptotic profiles of solutions to the wave equation. The fol-
lowing theroem is proved in the same way as Theorem 2.8.9.

Theorem 1.14. For z € R", we write r = |z|,w = z/r. Then for f € L*(R"),
we have as t — o0

cos(tVH) f) (z) — R (R f) (r—t,w)|| — 0,
ﬂ
| (sinevan)7) (@) - ”("\/;/2 <h( - z'ai)mf) (r—tw)] —0,

where || - || is the L?>(R™)-norm, and h(k) =1 (k > 0), h(k) = -1 (k <0).
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1.6. Relation between scattering operators. The scattering operator is
also defined by the Radon transform, namely

Definition 1.15. Sp=R4(R_)".

The following lemma follows easily from Theorem 1.11 and Lemma 1.13.

Lemma 1.16. (1) Si is a partial isometry with initial set Ran (R_) and final
set Ran (R+) .
(2) 92Sp = Sro>.
(3) SgH™ c H™, Ym > 0.

The relation to the scattering operator S in Definition 1.3 is as follows.
Lemma 1.17. Let F1_be the 1-dimensional Fourier transform, r+ the projection
in Theorem 1.7 (3) and J as in Lemma 1.8. Then we have
FiSR(F) = ()" FoS(Fo) e+ FoS* (Fo)'r_ + o],
Proof. Since F1Sr(F1)* = F4(F-)*, the lemma follows from Corollary 1.9. [

2. Asymptotic solutions

2.1. Geometrical optics. In this section we construct an asymptotic solution
to the equation
—A, (e*?a) = k?e™*?aq,

k € R being a large parameter. We put a = Z;'V:o k~7a;. Then we have
e (=N, — k*)e*a = k? [g°F (0ap)(0pp) — 1] a — ikTa — Aya

= k2 [¢°(0a) (95) — 1] a — ikTaq
N—-1
—1 Z k_j(Taj+1 - Z.Agafj) - ik_NAga]\“

=0

(2.1)

where T is the following differential operator
T = 2g°°(Da) 05 + Agp.
We define the Hamiltonian h(x,p) by

1 ..
h(a:,p) = 59” (x)pipj-

Our aim is to constrcut a real function p(x,§) € C°°(R"™ x S"~1) which behaves
like -0+ O(|z| =) as |x| — oo, and solves the eikonal equation h(z, V,p) = 1/2in
the region {x -0+ |z |/e > R}, where x; = x — (x-0)0, and R, 1/e are sufficiently
large constants. We shall parametrize the bicharacteristics by the asymptotic data
at infinity.

We fix § € S"~1 arbitrarily. We seek a solution x(t), p(t) of the Hamilton-Jacobi
equation
) de_on dp_ on

dt  Op dt ox
having the following asymptotics:

)=t +y+O0(t™), pt)=0+00t"17°), (t— o00)
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for some y € R™. A simple calculation shows that z(t) satisfies the following
integral equation

o d*x(s

x(t):t9+y+/ (s —1) (2)

¢ ds

Since Hamilton’s equation (2.2) coincides with the equation of geodesic, we have

ds.

2,k i 04
dqu; = - 'fj%% =T} 9" paps,
Ffj being Christoffel’s symbol. In view of these formulas, we put
2(t) = =z(t) -t —y,
ARt s,y,0;2,p) = (t— S)Ffj(sﬁ +y+2)g"(s0 +y + 2)g7P (50 + y + 2)papp,
B¥(s,y.0;2,p) = %gi,: (s0 4+ y + 2)pip;,
A = (AY,.-.. A", B=(B'---,B"),

and consider the integral equation

)= [ Alt,5,5.0: 2(s), pls))ds,
(2.3) J .

p(t) =0+ / B(s,y,0: 2(s), p(s))ds.

We fix a sufficiently small e > 0. For a sufficiently large R > 0, let Qg () be the
region defined by

Qr.c(0) ={(ty,2); t+lyl/e > R,y -0 =0, [2] <3}
Then taking R large enough we have by a simple computation
(2.4) [t0+y+ 2| > C(t|+ |yl + R), VY(t,y,2) € Qr.(0),
where the constant C' is independent of (¢,y,2) € Qg(6) and R > 0. We put
X(t) = (2(8), (1)),

and define the non-linear map £(X) by

£ 00) = ([ Alts,.0:5(6) (o). [ Bl 05206 p(s))s )

We parametrize y in the following way. Take vectors eq(6), - ,e,—1(0) so that
e1(0), -+ ,en—1(0) and 6 form an orthonormal basis of R". Then if y -6 =0, y is
written as y = Z?:_ll yiei(6). This (y1, -+ ,Yn—1) gives the desired parametrization.
Note that e1(#),--- ,e,_1(6) can be chosen to be smooth with respect to § € S"~1
(at least locally). We put

[Xloo = sup  [X(2)].
(tayfz)GQR,e(e)

Lemma 2.1. Suppose | X|oo < 2, |X|oo < 2. Then the following inequalities
hold:

10705 L(X)(8,9.0)] < Cona(lt] + [yl + R)~ "™~ ¥m, a,
|£0)(t9,0) = £(X) (2 ,0)] < C(1 + Iy] + R)~|X = K.
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Proof. This is a direct consequence of (2.4) and the estimate 99TV (x)
O(Jz| =2~ lol), which follows from (0.1).
We now put Xy = (0,0) and take R > 0 large enough. Then by Lemma 2.

and the standard method of iteration, there exists a unique solution X (¢,y,6) of
the integral equation

— O

X = Xo + L(X)
in the region {t + |y|/e > R, y -0 = 0} satisfying
0795 (X (9.0 — X0)| < Coua (1] + [yl + B)0 "1 v,
Returning back to the equation (2.2), we have proven the following lemma.

Lemma 2.2. Take 0 € S™~! arbitrarily and R > 0 large enough. Then there
exists a unique solution x(t,y,0),p(t,y,0) of the equation (2.2) such that in the
region {t + |y|/e > R, y -0 = 0} it satisfies

070 (2 (¢, 9,0) — 10— 9)| < Cona([t] + ly] + R)~ ™1l v, a,
0705 (p(t,,0) — 0)] < Cona(Jt] + Iy + R) 7707710, o

Proof. By differentiating the integral equation (2.3), we have

dx o0 o
T o* +/t Ffjgw‘gjﬁpapgds,
dpy, 10g*? oh
2.5 e _ 299 =9
(2:5) dt 2 Bk Pobs Oxk

Therefore we have to show that
o0
9" pa = 0" + / 79" ¢ pappds.
t

Since both sides tend to #* as t — oo, we have only to show that their time
derivatives coincide. By (2.5), the formula to show is

dg* i8 _1 ki agaﬁ

ozt Y 29 oy

which follows from a direct computation and the formula
99" _ ik OGrr \ 1
oz~ \oam )7

The estimates of x(¢), p(t) are easy to derive. O

= —T}g 9",

Lemma 2.3. As a 2-form on the region {(t,y);t+ |y|/e > R, y-0 =0}, we
have

i=1

Proof. Without loss of generality we assume 6 = (0,---,0,1) and put y =

(ul,--- ,u™"10), t = u™. Then we have
> dp; Adx' = [p,x]jrdu’ A du®,
i i<k

Op Ox Op Ox

[P 7]k = oul  OuF OuF oud’
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Noting that

0 ( Op 5‘7:5 B 0*h  Oxz™ Oxt 0*h  Op; Opm
oul  Ouk )

= = - :
Ot Oztox™ Oul OuF  Op;Op,, Ouk Ou’
is symmetric with respect to j and k, we have

3}

By Lemma 2.2, [p,z];z; — 0 as t — oo. Hence [p,z];z = 0, which proves the
lemma. 0

For z € R", we put ; =z — (z - 6)0 and define the region Ag (0) by
Agc(0)={xeR";z-0+|z,|/e > R}.

In the coordinates with basis 6,e1(0), -+ ,e,—1(6), the differential of the map
(t,y) — x(t,y,0) is I + O(R™°°). Therefore the following lemma holds.

Lemma 2.4. For large R > 0, the map (t,y) — x(t,y,0) is a diffeomorphism
and its image includes Nog (6).

Let t = t(z,0),y = y(z,0) be the inverse of the map : (t,y) — x(t,y,6). We
put p(z,0) = p(t(x, ) y(z,0),0) for the sake of simplicity. Lemma 2.3 implies
d(>_; pj(z, 0)dx’) = thh shows

(2:6) oxi  Oxd

We put

) = (o 8) 0 = [ G (0(5,0:0).p(5.0) s

t=t(x,0),y=y(.6)

and define ¥(z,6) by

\Il(m,ﬁ):x-G—/oof(:v—l—tG,Q)ﬂdt.
0

Lemma 2.5. On Agg (0), we have

(2.7) V. U(z,0) =p(x,0),
(2.8) h(z,V,¥(x,0)) =1/2,
(2.9) |0%(U(x,0) — 2 - 0)| < Co(1+ |z))~07 1ol va.

(2.10) U(x,0) =t(z,0).
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Proof. Letting f = (f1,---, fn), we have %(m,&) = g;f; (z,0) by (2.6). We
then have
ov o of;
o = 0 i Z@(:ﬂ + 10, 0)6;dt
' 9fi

= 01-—/000 %fi(:c+t0,0)dt
= 0;+ fi(z,0)
= pi(z,0),
which proves (2.7). Since z(t), p(t) solve the equation (3.2), h(z(t),p(t)) is a con-

stant. Letting t — oo, this constant is seen to be equal to 1/2, which together with
(2.7) proves (2.8). The estimate (2.9) follows from Lemma 2.1. By (2.7), we have

ov ox*
gt~ O 5
Therefore W =t + to(y, 0) for some ty(y, ). However by Lemma 3.2, z(¢,y,0) -0 =
t + O(t ), which implies to(y,0) = ¥ —z -0 + O(t~ ) = O(t~). Therefore
to(y,0) = 0, which proves (2.10). O

=g (0;¥) (9;V) = 1.

The equality (2.6) yields the following corollary.

Corollary 2.6. For any smooth function f(x) on R™, we have

. 0¥ (x,0) 0f(x)

= ij —_— .
t=t(z,0),y=y(z,0) ( ) OxJ oz’

0
a (ZL’(t,y, 0))

By the above construction, ¥(z,#) is actually a function on the fibered space
{(6,2); 6 € S" 1z € Ayr(0)} and satisfies
10507 (W(x,0) — x-0)] < Cap(1+[a))~ "l Va, .

Definition 2.7. We take x-(t) € C>*(R) and x(t) € C*°(R) such that
Xoo(t) = 1, (t > 3R), Xoolt) = 0, (t < 2R), x(t) =1, (t > —1+ 2¢),
x(t) = 0,(t < —1+¢€), where 1/R and ¢ > 0 are sufficiently small constants.
We define

o(2,0) = - 0+ oo (Je)x(@ - 0) ((2,0) — - 6),
px(,6) = £le| p(a, £6), E=¢/k].
The following lemma is a direct consequence of the above definition.
Theorem 2.8. (1) pi(x,§) € C*(R™ x (R"\ {0})) and
0g07 (9 (2,€) — 2 €)| < Caglé] =12 (1 + Jal) =0V,
(2) If |x| > 3R and +7 &> —1 + 2, it satisfies the eikonal equation
h(z, Vo (@,€)) = [€]%/2.
(3) @—(xvf) = _90-5-(1‘7 _g)
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2.2. Asymptotic solutions. We employ the above ¢(z,0) as ¢ in (2.1). Let-
ting

(2.11) ao(z,0) = exp (/too L ay0)(2(s,9,0), 9)ds>

2 t:t(m,@),y:y(z,é’)’

and using Corollary 2.6, we have
Tao(x,0) =0 for |z|>3R, T -0>—1+42e.
By Theorem 2.8 (1), ao(x, 8) satisfies
10507 (ag(x,0) = 1) | < Cap(1 + |z])~177e.
We integrate the higer order transport equation
Ta; —iAgaj—1 =0, j>1
in a similar manner, and obtain
19507 aj(x,0)] < Cap(L+ |a]) =/~
Let x(t), xe(t) € C*°(R) be such that x(t) =1 (t > 4), x(t) =0 (t < 3), xc(t) =
1(t>—1+3€), xe(t) =0 (t < =1+ 2¢). We put
(2.12) a(z, k,0) = g(x)*x (T - 0) Zk Taj(z,0)x(e;]z])x(e;]k]).

By a suitable choice of the sequence ¢y > €; > --- — 0, this series converges and
defines a smooth function. We finally define

ax(w,€) = a(w, £[¢], ££).
The following lemma holds.
Lemma 2.9. (1) On R™ x R", a1 (x,&) satisfies
0807 ax(x,€)] < Cap(1+[€) (1 + |z]) 717,
(2) Let g4 (z,€) = e+ @O(L — |¢2) e+ @O ay (x,€). Then it satisfies
10807 g2 (,8)| < Capn(1+ 1)V (A + J2)~N
for any N > 0 in the region |x| > 4R, :I:fc\-g> —14 3e.

3. Fourier integral operators and functional calculus

3.1. Product formula for FIO. Lets us recall the theory of FIO’s. Since
we need precise product formulas, we employ the computation by [86], [87]. For
m € R, let S™ be the class of symbols defined by

S™ 5 pla, &) <= |080% p(x,&)| < Cap(1+ (€))7, Va, .

The phase function ¢(x, &) € C*°(R™ xR™) is assumed to be real-valued and satisfy
the following conditions (3.1) ~ (3.4) for a sufficiently small constant dy > 0:

(3.1) p(2,6) —z-£ €S,
(3.2) Ve (o(x,€) — 2 - &) | < do,

(3.3) |Va (p(,€) — 2 - )| < do(1+[€]),
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82
(3.4) )axag%@(m - I\ < bo.

We define FIO’s I, o, Ix 4

by
Lp.au(z) = (27m) // (0w O-vE) oz, €)u(y)dyde,

R»xR"

T ula) = (2) " [ [ @0ty uty)dyd.
R xR"
We put D, = —i0,, and define the ¥ DO p(z, D,) with symbol p(z, ) by

o Dayule) = (2n) " [ [ eI Ep(o uty)dyas
R"xR"
Using the conditions (3.1) ~ (3.4) we can prove the following lemma.
Lemma 3.1. (1) The map R" 3 { — n = Vyp(z,§) € R™ is a global diffeo-
morphism on R™. Letting its inverse by &(x,n), we have
5(37777) —nec Slv
CTH 1+ n) < 1+ < CL+ ).
(2) The map R™ 5 x — y = Vep(z,§) is a global diffeomorphism on R™. Letting
x(y, &) be its inverse, we have
I(y7£) RS 507
O 1+ [y < 1+ 2| < C1+ Jyl).
In the following Theorem 3.2, all symbols c(x, £) belong to S 52 and have the

following asymptoic expansion:

[ee]

(3.5) c(x’ &) ~ Z cj (x7 5)’ Cj(fl?,§> € §sits2—j

Jj=1

Theorem 3.2. Let a € S°*, b € S%2. Then we have the following formulas.

Iy oy = c(z,Dy),
. 92 -1
B e ~ a0t det (ot e
§=¢(z,m)
where £(x,m) is the inverse map of n = V,p(z,§),
I« o1y = c(z, Dy),
. 92 -1
BT ) ~ alo 90t ) det (5 0,9)) b
=z(y,§)

where z(y, &) is the inverse map of y = Vep(x,§),

{Lpab(x D,)=1,.,

(3:8) (2.6) ~ ala, b(Vep(w,£).€) + -
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- a(x,Dy)l,p =1y,
(39 { o, €) ~ al, Vi, )b, ) + -+

For the proof, see [86], Theorems 2.1 ~ 2.4. We need the following explicit
form of the asymptotic expansion (3.5) later. We put

Veola,b,n) = / (Vew) (€ + (1 — B))dt,

1
Vool &) = [ (Vap) b+ (1~ . ).
0
Then c¢(z, ) in (3.8) has the following asymptotic expansion:

(310) o)~ Y 08 {al@ DI Tep@ e }|

and ¢(z, ) in (3.9) has the following asymptotic expansion:
1 -
B1) &) ~ 3 05 {(@00) @ Vaele . 00w O} |

(see [86], (2.41), (2.57)).

2. Functional calculus. In Chap. 3, §2, we have introduced the almost
analytic extension F'(z) of f(t). By the construction procedure, we see that 0, F (t+
is) is an almost analytic extension of f’(t). Let

(3.12) X =1+ A= (1+|DH)V2
Lemma 3.3. Let f(t) € Cg°(R). Then we have for any N > 0
N
(3.13) FUH) = f(Ho) + Y pulw, Dy) f™ (Ho) + Ry,
n=1

where po (2, Da) = X o< pmy A5 (2) DG such that |05 al” (x)] < Cop(1+]a]) 7171170,
and Ry satisfies

(3.14) XVANRNAN XN € B(L2(R™)).
Proof. We first prove the lemma with the property (3.14) replaced by
(3.15) XNRy XN € B(LAR")).
We prove the case N = 1. By the resolvent equation, we have
(z—H) ' —(z—Ho)™' = (2= H)'V(2—Hop)™*
= V(z—H)"'(z—Ho) "' +[(z = H)"", V](z — Ho) ™"
= V(z—Hy) ?+K(2),
K(z) = V(z—H)"'V(z— Hy)™?
+ (z—H)'[H,V](z — H) "(2 — Hp) ™"
Therefore by virtue of Lemma 3.2.1

f(H) — f(Hy) = 2m/ 0.F(2)(z — Hy) %dzdz

(3.16)
/ 0.F(z 2)dzdz.
2m
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Since 0y F(t 4 is) is an almost analytic extension of f’(t), we have by integration
by parts

f/(Ho) = % /COZ@F(z)(z — Ho)"'dzdz

1 _
=5 /C 0.F(2)(z — Ho)?dzdz.
Therefore the 1st term of the right-hand side of (3.16) is equal to V f'(Hy). If P;
is a differential operator of order j = 1,2 with bounded coefficients, we have by
passing to the spectral decomposition
1P (z = H)7'|| < O |tz (1 + |2])7/2.
We then have
XK ()X < Cllmz[7"(1 + [2])?,

for some p > 2. Since F(z) satisfies |0, F(z)| < C|Im z|P(1+|z|)*~P~! for any s < 0,
the remainder term has the desired estimate (3.15). The proof for N > 2 is similar.

Now for f € C§°(R) we take x € C§°(R) such that x(¢) = 1 on supp x. We
multiply (3.13) by the expansion

N
X(H) = x(Ho) + > X" (Ho)g;(w, Dy) + (Rn)",

j=1
with ¢;(x, D,) and Ry having the above mentioned properties. We then have

f(Ho)x(H) = f(Ho) + f(Ho)(Rn)*.

Since Ry satisfies (3.15), one can prove that f(Hy)(Ry)* satisfies (3.14). One can
deal with p,, (2, D;)f™ (Ho)x(H) and Ryx(H) in a similar manner. O

4. Parametrices and regularizers

We construct parametrices for the wave equation in the form of a FIO using ¢4
and a4 in §2. Recall that ¢4, a4+ contain cut-off functions. Here we need another
cut-off function which restricts z and £ in a smaller region. Let R and € be as
in Definition 2.7. Take xoo(t), Xx(t) € C*°(R) such that xo(t) = 1 (¢ > 10R),
Xoo(t) =0 (t <9R), x(t) =1 (t > =14 5¢), x(t) =0 (t < —1 + 4¢), and put

(4.1) X (2, €) = Xoo (|2]) xoo ([E]) X (£T - €).

Definition 4.1. Let ¢4, at be as in Theorem 2.8 and Lemma 2.9, and x4 as
n (4.1). We define a FIO UL (t) by

Us(t) = Iwi,aieiit\/mﬂo;xr
In the following, || - || denotes either the operator norm ||T'||g(r2®n)) of a

bounded operator T on L?(R™) or the L2-norm ||ul|2(gn) of a vector u € L?(R™).
There will be no fear of confusion. We put

d .
Got) = = (eWﬁ U+(t)) .
Let X and A be as in (3.12).

Lemma 4.2. For any N > 0, there exists a constant Cn > 0 such that

IANGL(ANXN | <On@+1)7N, t>0.
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Proof. We have

Gy(t)=eVH <z‘\/EU+(t) - %m (t)) :

We decompose this operator into two parts and make use of the tools in §3.

Low energy part. First we deal with the low energy part. We take xo(t) € C*°(R)
such that xo(t) =1 (¢ < 1), xo(t) = 0 (¢ > 2) and consider ANe“‘/ﬁ\/ﬁXO(H)U+(t).
Noting that

ANeit\/ﬁ\/EXO(H)U+(t) =AN1+ H)*N/Qeit‘/ﬁ(l + H)YN2VHyo(H)U, (1),

we have only to show

(4.2) Ixo(HNUL (AN XN || < Cn(14+t)"N, Vi, N > 0.
We decompose xo(H)U4(t) into two parts:
(43) XO(H)U+ (t) = XO(H)I¢+,G+ . e_it\/HioLpi,X_F .

Proposition 4.3. xo(H)I ANXN € B(L3(R")), VN >0.

P+,04

Proof. Lemma 3.3 entails the asymptotic expansion

N
(4.4) Xo(H) = xo(Ho) + Y pn(@, Da) + Ru,
n=1
(4.5) pu(z, &) =0 for [¢]>2, XVAVRNyANXYN € B(L*(RM)).

By the construction of a4 (z,&) in §2 (see (2.12)), |{] > 1/€p and |z| > 1/¢y on
supp a4 (x, ). Therefore in the expression

(4.6) / / e yo([[)e e = ay (2, €)(1+ [€2)N/2(1 — Ae) V2 F(€)dedr,

which is the Fourier transform of xo(Lo)Iy, a, AN XN £ the phase has the following
estimate
Va(@-n—¢4(z,0)] > CU+g), C>0.

Using the differential operator

P = 2‘77 - VI()O+(JJ,£)‘72 (77 - VI§0+($,£)) : Vza

and integration by parts, we can then rewrite (4.6) as
—i(xn— T x| 2N iy
[ e e ) (PN a1+ G - AN Fe)ded

Since |(P*)2Na+(a;,§)| < On(1+2)) 72N (14 |€])~2N, by integrating by parts with
respect to £, the proposition is proved if xo(H) is replaced by xo(Hp) - By (4.5) one
can prove the same result if xo(Hp) is replaced by p,(x, D,) or Ry. This proves
the above proposition. O

By (4.3) and Proposition 4.3, the proof of (4.2) is reduced to the following
Proposition.

Proposition 4.4.
IX"NANem Vo, ANXN| < On(1+8)7N, VN > 0.
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Proof. We estimate the phase function of

e_it\/HiOLPme = (2m)™" // 6i(x‘£_t|§|_“o+(y’£))X+(Z/af)f(y)dydg'

First we have R

Ve(tE] + @4 (1, )] = [t +yl = Cly| .
Here the localization with respect to the directions of y and £ plays an important
role. Since fA y > —1+ 4e on supp x+ (v, §), we have

tE +yl* =t + 2tylE -7+ [yl
> 2 = 2t|y|(1 — 4e) + [y|
> de(t® + [y[?).

By choosing R large enough, we have

(4.7) IVe(tE] + 9+ (5, ) = Ct + |y])
with a constant C' > 0 independent of y and ¢ > 0. Integration by parts then proves
the proposition. O

d
High energy part. Next we consider iV H(1 — xo(H))U, (t) + %U+(t). By the

definition of g4 in Lemma 2.9, we have

(4.8) Hlp, ap —Ip,a,Ho=1p, g,
which implies
Ipoa,(Ho—2)"' = (H—2) "y, 0, = (H—2)""y, 4, (Hyo—2)""

We put f(t) = t=1/2(1 = xo(t)) and let F(z) be its almost analytic extension. Then
we have by virtue of Lemma 4.3

(49) f(H)Iga+,a+ - Iga+,a+f(H0) = B7

B—_! /azp(z)(H )M, (Hy — ) \dadz.
C

T 2mi

Using this formula, we then have

VH(1 = xo(H))I

P+,04

f(H)HI§0+,CL+
= f(H)LP+7(1+HO + f(H)I<P+-9+
= lo. 0, f(Ho)Ho+ BHo + f(H)Ip, g, ,

where we have used (4.8), (4.9) in the first and second lines. Therefore we have

WH ~ xo(H)U (1) + 5 U (1)

d
(4.10) = iBHoe "I .\ +if(H)l,, g e V0,
- iIgo+,a+ HOXO(HO)eizt\/HiOISO*:X#“'

The third term of the right-hand side vanishes, since xo(|¢]?)x+(y,€) = 0. Let us
consider the second term. Taking notice of the relation

ANeit\/ﬁf(H) _ AN(l +H)7N/2 tVH FH)(1 _'_H)N/QAfN AN,

we have only to show the following



4. PARAMETRICES AND REGULARIZERS 225

Proposition 4.5.

[ANT,, g e ®VHo . ANXN| < COn(1+16)7N, Vi, N > 0.

+g+ +

Proof. We choose 1/11( ), 2(t) € C°(R) such that ¢ (t) +¢2(t) =1 (t € R),
P1(t) =1 (t < —143€), Y1(t) =0 (t > -1+ 7¢/2), and put

Je(t)f = (2m)~ // s @Ot WOy (3 €) g (w, €)1 (y, €) f(y)dyde.

Then I@o+ 9t _mﬁlwi v = J1(t)+J2(t). Note that Z-€ > —1+3c on the support

of wg(mf), on which region g4 (z, ) decays rapidly in z and £ by Lemma 3.9. Using
(4.7) and integrating by parts, we then have

IAN T()AN XN < On(1+ )N, ¥, N > 0.
We next show that on the support of the integrand of J; (¢)
(4.11) Vet (@,8) — tlE] — o4 (y, ) = C(t + |z + [yl)

for a constant C' > 0. Once this is proved, one can prove
IAN L OANX N < On(1+8)7N, VN >0
by integration by parts. To prove (4.11), we put
D.={yeR";§-£>—-1+4¢}, D_={zcR";7-£<—1+7¢2}.

Then there exists 0 < ¢y < 1 such that

y-x<clyllz|] if yeDy, ze€D_.
We also see that y + thE D, ifye Dy, t>0. Therefore

ly + 16 — 2> > (1 co)(ly + t€ * + |z ).

In the proof of Proposition 5.4, we have already seen that |y + ta > C(t+|y|) for
some C' > 0. This proves (4.11). O

It remains to consider the first term of the right-hand side of (4.10).
Proposition 4.6.
IANBHoe ™V oL, ANXN| < On(1+8)7N, VN > 0.

Proof. We rewrite BHgye ™V HOI@LX+ as
1

5 | (@F@) Imz " (L4 2] [Imz| (- 2)~

Imz| \"™ " ;
o <1|+|z||> (Ho—2) " Loe "V L.\ dedz,
m being an arbitrily chosen integer. By the property of almost analytic exten-
sion, (0.F(z)) Imz|~™(1 + |z|)™~! is integrable, and |[|[Imz|(H — 2)~!|| is uni-
formly bounded on C. We show that by taking m large enough, one can deal
with |Tm 2|11 + |2]) "™ (Hy — 2) 1L like a DO with smooth symbol whose
operator norm is uniformly bounded in z. To show this, we have only to prove

[Im 2| ol o) el2 -1 —1
(1.12) (125) e -2 < cala
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where C' is a constant independent of £ € R and z € C\ R.. In fact, one can show
by induction that

el

2 —1 P”’L
G eF =) = X, e e

where P, (£) is a polynomial of order n. Using the inequality |¢] < C(1+|z|+]|¢]? —
z]), we have |P, ()| < C((1 4 |z])™ + [|€]* — 2|™), which implies

|a|+1

_|_
CICEENELDS CA
This proves (4.12). Then by the same computation as in the proof of Proposition
4.5, we can prove the desired estimate. O
The proof of Lemma 4.2 is now completed. O

Lemma 4.7. For any f € L*(R") we have in the sense of L*(R™)
Us(t)f =e ™0\ f+o(l), t— too.
Proof. We have only to prove that
Ivi,aie_”‘/ig = Hog 1 o(1), as t+oo

for g satistying g(§) = xc(£)g(&) € C§°(R™). We prove the case as t — oo. Take
Xo(t), x1(t) € C°(R) such that xo(t) + x1(t) = 1 (t € R), xo(t) =1 (t < 1/3),
Xo(t) =0 (t > 2/3). Then we have

|z]

—1 —n 7 x,£)— Y -~
Xo(*)fw,a& tﬁg:(gﬂ) /2/ RICIRCRS) t‘g‘)Xo(Ltl)aJr(%E)g(f)dé

t
Since Ve (o4 (z,8) —t|é]) = o — t€ + O(|z| ), we have

Ve(p(z, ) —tlE)] = Ct

for some constant C' > 0 on the support of the integrand. By integration by parts,
we then have

||X0(‘ ‘) Iy, a e ™VHog| < Cnt™N, VN, t>0.

We rewrite X1(|x|)1¢+,a+6_“‘/ﬁog as above. Since ay (z,€) = x(eo|¢)xe(F - &) +

O(|z|~€0) (see (2.12)), and the integral over the region {Z-£ < 0} disappears (which
is proven by the same method of integration by parts), we have
||

) ey = a2 [ om0t (B efeglente + o).

In (4.1), we take R large enough so that xoo(|€]) = Xoo([€])x(€0]€|). Then we have
X(€0l€D3(€) = xo(1€])g(&) = g(§). Therefore

(S o0 og = () ey 1 o)

= e "WHog 1 o(1),

Xl(

which proves the lemma O

Let H™ be the Sobolev space in Definition 1.12.
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Definition 4.8. (1) An operator R is called a regularizer of order N if it satisfies
Re N BH™;H™V) or Re N B(H™; H™N).

If N can be taken arbitarily large, R is simply called a regularizer.
(2) A vDO Py (P-) is called an approxzimate outgoing (incoming) projection if its
symbol py(z,&) (p—(x,&)) has the form

b+ (ya f) = X+ (iL’, 5) I::Ej:(y,i)’

where x4 (z,€) is specified in (4.1), and z4(y,&) is the inverse function of y =
vf(pﬂ:(xag)

Let W4 be the wave operator defined in Subsection 1.3.

Theorem 4.9. For any N > 0, there exist an approximate outgoing (incoming)
projection Py (P—) and a regularizer of order N, which is denotede by Rﬁ, such
that

WiPy =1I,, o, Py +RY.

Proof. We consider W,. Lemmas 4.2 and 4.7 imply
(4~13) W+Isoi,x+ = I¢+,G+I¢17x+ +/0 G+(t)dt>

the 2nd term of the right-hand side being a regularizer. In the following we use the
abbreviation

= b(x,
x4 (y,€) (.¢)

We now put bo(z,£) = det (82go+/6:1:8§)

w= (y,6)

, and let
74 (y,8)

Lpi,x_*_lgo_,_,bo = C+($7-Dz)'
Then we have modulo a regularizer
Wicy(x,Dy) = Iy, a,cq(z, D).

By virtue of (4.7), c4(z, ) has an asymptotic expansion

cy(y,8) ~ x4 +e(y, &)+, eSS
z4(y,€)

Let X4 (z,€) be a function similar to x4 (z, ) such that x4 (z,£) = 1 on supp x4+ (=, ).
Namely, we slightly shrink the support of x. Let ¢ € S™! and Q; be a DO with

symbol )Z‘ » + ¢1(y,€). Then the symbol of ¢y (x, D,)Q1 has an asymptotic

ARSI
expansion
X X + X g1+ cx
avwe) Tlorwe oy we v we
+ O'x - DX mod S7Z.
|Q|Z:1 eAF z4(y,8) yAT z4(y,€)

We choose ¢; as follows:

1

o~

Dyx+

Q@ =— c1X+ + Z O X+
24 (y,€)

=1 24 (y,€)

z4(y,€)

x+(y7£)
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Since x4+ = 1 on supp X+, q1(y,§) is smooth and
Lpi xi Loy @1 = ¢4 (2, Dy),

E—l—(yvf)NX—F +02(y7€)+ 5 0265_2-
m+(y75)

Repeating this procedure, we complete the proof the theorem.

5. Propagation of singularities

5.1. Singularity expansions I. We show how R describes the singularities
of solutions to the wave equation. We start with the following lemma, which can

be proved easily by integration by parts.
Lemma 5.1. The integral operator defined by

(AN G = [ [ e Dats,w kg )iy

(s € RY, we S" 1) is a reqularizer if there exist constants v € R and Cy > 0 such

that
(5.1) 9200 als,w, k,y)‘ < Copy(L+ k)%, Ve, B,7,
(5.2) s —w-yl > Co(1+|s] + Jyl)

on the support of a(s,w,k,y).

By Corollary 1.9, we have the following expression:

(R+)(s) e (Fo(W4)* f) (k)dk
(5.3) W /

b [y wa

We take yr(s) € C*°(R) such that xg(s) =0 (s < 15R), xr(s) =1 (s > 20R),

and study the singularity of x zr(s)R+ f(s) with respect to s.

Lemma 5.2. We take N > 0 large enough. Then there exist approzimate

outgoing, incoming projections Py, P_ such that

(54)  xr(s) / ¢ Fo (k) (W4)*dk = xr(s) / € Fo (k)P L e,
0 0

(5.5) xr(s) / e Fo(k)(W_)*dk = xr(s) /_ s Fo(k)P* Iy« a—dk

— 00

modulo regqularizers of order N.

Proof. We compute the first term of the right-hand side of (5.3). Let xoo(t)
and x(f) be as in (4.1). Modulo a regularizer, we can insert xoo(|D;|) between

Fo(k) and (Wy)*. Let Qo and Qs be defined by

Quf(x) = (27) / / @€ (1 — yoo (|24 (4, €)])) Xoo €]) £ (v) e,

Quof(2) = (27) " / / D E (|4 (5, xoo €] f () dyde,
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where z4(y, &) is the inverse function of y = Ve (z,€). Then we have

(5.6) XR(S)/O e Fo(k)Qo fdk = // Fs=w v a(s,w, k,y) f(y)dydk,

alsw.k,y) = %(—m £ 0) D21 = x4 (9, ko) ) xoe (R):

Since |y| < 11R on the support of a(s,w,k,y), the condition (5.2) is satisfied.
Moreover by differentiating y = Ve (x,€), we have

|08 0y w4 (y, kw)| < Cray(L+[ER))™™, YVm > 1,

from which one can show that the condition (5.1) is also satisfied. Hence by Lemma
5.1, (5.6) is a regularizer.
Therefore we have only to consider

(5.7) 10 /OOO e (FoQoo (Wi)* f) (k) dk.
We put x—(¢t) =1 — x(t) and let @_ be defined by
7T i(z—y)- x 'I-‘r(y 5) 5
Q f(r) = (2 / / oo 101 DD (1 L5 ) Fw)aye

Then the operator (5.7) is split into two parts:

Ya(s) / e (Fo P2 (W) £) (k)dk + xr(s) / e (FoQ_ (W) ) (k) dk.

0 0
The second term is rewritten as, up to a constant,

> ik(s—w-y) T4 (y, kw) kw dkd
S e _ . e ,
)/o / gk T Y

which is a regularizer by virtue of Lemma 5.1, since s > 15R and w-y < —|y|/2 on
the support of the integrand. By Theorem 4.9,

PL(Wy)" = Pily: ar

modulo a regularizer of order N. We have thus proved (5.4).
Next we consider the second term of the right-hand side of (5.3). We repeat
the same arguments as above with x4 (y, ) replaced by z_(y,&) and fooo -+-dk by

ono ---dk. Let x4 (t) =1 — x(—t) and Q4 be defeined by

Qi f(x) = (21)" / / 06y (e (5, )xeo (1D xs (=828

Then as above, we are led to consider

z—(y,§) &
|z_(y, kw)| |§|) (y)dydé.

0

) [ EPOV )Wk ) [ (FQ W) ) )k

—0 —o0
modulo a regularizer. Since k < 0 this time, we have
r_(y,kw)  kw z_(y, kw)
etk Trat) = ek )
on which support, we have w-y < —|y|/2. Therefore the second term is a regularizer.
Again using Theorem 4.9, we have

PZ(W_)" = Pllp o=
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modulo a regularizer of order N. We have thus derived (5.5) O

Let (s)® be the homogeneous distribution defined in Chap.4, §5.

Lemma 5.3. Let xoo(k) be as in (4.1), and put
1 [~ . e
(5.8) Dj(s) = / e® (—ik +0) 7 7 xoo(|K|)dE.

2r J_ o

Then we have )
ntl

B ESI
Dj(s) = (s)_ = " 4+ Wy(s),
where Wy (s) is a polynomially bounded smooth function on R.

Proof. Letting v (t) be the Fourier transform of 1 — y(|k|), we have

_ntlyg 1 / o —nfl
D;(s)= (s 2 - — s+t 2 t)dt,
i) = ()2 = [ T )
from which the lemma follows immediately. O

In the following we use the notation ~ in the same meaning as in (3.5). Namely
e(w,€) ~ Y€l ej(#,6)
j=0

if and only if
N—-1 R
080 (c(,€) = D 1€] 7 e;(2,€))] < Capnlg N1 gl > 1
§=0
holds for any «, 5 and N. Note that this asymptotic expansion can be differentiated
term by term with respect to x and &.
By Theorem 3.2, we have for some b (z,&) € S°,

(59) Igoi@ipi = Lpi,bi'

Lemma 5.4. There exist bj(x,0) (j = 0,1,2,---) such that by(x,&) have the
following asymptotic expansions as || — oo:

[oe]

(5.10) be(x,6) ~ > (L) by (@, £E),
Jj=0
(5.11) bo(x,0) = g(2)"*ao(x, 0)xeo (|2))X(E - 0),

where ag(x,0) is given in (2.11) and X0, X are given in (4.1).
Granting this lemma for the moment, we state the main theorem of this section.
Theorem 5.5. Let R (s,0,x) be the distribution kernel of Ry. Then there
exist so > 0 such that for any N > (n + 1)/2, the follolwing expansion holds for
S > Sp-
N—

Ri(5,0,2) = 3 (s — (@, 0) "% 7ry(2,0) + ™) (s,0,z),
=0

where (s9,00) 3 s — r(N)(s5,0,2) € D'(S* P xR") is in C*N) | (N is the greatest
integer < N — (n+1)/2, ¢(z,0) is given by Definition 2.7, and

(5.12) ri(z,0) = 271/2(2m)1=/2=3p,(x, 6),

[y



5. PROPAGATION OF SINGULARITIES 231

b;j(z,8) being given in Lemma 5.5.
Proof. First let us note that
(5.13) o_(x,k0) = koy(x,0) for k<O,

(5.14) _(z, ko) Zk Ibj(x,0) as k— —oo.

In fact by Theorem 2.8 (3) we have for k < 0

o (,k0) = —pi(x, —kb) = —p (2, ]k]0) = —|klp4(x,0) = ko (x,0),
which proves (5.13). By (5.10) we have as k — —oo

_(x, k0) Z(—|k| i (z, — \k0| Zk: Tb;(x,0)

which proves (5.14).
Take f € C§°(R™). Since ¢4 (z,0) = ¢(x,0) by Definition 2.7, using (5.10) we
have as k — oo
Fo(k) (I<P+7b+)*f
1

_ . (n—-1)/2 —ipy (,k0) T 7 10
= ———(—ik+0) et by (z,k0) f(x)dx
V2(2m)n/2 ( /

1 - —1 x . n=1_, o g—————
~ \/WZ/ e~ the( ,9)(—Zk—|—0) 2 JXoo(k)Z ij(x,e)f(x)dx,
j=0"R"

n

where X (k) is as in (4.1). Here we have used the fact that
(—ik +0)*(—ik)™ = (—ik +0)*™ if 0£k€R, acR, mecZ.
By (5.13) and (5.14), we have as k — —o0
Folk) I )" f

1 . (n—l)/2/ o (kO T
- _(—ik+0 =i @R 2 E0) f () da
\/i(zw)n/z( ) - (z, k0) f (x)

6—(n—1)7ri/4 >

_— —ikep(x,0) — 1 %—j ’L_T da
\/5(277)”/2;/716 7O (~ik +0) Xoo (K)i™7b;(,0) f (x)d

Using (5.3), Lemma 5.2 and (5.9), we have

Xr(sYR 1 f(s) = *j%ij jg M Fo (k) (I, 0, )" fdk

0
+ X\/R;r) /_ e Fo(k) (- )" fak

modulo a regularizer of order N. We replace Fy(k) (Lpi,bi)* by the above asymp-
totic expansion to obtain

ik(s—¢(x,0))
Xr()R 4 f(s) = 2ﬂmwz/‘ﬂ

=ik 4+ 0) "2 oo (k)i (z, 0) f (x)dadk
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modulo a term sufficiently regular in s. Performing the integral in k& and using
Lemma 5.3, we have

Xr(s)R+f(s) = \fzw <n+1>/2 Z/n s—o(,0) S H-3h (2, 0) f (2)de,

modulo a term sufficiently regular in s, which proves the asymptotic expansion of
R+(s,0,x). O

It remains to prove Lemma 5.4. Let (Vg(pi)_l(l‘,f) the inverse of the map
cx — Vepi(x,€). Then by (4.1), the symbol p4 (x, &) of Py is written as

(5.15) p(2,8) = xx 0 (Veps) ™ (x,€).

Now in view of (3.10), we have

(616)  balen) ~ Y 08 {as(e,€) (Dps) (Vepu (a6 m)m) } |

=

Each term of the right-hand side consists of a sum of functions homogeneous in 7.
We rearrange them as

(5.17) be(z,n) ~ 3 776 (2, 7),
j=0

and compare (5.16) and (5.17) to obtain
b (2,0) = g(2)!*xe (- Oaole, 20 (Veps (e, Em)m) | _
where we have used (2.12). Since
€£@i(xaf7n))5:n = (Vews)(@,m),
we have by (5.15)
pe (Veor(a,&n),1m) L:nze = Xx(z,0),

which proves (5.11).

To prove (5.10), we make the following definition. Two functions f (z,§) and

f—(x,&) are said to be compatible if there exist f;(z,6) (j =0,1,2,---) such that
f+(z, &) have the following asymptotic expansion as |{| — oo:

Felw,€) ~ 3 (H16) 7 i, £).
3=0
Lemma 5.6. (1) If f+(z,€) and f—(z,€) are compatible, so are O¢ f1(z,€) and

g f-(x,€).
(2) If f+(x,&) and f_(x,&) as well as g4 (x,§) and g_(x,§) are compatible, so are
f—l‘(xvg)g-i‘(xvg) and f_(l',f)g_(l',f)

(3) 0F (Dgp+) (Ve (2,€,m),m) L:n and 8 (D3p-) (Vew—(z,€,1),m) L are com-

patible.
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Proof. The assertions follow from a direct computation. In order to prove (1),
we let 0; = 9/9¢; and take notice of

n

Oif+(@,6) ~ Zm"“{ mEifm(@,€) Z(afm) £)y - &)}

Z—m T, +Z(a f) (2, =€) (835 — &E) }-

m=

The assertion (2) is obvious. To show (3), note that by Definition 3.7

o-(2,6) = &l +Z(%) ~8)(61 -~ &) = (Gups) (.-,

Since V¢4 are homogeneous of degree 0, this means that Vep, (z,€) and Vep_(z,§)
are compatible. Since D%p,(x,§) and Dyp_(z,&) are compatible, one can prove
(3) inductively. O

By Lemma 5.6 and (5.16), by (z,§) are compatible. This proves Lemma 5.4.

2. Recovering partial regularities near infinity. Let us rewrite Theo-
rem 5.6 in the operator form. Let D;(s) and r;(x,0) be as in (5.8) and (5.12),
rspectively. We put

(Rﬁﬁ)f) (s,0) = - Dj(s —o(x,0))r;(x,0)f(z)dx.

Lemma 5.7. (1) For any j,m > 0, we have ’Rgf) € B(H™; Hi+tm).
(2) Let xr(s) be as in Lemma 5.2. Then for any N

Xr($)R+ = xr(s Z RY

modulo a regularizer of order N.

Proof. To prove the assertion (1), we have only to note that the operator

/ e O (o D oo (€D () de

is L2-bounded. The assertion (2) has been proven in Theorem 5.5. U

The purpose of this section is to prove Lemma 1.13 in a localized form. Let
us recall that the stationary phase method shows the scattered waves propagate to
infinity along the directions close to E = 4+Z. With this in mind, we prepare the
following notion.

Definition 5.8. For a constant 0 < ¢ < 1, let S(J) be the set of symbols
p(x,€) € S° such that suppp C {(x,€); ]Ea < 0}. We say that f € L2(R") is
regular in non-scattering region if there exists 0 < § < 1 such that p(x, D,)f €
H*>(R"), Vp(x,§) € S(9).

If f is regular in non-scattering region, its wave front set, denoted by WF (f),
satisfies WF (f) N {|Z- €| < 6} = 0. As an example, let By = {z € R"™; |z| < R}.
If f € H*(Bpg) and f(x) =0 for |z| > R, by the stationary phase method, f(z) is
shown to be regular in non-scattering region (see Lemma 6.8). The necessity of this
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notion will be made clear in the proof of Lemma 5.9. We put H™(s > o) = H™(I,)
and H™(|z| > p) = H™(B}), where I, = (0,00) and By = {z € R";[z| > p}.

Lemma 5.9. There exist constants p > o > 0 such that the following assertion
holds: If f € L*(R") is regular in non-scattering region and Rf)f € H™(s > o)
for some m >0, then f € H™(|z| > p). Moreover p can be chosen arbitrarily close
to o.

Proof. The proof is complicated and is split into several parts. Let x(s) €
C>(R) be such that x(s) =1 (s >0 +2), x(s) =0 (s < o+ 1), where ¢ > 0 will
be determined later. We put

(3 9 / /n ik(s—p(x, 9))( Zk+0) T Xoo(|k|)7"0($ 9) ( )dl‘dk},

and assume that u € H™. We take Yo (t), 1/)00( ) € C*°(R) such that vo(t) +
Voo(t) =1 (t €ER), Yoo (t) =1 (t > 2), Yoo (t) =0 (t < 1), and ¢o(t), c1(t) € C(R)
such that co(t) +c1(t) =1 (t € R), c1(t) = 1 (|t| > §/2), c1(t) = 0 (]t] < §/4),
where ¢ is the constant appearing in the assumption of regularity in non-scattering
region for f. We split f(x) into 3 parts :

f(@) = Yoo(|z))er (@ 0) f(2) + Yo(|2]) f (%) + Yoo (|2])co(Z - 0) f(2).
1st Step. We put

i (s, 0) / / =00 (ks 4 0) 7 y oo ()
7o, 0) oo (|2 o (@ - 0) f () durdk,

and show that u; € H®°. This is proved if we show
wla) = @m " [ O (ol 28 )b ol)en T - ) Fw) e

is in H*°. In view of (3.6), we have
wq = Lp,l”l)l = Pf,

where, modulo a regularizer, P is a 1Y DO whose symbol is supported in the region
{|z - &] < 0}. Therefore w; € H, since f is regular in non-scattering region.
Computing /- jw; and using (3.7), we then have

(I+P+ P+ =g,
where P; € S~% and g € H*. By multiplying suitable ¥'DO’s, we have v; € H*®.
2nd Step. Next we consider

) / / ek e=2@0) (_ik 1 0)"7 yoo (|K])ro (. 0)

(Yoo (|2])er (T - 0) + o (|2])] f () dzdE.
Let x(s) € C*(R) be such that x(s) =1 (s > o), X(s) =0 (s < 0 —1). By
integration by parts, the operator

x(s) / / 2@ (1 - X(p(x,0))) -+~ dwdk

is a regularizer. In fact, since p(z,0) < o, we have |s — ¢(z,0)| > C(s + |z|) for a
constant C' > 0 thanks to the factor woo(|x|)cl (Z-0) +Yo(|x]).

(5.18)
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We are thus led to consider

us (s, 6) —X(S)/ / M= @0 (_ik +0)" T yoo (|K])

Xl (@, 0)ro(x, 0) [Yoo(2])e1 (@ - 0) + o(|2])] £ () dudk,

which belongs to H™. Here we choose o large enough so as to be able to apply
Lemma 2.4, and make the change of variables z — (t,y) = (¢(z,0),y(x,d)). Since
t(x,0) = p(x,0) by virtue of Lemma 2.5, the above integral is rewritten as

1 , ~
(519 5-x(s) / / e g0t k, y,0) f(t,y, 0)ddtdy =: va(s,0),

n—

go(t, k,y,0) =21 (—ik + 0)"7 xoo([K])

“X(O)ro(@,0) [Yoo(|z])er (T - 0) + to(|x])] T (£,y,0),
J(t,y,0) being the Jacobian of the map : = — (¢,y), and in the expression of qq,
z should be read as z(t,y,0), f(t,y,0) = f(z). This reduces the problem to the
1-dimensional ¥DO calculus.
Let Qo be the 1-dimensional ¥)DO with symbol qo(t, k,y,0), where y,0 are
regarded as parameters. Then (5.19) reads

/X(S) (Qéf(',y,9)> (s)dy = va(s,0),
where vy € Hm, By DO calculus, we have modulo Hm+1

G2 3 (Qf0.0) Gy = [ (RiFCu) ()dy < ™.

where the symbol of P, is the product of x(t) and qo(¢, k, y, ), namely, it is obtained
with Y (¢) replaced by x(¢) in (5.20). Passing to the Fourier transformation with
respect to s in (5.21), we get

/ / e (—ik + 0) T yao (K X(£)ro(, 0)

: [1/100(|$|)Cl(/1‘\ : 9) + ¢0<|=”3|>] J(ta Y, e)f(ta Y, e)dtdy = w(ka 9)3
where w(k, ) satisfies
[ 2 ) ey < o

Transforming back to the original variable xz, we get

(—ik 4+ 0) "> Yoo (|K]) / e M0\ (p(@, 0))ro(x, 0)

(Yoo (|2))er (@ - 0) + Yo (|2])] f(2)dz = w(k, 0).

We try to regard (5.22) as a FI1O putting § = kf. Here we must note that the term
x(¢(z,0)) behaves like

(5.20)

(5.22)

195 x(p(,0))] < Ca(1 + |z])'°,

which seems to cause a trouble in defining a suitable class of symbols. However
thanks to the locaization factor ¢ (|z|)c1(Z - ) + 9o (|z|), the amplitude b(z, 8) of
(5.22) has the estimate

185 02b(,8)| < Cap(1 + |a]) 717l
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In fact, by the estimate (2.9), on the support of x'(¢(z,8)), |z - 6] is bounded. Due
to the locaization factor Y (|z|)c1(Z - 0) + ¥o(|z|), if |z - 0] is bounded so is z.
Therefore, the derivatives of x(y(z,0)) does no harm to our analysis. This is the
reason why we have introduced the notion of regularity in non-scattering region.

3rd Step. We consider (5.22) separately in the region k£ > 0 and k < 0. For £k > 0,
we put k = £|¢| and § = ££. Then we can rewrite (5.22) as

/ewi(z,g)pi(x,g)f(x)dx = g+(8),

where pi(z,€&) € SO has its support in the region £7 - §A> 0/3 and g4 (&) satisfies
(1+1£)™g+(€) € L2(R™). We now mulitiply e?#+(®:€) and integrate in £&. Then we
have by FIO calculus
q=(z, Da)x(lz|)f € H™,

where g+ (z,&) € S°, qu(x,&) =1 for £7-& > § and |z| > 1, g (x,€) = 0 for
+7-¢ < §/5 and || > 1, and x(t) € C°(R) such that x(t) =1 (¢t > o+ 2),
x(t) =0 (t < o+ 1). Taking into account that f is regular in non-scattering
region, we finally prove that f € H™(|z| > p) for p = s + 2. By examining the
proof, we see that p can be chosen arbitrarily close to o. O

Theorem 5.10. There exist p > o > 0 such that if f is regular in non-scattering
region and R4 f € H™(s > o) for some m > 1, then f € H™(|z| > p). Moreover
p can be chosen arbitrarily close to o.

Proof. If R..f € H'(s > o), we have ’Rgf)f € H'(s > o) by Lemma 5.6 (1).
Therefore the case m = 1 followg from Lemma 5.9. Let us assume the theorem
when m = k—1. Then if R, f € H*(s > o), we have f € H*"!(|x| > p). Therefore

if j > 1, we have RSZ)f € H*(s > ¢), which implies that Rf)f € H*(s > o). By
Lemma 5.9, we have f € H*(|z| > p), which completes the proof. O

6. Singular support theorem

6.1. Envelope. Let us first recall the classical notion of envelope. Let U and
Q be open sets in R™ and R"~!, respectively. Suppose a real-valued function
d(z,w) € C°(U x Q) satisfies

(6.1) det [ V5o, ivxgb, e ,Lvm #0, zeU weq,
8w1 awn,1
2
(6.2) det< ¢ > #0, zelU we.
Ow; Ow; 1<i,j<n—1

Given an interval I C R, we consider a family of surfaces
Y(s,w)={xeU; ¢(zx,w)=s}, sel, wel
Assume that for x € U there exists a unique solution w(z) to the system of equations

P01y 00
3w1 ’ - - &un,l

Then the envelope 3(s) of {Z(S,w)}wGQ is defined by
S(s) = {2 € U s ola,w()) = 5},

(6.3) (x,w) = 0.
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We put y = (Saw) and f<1‘>y> = (fl(xay)a e afn(xay))a where
fz(‘r)y> :agb(xaw)/awu (1 Slgn_l)» fn(a?,y)ng(m,w)—s
Then the equation for the envelope and the conditions (6.1), (6.2) are rewritten as

f(z,y) =0, det (gi) #0, det <g£> # 0.

Hence by the implicit function theorem the map : U 3 z — y(x) = (s(x),w(z)) €
I x Q is a diffeomorphism. Let X (s,w) be its inverse.

Lemma 6.1. Let g;;(x)dz'dz? be a Riemannian metric on U and put h(z,£) =
%gij (x)&:&;. Assume that ¢(x,w) satisfies the eikonal equation

(6.4) h(z,Vep(z,w)) =1/2, €U, we.

(1) We put ®(x) = ¢(z,w(x)). Then ®(z) also satisfies the eikonal equation
h(z,V,®(z)) =1/2, ze€X.

(2) Let P(s,w) = (V,®) (X (s,w)). Then we have for s € I and w € Q,

%X(&w) — (?g) (X(s,w), P(s,w)),

oh

(6.5)
o) = (5, ) (P

Proof. By virtue of (6.3), we have
(6.6) Va®(z) = (Va9) (2, w(x)),

which implies (1). We let k(z,w) = (V4¢) (z,w) and differentiate (6.4) by w; to
have
oh ok
- L = <j<n-1.
(56) @ ko) (o) =0 1<j<n-1
Using (6.6), we have P(s,w) = k(X (s,w),w), hence

(6.7 (ﬂ) (Pls.).0)- (G ) (X Ps.0) =0, 1501,

On the other hand, we have by differentiating (9¢/0w;) (X (s,w),w) =0 by s

X
(63) (5 ) (Klewwhe) o) =0, 15 <n-1.
By (6.1), 0k/Own, -+ ,0k/Ow,_1 are linearly independent. Therefore by (6.7) and
(6.8) we have

%(svw) = )\(S,L&J) (ZZ) (X(S,w),P(S,W))

for some scalar function A(s,w). Differentiating s = ¢(X (s,w),w) with respect to
s, we then have

0X oh
i <a§> (X, k) = 2\h(X, P) = \.
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Finally by differentiating P;(s,w) = (0¢/0z;) (X (s,w),w) we have
2
%Pi(s,w) = Z <aig;> (X(s,w),w )aal(s w)
- (3’“) (X500 (5 ) (X(5:0). Pls.)

- -(m ) ), Pls, ),

since by differentiating h(x, k(z,w)) = 1/2, we get

(5 st (2) ey B0

Let us note that by (6.6), X(s,w) is tangent to X(s) at X(s,w).

We now put
) (s,0) = {z € R"; o4 (x,0) = s},
and construct the envelope of {X(F) (s, 0) }eesn .- Since ¢4 (x,0) = —p_(x,—0) by
Theorem 2.8 (3), we have

2H(s,0) = 2 (—s, —0).
Therefore we have only to consider ¢ (x,0) = ¢(x,8). For ¢(x, §), the assumptions
(6.1), (6.2) are satisfied on the region {|xz| > ro} x S"~1, where ro > 0 is chosen
largre enogh. We consider the equation
(6.9) Voo(z,0) =0, z-60>0,
Vg being the gradient on S™~!  which corresponds to (6.3). If p(x,0) = z - 0, the
solution is unique and given by 6 = 2. Since 9% (¢(z,0) — z - 0) = O(|z|~1*1=), we
see that (6.9) has a unique solution 8(z) = z+O(|z|~). Let s(z) = p(z,6(z)) and
X (s,0) be the inverse of the map : x — (s(z),0(x)). We summarize the properties
of these diffeomorphisms in the following theorem. We put (s, ) = 2(+) (s, 6).

Theorem 6.2. There exist o > 0 and so > 0 for which the following assertions
hold.
(1) For any x € R™ such that |x| > 1o, there exists a unique 6(x) € S"~1 satsifying
(Vo) (x,0(z)) =0 and 6(x) - x> 0. We define
O(z) = p(z,0(x)) for |z[>ro,
and extend it smoothly for |x| < r¢ so that ®(x) is monotone increasing with respect
to |x|. Then ®(x) ~ |x| as || — oo and satisfies the eikonal equation

g (x)(0;®(x))(0;®(x)) =1 for |z| > ro.
(2) For any s > s, the set
Y(s) ={z e R";®(z) = s}
18 a strictly conver compact hypersurface.
(8) For any s > so and x € X(s), X(s) is tangent to (s, 0(z)) at x. Moreover 0(x)
is a unique point 0 in STt such that ¥(s) is tangent to X(s,0) at x. We also have
for|z| > ro

(6.10) ,ax ¢(z,0) = 2(z),
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and the mazimum is attained if and only if 0 = 6(x).
(4) For any s > sg and 6 € S™~1, there exists a unique X (s,0) € (s) such that
¥(s,0) is tangent to X(s) at X(s,0). We also have for any 6 € S"~1
(6.11) max ¢(z,0) =s=P(X(s,0)),
zeX(s)
and the mazimum is attained if and only if x = X (s,0).
(5) For any s > sq, the map

S50 — X(s,0) € B(s)
is a diffeomorphism and its inverse is given by
Y(s)>x —0(x) € S"L.

(6) The map
X : (s0,00) x 8"t 3 (s,0) — X(s,0) € R"
is a diffeomorphism whose image contains the region {x; |x| > ro}. The inverse of
this map s
X iz — (2(z),0(x)).
It has the following estimates (x = x/|x|)

(6.12) |02(®(2) — |2])| < Ca(l + [a)~ 1% Va,

(6.13) 10%(0(z) — )| < Cou(1 + |z|) 1010l v

(7) The diffeomorphism X~ gives the geodesic polar coordinates in a neighborhood
of infinity, and in this coordinate system the Riemannian metric G = g;;(x)dz'dz’
takes the following form
n—1
X*G = (ds)> + Y _ hij(s,0)d0"d6’.
ij=1

Proof. Asisnoted above ¢(x, 8) = z-0 for the Euclidean metric, hence §(z) = Z,
®(z) = |z|, and the theorem is obvious. The assertion (1) follows from Lemma 6.1.
Since X(s) is a slight perturbation of sphere, (2) follows. The first part of the
assertion (3) is obvious. We shall prove (6.10). If o(x, #) attains its maximum at 6,
(Vop)(z,0) = 0 holds. This equation has two solutions 04 such that +z - 04 > 0.
The Hessian matrix of ¢(z,6) at 6, (f_) is negative (positive) definite. Hence
the maximum is attained at 6, furthermore, 6, = O(x). The first part of (4) is
obvious. At the point x where (z,0) attains its maximum on %(s), V,®(z) and
V.p(x,0) are propotional. This is just the point on which two surfaces X(s) and
Y.(s,0) are tangent each other, hence (6.11) holds. The mapping properties in (5)
and (6) are clear. From the equation Vyp(x,0) = 0, we get VoZ - 0 = O(|z|~17<0),
from which (6.13) follows. The estimate (6.12) then follows from Theorem 2.8 (1).
Let us prove (7). By the equation (6.5), X(s,0) is a geodesic. Hence (s(x),0(z))
are geodesic polar coordinates. We put 7 = 6;(z) (1 <i < n—1), 7" = &(z).
Then the associated Riemannian metric g;; is computed as follows :

oz Oz
=nn __ ij _ _
g g Oxt OxJ
ok _ ;07" 0T"
g =9 ozt Oxi

=97 (0;2) (9;2) = 1,

= 9" (0;2) (9;0x) = 0,
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for 1 <k <n — 1. Here we have used the equation (7.5) and
00, 00, OX™
T 9s  dxm Bs
This proves (7). O

= (Ombr) g P; = 0.

Corollary 6.3. For large |z|, we have p(x,0) < ®(x), and the equality holds if
and only if 0 = 0(z), equivalently, x = X (s,0) for some s > sg.

6.2. Singularity expansions II. Our next aim is to compute an asymptotic
expansion around s = o of the integral (coupling of distribution and test function,
actually)

(6.14) /n(s —(x,0))% (0 — @(x))if(m)dx, feCeRY).

For any § € S"~!, we have constructed a bicharacteristic z(t,y, 0), p(t, y, #) having
the properties in Lemma 2.2. We use the variables ¢,y to calculate (6.14), which
is possible by virtue of Lemma 2.4. In perfoming the computation below it will
be helpful to recall that for the Euclidean metric Y., (dz%)?, z(t,y,0) = t0 + y,
0-y=0, p(x,0) =0 and (x) = |z|.

Let ®(t,y,0) = ®(z(t,y,0)). Then since t = ¢(z,0) by Lemma 2.5 we have by
Corollary 6.3

&)(tvyv 9) —t= (I)(.ZU) - 30(1',9) > O,

and for a fixed t the last equality holds only at one point, which we denote by
y(t,0). At y(t,0) the surface t = ®(z) is tangent to the surafce t = p(x,0).
Therefore (t,y(t,0)) is the coordiante of X (t,6) given in Theorem 6.2 (4). By the

Taylor expansion with respect to y we have

B(t,9,6) ~ £ = 3 (Aly — y(1.6)),y ~ y(.0)) + Olly — y(.6)F),

as y — y(t,0), where
5
0y;0y;

is a positive definite matrix and ( , ) is the Euclidean inner product of R*~!. By
the Morse lemma, one can find a function z = z(¢,y, 6) defined in a neighborhood
of y(t, 8) such that

b(z) = D(t,y,0) =t + %(A(t,@)z,z),

and z = y — y(t,0) + O(ly — y(t,0)|?). We now make a new change of variables:

x — (t,z) and put f(t,2,0) = f(z). We denote by
Jp(t,z,0) = [det (0x/0(t, 2)) |

the associated Jacobian. (Here the subscript P menas that we are using the plane
wave like characteristic surface ¢t = ¢(x,0)). Then we have

/ (s — o(z, 9))i (o — @(w))if(x)dx

(6.15)
_ // (s—0)" (o1~ %(A(t,&)z,z))if(t,z,G)Jp(t,z, 0)dtdz.
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We say that ¢(s,6) admits the asymptotic expansion

o

9(s,0) ~ > (0 =93 gr(0), gr € C(S")
k=0

around s = o, if there exists ¢y > 0 with the following property. For any N > 0,
there exist Gy (s,0), Hy(s,0) € C*(R; L?(S™ 1)) such that

N—-1

Z i‘fkgk 0)+ (o0 — s)i‘fNGN(s, 0) + Hy(s,0)
k=0

holds for |s — o] < €g. Similarly, we say that f(z) admits the asymptotic expansion

o0

F@) ~> (o= @@ f(0),  fr(0) € CF(3(0))

k=0

around ®(x) = o, where X(0) = {0 = ®(x)} and 0 denotes the local coordinate on
Y (o), if there exists €y > 0 with the following property. For any N > 0, there exist
Gn(z), Hy(z) € C*°(R™) such that

N—-1
Fz) =) (0= 2(@)}" fu(0) + (0 — ©(2))} VG () + Hy(x)
k=0

holds when |®(x) — o] < €.

Lemma 6.4. Let g(t,2) € C°(R x R"™1), and o > 0 be a sufficiently large
constant. Then if B > —1, we have the following asymptotic expansion around

// (3 - t)i <U —t— %(A(t,@)z, z))ig(t, z)dtdz

[oe]

a n+1 o
~ (o= )T (P g) (0,0,
k=0

(6.16)

where P,ga”g) is a differential operator having the following form

(6.17) PP = STl (0, B)Prme (0, 0)057 0.

m+|y|/2 <k,
|v|=even

If |v| =m =k =0, we have
(6.18) Cooo (@, B)povo (0, 0) = (27) 2" det A(a,0) 712,

Proof. First let us note that the left-hand side of (6.16) vanishes if s > 0. For
s<o,wepute=0—s5,5—t=cep, 2 =/2e(1 + p)A(t,0)"'/?w and

ge(p,w) = g(o — e(1 4 p), /2e(1+ p)A(o — e(1+ p),0) " /?w)

-det A(o — e(1+ p), )12
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Note that since o > t + $(Az,2) > t, we have 0 —t = €(1 + p) > 0. Then the
left-hand side of (6.16) is rewrltten as

n-l I3+ Lﬂ)ea+ﬁ+ S
IB+1)

(6.19)
B+"5=
/"V/ (14 )T (1= ) ge(p,w) dp du
Jw|<1
Since A(t,0) is a positive definite matrix and smooth in ¢, so is A(t,8)~/2. This
follows from the well-known Dunford-Taylor integral of bounded operators (see e.g.
p. 44 of [80]). We put 6 = y/e(1+ p) and expand g.(p,w) into a Taylor series
with respect to d to see that each term of the expansion consists of the product of
a function of 0,0 and

(6.20) 52+l (97 979) (0,0), m < p.

In fact, we first expand g(o — 62, 6y) to obtain terms like §2m+1y7(9m07g)(a,0),
and next expand y = v/2A(c — §2,0)"/?w and det A(o — 62,0)~/? to have (6.20).
We replace ge(p,w) in (6.19) by this asymptotic expansion. If |y| is odd, [(1 —
|w|?)PwYdw = 0. Therefore, letting k = p + |y|/2 and rearranging the terms, we
obtain (6.16). To compute (6.18), we have only to use (5.1) and the formula

n-1 T 1
[ -wppaw=re T80
[w|<1 LB+ "57)
Here we have assumed 3 > —1 to guarantee the convergence of the integral O

Lemma 6.5. Let o > 0 be sufficiently large, and assume that 8 > —1. Then
for any f(z) € C°(R™), we have the following asymptotic expansion around s = o:

(6.21) /(s—@(x,@))i(a—@(a: d:vaio: (0 —s) a+5+n+1+k (O‘B)( ,0).

Each term of the expansion (6.21) is represented by a differential operator M,ga’ﬁ)
on R x S™~ 1 in the following way:

gi(0,0) = (M [0 X)) (0,0),

where X (s,0) is the diffeomorphism in Theorem 6.2 (6). In the local coordinates
M,ga”g) has the following expression

(6.22) M = 37 Oy B)magy (,0)0105.
ithyl/2<k

In particular,

(6.23) M) = (21)"2" det (A(a,0)) V2 Jp(a,0,0).

Proof. We plug (6.15) with (6.16). Let X : (s,0) — X(s,6) be the diffeomor-
phism in Theorem 6.2 (6). In the (¢, y) coordinate system employed to derive (6.15),
the condition z = 0 and ¢ = 0 means that y = y(o,0) and ¢(x(0,y,0),0) = o, which
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represents the point X (o,6). Therefore each term of the asymptotic expansion
(6.21) is a derivative of f(z) evaluated at © = X (o,8). Moreover

N (s (22
Ol e = Z_;lg (X(s,0)) ( axj> (X(5,0),0) -
= Z g7 (X (s,0)) (gj:) (X(S’e))ﬁil’

which is equal to 9s in the coordinate system (s,6) = X ~!(z). Thus we have the
asymptotic expansion (6.21). The formulas (6.22) and (6.23) follow from (6.17) and
(6.18). O

The first term Méa’ﬁ ) is written by geometric quantities. By a simple compu-
tation one can show that
Or Ox

-1/2
-1/2 _ —(n-1)/2 -—
(det A(q,6)) IV, ®(z)| (det Hps By: Oy ))

ac:X(o‘,@)’

Hps = Hp — Hsg,

where © = z(t,y,0), Hp and Hg are second fundamental forms on {o = ¢(z,0)}
and {o = ®(x)} induced from the Euclidean metric, and

Jp(0,0,0) = |G(2) 7'V, (x)| (det Gs(x)) "/ .
where G(z) = (gij(z)), and Gg(z) is the matrix of first fundamental form on
{o = ®(x)} induced from the Euclidean metric.

Theorem 6.6. Let ¢ > 0 be sufficiently large and A > —1/2. Then for any
f e C§°(R™), we have the following asymptotic expansion around s = o

(Ri(o = @@} f) (5,0) ~ > (0 = 5)1 g (0,0).
k=0
Proof. This follows from Theorem 5.5 and Lemma 6.5. Note that (o —
®(z))} f € L2(R™) if A > —1/2. O

In order to prove the converse of Theorem 6.6, we expand (o —®(z))} f(z) into

an asymptotic series Y50 (0 — ® ()2 fr(r) and study the relations between fy
and gp. We compute in the following way. For f(z) € C§°(R"™), take x(z) €
C§°(R™) such that x(z) =1 on supp f. Then by Taylor expansion

N

(0= ®@)}f@) =Y (0 — @)} [ x(x) + Fy(2),

j=0
where f;g) is a smooth function on {o = ®(x)} and Fy(x) is a compactly supported
CHN)_function, where p(N) — oo as N — co. This implies modulo C*(™)-function

N

(R ((0 = 2@)2f(@)) (5,0) = Y (Re-((0 = (@)X [ x (@) ) (5,0),

=0
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and up to a smooth function the right-hand side is equal to

Z/ s =@ o = @)} g

near s = o, since x(z) = 1 near {o = ®(z)}. Omitting the cut-off function x(x),
we express this computation as

I

I
<)

(R (o = @)} f(2))) (5,0) ~ 3 (R (0 = @(@)}7 1)) (5,0),

J

which will not give a confusion.
In order to write down the expansion it is convenient to use the diffeomorphism
X(s,0) in Theorem 6.2 (6). We insert the asymptotic expansion

oo

(0= @)} foX)(s,0) ~> (0 — )1 fi(0,6)

k=0
into the formula in Theorem 6.6 and obtain
(R (Y0 = 0@ £7)) (1.0) ~ S (0 = X g, ,6),
k=0 k=0

where f; = froX ~!. Note that we fix o and regard f; as a function on {o = ®(x)}.
Let us look at gx (A, 0,0) more precisely. Using Theorem 5.5 and Lemma 6.5, we
have

(R (Xt~ 03 52)) ()

a=0

oo
— B+
~Se-mit YT 4 “(0.6),
k=0

a+pB+vy=k

_n41 _nt1
R ) I VA B D¢
Therefore we have

k

_nfl o
ano o) =S S MM ok

a=0 \ f+y=k—a

Hence we have the following formula

gk(A0,0) = PN f1(0,0) + PV () fai(0,60)

(6.24)
ot P (W folo,0),
where PQ(g ,i i) (A) is a differential operator with respect to 6, and Pék) is the operator
of multiplication by
(6.25) P (e,0) = (2r)"% det A(a,0) /2 Tp(0,0,0)ro(X (0,0),0).

Using (6.25), one can solve (6.24) with respect to f; to have
fe(A.0.0) = Q3" (Vge(0.6) + Q5 (N gi—1(0.)

(6.26)
+ 4+ QY (N go(,0),
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where Qé@c_j)()\) is a differential operator with respect to 6, and

k k
$(a,0) = 1/P"(0,0).

Theorem 6.7. Let o > 0 be sufficiently large and X > —1/2. Given any g(s, )
having the following asymptotic expansion around s = o

9(s.0) ~ > (0= 5)7 ™ g1(0)

k=0

with gi(0) € C°°(S™~1Y), there exists f(x) such that around s = o

oo

(R f) (5,0) ~ > (0 — )3 gx(6),

k=0
and f(z) admits the asymptotic expansion

oo

(6.27) F@) ~> (0= @)™ fr(0)

k=0

around X(c), 0 being the local coordinates on (o). Furthermore
9o(0) = N(0,0) fo(X(0,0)),

N(o,0) being given by (6.25). This f(x) is unique in the sense that if there exist
two such fO(z) and fP(x), fD(z) — () is smooth. In particular, fO(z)
and @ (z) have the asymptotic expansion as in (6.27) with the same fi(0).

Proof. By (6.26), one can construct fx(f). Using Borel’s procedure we then
construct f(x) having the asymptotic expansion f(z) ~ > 2~ (0 — @(m))frkfk(G)
Suppose there exist two such f(1) and f(?). Asis seen by the lemma below, f(1)—f(2)
is regular in non-scattering region, hence it is in H* by Theorem 5.11. |

Lemma 6.8. For o > 0 large enough, let u(x) = (o — ®(x))" f(z), where
f(z) € C*(R"™) wwhose support is sufficiently close to {oc = ®(x)}, and pn > —1/2.
Then u(x) is reqular in non scattering region.

Proof. Let P be the /DO with symbol p(x,¢) € S° such that for some 0 <
d < 1, suppp(z,§) C {|z-&| < 6}. Then by using the polar coordinates (s,6) in
Theorem 6.2 (6),

Pu(t) = (2m) ™2 / e, Eulz)dz

P(z)<o

= [ e = (X (0,0), gl s,
0o Jsn-1

with suitable g(s,6) € C*°. We apply the stationary phase method (as |{| — o0)
to the integral on S™~!. Since X (s, 0) is close to s, the critical points are close to

j:g, on which p(X (s, #),&) vanishes. Therefore above integral is rapidly decreasing
in &. O
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6.3. Singular support theorem. The following Theorem 6.10 will elucidate
how the modified Radon transform describes the propagation of singularities for
the wave equation.

Definition 6.9. Assume X(t) C {|z| > ro}. A function f(z) € L*(R") is said
to be piecewise H>(|x| > rg) with interface X(¢) if there exist fi, fo € H*®(|x| > ro)
such that f = (¢ — <I>(;v))if1 + (t— q)(fb'))(ifQ on |z| > rg. Similarly a function
f(s) € L?(R; L?(S™1)) is said to be piecewise }AIOO(S > s50) with interface s =t (>
s0) if there exist f1, fo € ﬁoo(s > so) such that f = (t —s)}f1 + (t — ) fo for
S > S¢.

Theorem 6.10. Pick ro,so > 0 large enough, and let t > max {ro+1,s0+ 1}.
Assume that f € L?(R™) is reqular in non-scattering region. Then f is piecewise
H>(|z| > ro) with interface X(t) if and only if R f is piecewise H*(s > so) with
interface s =t.

Proof. Suppose f is piecewise H>(|z| > r¢) with interface X(¢). Up to an
He°-function, f is equal to (¢t — @(x))‘}rf(x) with f € H®(R™). By Theorem 5.5,
(R+f)(s,0) is smooth with respect to s if s # ¢. By Theorem 6.6, (R f)(s,0) ~
> wso(t — 8)% gi(0) around s = t. Therefore R f is piecewise H>(s > so) with
interface s = t.

Conversely, suppose R f is piecewise H (s > sp) with interface s = ¢. Up to
an H*°-function, (Ryf)(s,0) = (t —s5)%g(s,0) with g € ffoo(s > 50). By Theorem
6.7, there exists f such that (R+f)(s,9) ~ (t —5)%9(s,0) around s = t. Then
Ry(f — f) € H®(s > s9). By Theorem 5.10, f — f € H*(|z| > 7). This shows
that f is piecewise H*(|z| > 7o) with interface X(t). O

The meaning of Theorem 6.10 in propagation of singularities is as follows. We
put v(t,s) = (R4+9u(t))(s) for the solution u(t) to the wave equation dfu = Hu
with initial data «w(0) =0, 0,u(0) = f. Then v(¢, s) solves the 1-dimensional wave

equation
{ (07 = 9)v(t,s) =0,
v(0,8) = (R+f)(s), ow(0,s) =0,
hence is written as
o(t,5) = 5 (R F)(s+1) + (R f)(s — ).

If o is sufficiently large, t > 0 and f is regular in non-scattering region, we then see
that f is piecewise H™(|x| > 7o) with interface 3(o) if and only if (R4 0u(t))(s)
is piecewise H (s > sg) with interface s = t + o, which is equivalent to that du(t)
is piecewise H™(|z| > t + r¢) with interface X(t + o).



