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Abstract. This paper gives introductory expositions on the theory of projective

(or spin) representations of groups, together with plotting historical milestones

of the theory, starting from Schur's trilogy in 1904, 1907 and 1911, Cartan's

work in 1913, Pauli's introduction of spin quantum number in 1925, and Dirac's

relativistic equation of electron in 1928, and so on. We pick up many situations

where multi-valued representation of groups appear naturally, and thus explain

how the projective representations are indispensable and worth to study. We

discuss rather in detail the case of Weil representations of the symplectic groups

Sp(2n, R), and the case of various actions of the symmetric group Sn on the full

matrix algebra M(2k, C) of degree 2k with k = [n/2]. 2

0 Introduction

In this paper [E], we give several introductory expositions for readers who are not
so familiar with the theory of projective representations (so to say, spin theory).
The �rst part of the next paper [I] in this volume can also work as an introduction
to spin theory of group representations.

In the �rst four sections, ��1� 4, we explain how and why projective repre-
sentations occur naturally in representations of groups and algebras. We note
in particular that a work of A. Cli�ord says, as is summarized in E-5, that if a
representation of a �nite group G is restricted on a normal subgroup N , then
usually it gives rise to projective representations, and a special but essential case
is given as Theorem 3.1 in E-5. Moreover, we can deduce from this theorem a
general method of constructing all irreducible representations (=IRs) of a �nite
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semidirect groups G = U o S from those of U and S, as is given in Theorem
4.1 in E-9, where projective representations of U and S should appear naturally.
This method (which we call as classical method) will be able to be applied in
many occasions, in particular, in the present papers [I] and [II] (see e.g. [I, �17]
and [II, �3]). Note that this classical method contains Mackey's method for con-
structing IRs of semidirect product groups, in which projective representations
(or multi-valued representations) do not appear.

In the 5th section, we show, as an important example, the situation of Weil
representations of the symplectic group Sp(2n, R), which appeared to be double-
valued representations, and are usual linear representations of its double covering
group, the metaplectic group Mp(2n, R).

In the 6th section, we give an interesting case of the full matrix algebra
M(2k, R) of degree 2k and the symmetric groups S2k and S2k+1 acting on it.
This subject has intimate relations with the paper [II]. Here is the origin of
Schur's spin representation `Hauptdarstellung' of the symmetric group.

1 How projective representations appear nat-

urally

1.1 Schur's fundamental trilogy [Sch1] � [Sch3]

The theory of projective (or spin) representations of a �nite group is initiated by
J. Schur (= I. Schur) who begun his �rst paper [Sch1, 1904] of the trilogy on this
subject with saying (quoted from [Sch1], p.20, from the top of Introduction till
11th line)

Das Problem der Bestimmung aller endlichen Gruppen lineare
Substitutionen bei gegebener Variabelnzahl n (n > 1) gehört zu den
schwierigsten Problemen der Algebra und hat bis jetzt nur für die
binären und ternären Substitutionsgruppen seine vollständige Lösung
gefunden. Für den allgemeinen Fall ist nur bekannt, daÿ die Anzahl
der in Betracht kommenden Typen von Gruppen eine endliche ist;
dagegen fehlt noch jede Übersicht über die charakteristischen Eigen-
schaften dieser Gruppen.

Die Umkehrung dieses Problems bildet in einem gewissen Sinne
die Aufgabe: alle Gruppen von höchstens h ganzen oder gebroch-
enen linearen Substitutionen zu �nden, die einer gegebenen endlichen
Gruppe H der Ordnung h ein- order mehrstu�g isomorph sind, oder
auch, wie man sagt, alle Darstellungen der Gruppe H durch lineare
Substitutionen zu bestimmen.

Schur says that Darstellung durch ganze lineare Substitutionen (representa-
tions through linear transformations) of �nite groups has begun with T. Molien
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and F. Frobenius 3, and he himself will study Darstellung durch gebrochene lin-
eare Substitutionen, that is, representation through linear fractional transfor-
mations. For an element A of a given group H, assign a regular matrix (C) =(
aij

)
16i,j6n

which gives a projective transformation {A} : (yi)16i6n−1 7→ (xi)16i6n−1

by

xν =
aν1y1 + · · ·+ aν,n−1yn−1 + aνn

an1y1 + · · ·+ an,n−1yn−1 + ann

(ν = 1, 2, . . . , n− 1),

and ask to satisfy {A}{B} = {AB} (A,B ∈ H). Then there exists a non-zero
scalar rA,B ∈ C× such that

(C)(B) = rA,B (AB) (A,B ∈ H).(1.1)

The associativity (PQ)R = P (QR) (P, Q,R ∈ H) of H is represented as

({P}{Q}){R} = {P}({Q}{R})

and this gives us

rP,Q rPQ,R = rP,QR rQ,R (P,Q, R ∈ H).(1.2)

On the other hand, Schur constructed, for any C×-valued function rP,Q on
H×H satisfying the relation (1.2), an assignment H 3 A 7→ (C) satisfying (1.1).
This is done by appropriately twisting the regular representation of H.

Now let us come into the mode of the present day expression for the sake of
familiarity. As seen above, in Introduction, Schur indicated the problem of deter-
mining all the representations of a �nite group H into some projective general lin-
ear group PGL(n, C). A C×-valued function rP,Q on H×H satisfying the relation
(1.2) is called a (C×-valued) cocycle of degree 2 on H, and ρ(C) := (C) (A ∈ H)
a projective representation of H, and rA,B in (1.1) the factor set associated to ρ.
The product of two cocycles is de�ned naturally.

If ρ is replaced by ρ′ given as ρ′(C) := cA ρ(A) (cA ∈ C×), then the associated
linear fractional transformation remains unchanged but the associated factor set
rP,Q is replaced by

r′P,Q =
cP cQ

cPQ

rP,Q (P, Q ∈ H).(1.3)

In turn two cocycle rA,B and r′A,B are de�ned to be mutually equivalent if they
satisfy the relation (1.3). The quotient of the abelian group of cocycles by this
equivalence relation is denoted by H2(H,C×) and is called Schur multiplier M

of H.
Let H′ be a central extension of H by a central subgroup Z as

1 −→ Z −→ H′ Φ−→ H −→ 1 (exact),(1.4)
3 cf. [Mol] ; cf. [Fro1], [Fro2] .
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where Φ denotes the canonical homomorphism of H′ onto H. Take a section
Ψ : H → H′ so that Φ · Ψ is the identity map on H, then for any A and B
in H, there exists a CA,B ∈ Z such that Ψ(A)Ψ(B) = CA,BΨ(AB). For an
irreducible linear representation ρ′ of H′, put ρ(A) := ρ′

(
Ψ(A)

)
(A ∈ H), then

it is a projective representation of H with a factor set rA,B ∈ C× given by
ρ′(CA,B) = rA,BI, I = the identity transformation. In fact, since ρ′ is assumed
to be irreducible, the operator ρ′(CA,B) should be a scalar operator by Schur's
lemma. Seeing in the reverse way from H upwards to H′, we say that ρ is linearized
to ρ′ by lifting up (from the level of H) to H′. We call a central extension of H

also as a covering group of H.

•• In the �rst paper [Sch1, 1904] of the trilogy, Schur proved among others the
following:

(S1) For any �nite group H, there exists a covering group H′ such that any
projective representation ρ can be linearized by lifting it up to H′.

Among such covering groups H′, we call anyone with the minimum order a
representation group of H.

(S2) For any representation group H′ of a �nite group H, the central sub-
group Z in (1.4) is isomorphic to the Schur multiplier M = H2(H,C×). The
number of representation groups, modulo isomorphisms, is �nite.

The theory of linear representations for any representation group of H is
mutually equivalent, and the problem of projective representations of a �nite
group H is reduced to the following:

(a) Construct a representation group of H
(
denote it by R(H)

)
;

(b) Study linear representations of R(H) and their characters.

•• In the second paper [Sch2, 1907], he �rst gave in Introduction a theorem
characterizing a representation group, which says (cf. Theorem 1.1 in Part I, �1
in [II])

a covering group H′ of H is a representation group of H if and only
if |Z| =

∣∣H2(H,C×)
∣∣, and [H′,H′] ⊃ Z, where Z is as in (1.4).

Then he studied
(1) the number of di�erent representation groups of H,
(2) method of calculating Schur multipliers, and
(3) explicit examples of constructing representation groups and calculating

spin (and non-spin) characters for SL(2, K), PSL(2, K), GL(2, K), and
PGL(2, K) for a �nite �eld K = GF [pn].

•• In the third paper [Sch3, 1911], he �rst constructed representation groups
for the symmetric group Sn and the alternating group An, for n ≥ 4. He gave
two representation groups Tn and T′n of Sn as abstract groups by giving pairs of
the set of generators and the set of fundamental relations. They are isomorphic
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to each other only when n = 6, and he utilizes the �rst one Tn in his studies in
[Sch3]. It is given as follows:

Theorem 1.1 ([Sch3, �3]). For n ≥ 4, de�ne a group Tn by giving

• generators :
{
J, T1, T2, . . . , Tn−1

}
;

• fundamental relations :




J2 = E , T 2
α = J, (α = 1, 2, . . . , n− 1) ;

(TβTβ+1)
3 = J, (β = 1, 2, . . . , n− 2) ;

TγTδ = J TδTγ, (γ = 1, 2, . . . , n−3, δ = γ+2, . . . , n−1) ,

where E denotes the identity element. Then

1 −→ Z = {E, J} −→ Tn −→ Sn −→ 1 (exact),

with the canonical homomorphism Tn 3 Ti 7→ si = (i i+1) ∈ Sn , and Tn gives
a representation group of Sn .

Here Z = H2(Sn,C×) ∼= Z2. For a similar presentation of the second rep-
resentation group T′n, see Theorem 1.2 in Part I in [II]. With reasons stated in
Remark 1.1 in Part I (2), �1, loc. cit., we prefer to use the second group T′n for
our present study and denote it by S̃n.

Succeedingly, Schur constructed so called �Hauptdarstellung� ∆n of Tn, and
used it as the fundamental ingredient to give spin irreducible representations
(=IRs) of Tn. In Part III, �15 in [II], we rewrite ∆n as a fundamental spin
representation ∆′

n of S̃n = T′n. Schur constructed induced representations from
`Young type' subgroups of Tn, and then succeeded to classify all the spin IRs
of the symmetric groups Sn and also of the alternating group An by giving
irreducible spin characters as integral linear combinations of induced characters
above.

Remark 1.1 Schur multipliers of �nite groups have in particular certain
intimate relations with the problem of classi�cation of simple �nite groups, cf. a
book [Kar, 1985] by G. Karpilovski.

In connection to the paper [II], Schur multipliers of Weyl groups were cal-
culated by S. Ihara and T. Yokonuma [IhYo, 1965], and those for generalized
symmetric groups by J.W. Davies and A.O. Morris [DaMo, 1974], and �nally
those for complex re�ection groups G(m, p, n), p|m, by E.W. Read [Rea1, 1976].

1.2 Work of Élie Cartan in 1913

1.2.1. Nowadays we know that the rotation group SO(n), n ≥ 3, is not
simply connected, and its universal covering group is Spin(n) for n ≥ 3, 6= 4,
which in turn is a special central extension of SO(n) as

{e} −→ {e, z} −→ Spin(n) −→ SO(n) −→ {e} (exact),
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where e denotes the identity element and z a central element generating Z2 =
{e, z}. An irreducible linear representation ρ of Spin(n) which cannot be reduced
to SO(n), or equivalently such that ρ(z) = −I, is called a spin representation
of SO(n). É. Cartan �rst discovered the existence of spin irreducible representa-
tions of the rotation groups and classi�ed them by means of their highest weights
in [Car, 1913], on which S.S. Chern and C. Chevalley commented in the report
[CC] as is quoted below:

From p.219 :

· · · · · · Once the structures of all simple groups were known, it be-
came possible to look for all possible realizations of any one of these
structures by transformations of a speci�ed nature, and in particu-
lar, for their realizations as groups of linear transformations. This
is the problem of the determination of the representations of a given
group; it was solved completely by Cartan for simple groups. The
solution led in particular to the discovery, as early as 1913, of the
spinors, which were to be re-discovered later in a special case by the
physicists.

From pp.223-224 :

The general theory of linear representations is the object of the
paper [5] 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . <almost a page omitted here> . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . In the process of
classifying all possible linear representations, Cartan discovered the
spin representations of the orthogonal Lie algebras, which later played
such an important rôle in physics. In a book published later (Leçon
sur la théorie des spineurs, Hermann, Paris, 1938), Cartan developed
the theory of spinors from a geometric point of view.

In general, for a connected Lie group G, its universal covering group G̃ exists
uniquely (up to isomorphism) and corresponds to the representation group R(H)
in the case of a �nite group H. Any (continuous) projective representation of G

can be linearized by lifting up to G̃. We call a projective representation also as
a spin representation (cf. Part I, �1, 1.4 in [II]).

1.2.2. Let us explain a little more in detail in the case of n = 3 or of
the rotation group SO(3) in the Euclidean three-dimensional space E3. In this
case its universal covering group can be realized as SU(2) and the canonical
homomorphism Φ : SU(2) → SO(3) ∼= SU(2)/Z, Z = {E2,−E2}, is given as
follows. Let e1, e2, e3 be a system of unit coordinate vectors mutually orthogonal,

4 [5] = [Car]
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and a point x = x1e1 + x2e2 + x3e3 ∈ E3, expressed also by a column vector
t(x1, x2, x3), is mapped to a 2× 2 Hermitian matrix as

x =




x1

x2

x3


 −→ X =

(
x3 x1 + ix2

x1 − ix2 −x3

)
(i =

√−1).(1.5)

For an element u ∈ SU(2), put g = Φ(u) ∈ SO(3), then x 7→ gx is given by
X 7→ uXu−1.

On the other hand, the Lie algebra of SU(2) is the matrix Lie algebra su(2)
consisting of 2× 2 skew-Hermitian matrices of trace 0, whose complexi�cation is
sl(2,C). Put

a :=

(
0 1
1 0

)
, b :=

(
0 −i
i 0

)
, c :=

(
1 0
0 −1

)
,(1.6)

A1 := ia, A2 = −ib, A3 := ic.(1.7)

Then the commutation relations are [a, b] = 2ic, [b, c] = 2ia, [c, a] = 2ib,
and {A1, A2, A3} is a basis of su(2) over R with [Ai, Aj] = 2Ak for cyclically
permuted (i j k) of (1 2 3). Put H := c, X± := 1

2
(a± ib), then they give a basis

of sl(2,C) with commutation relations

[H,X+] = 2X+, [H,X−] = −2X−, [X+, X−] = H.

The covering map Φ is given as follows: put etAj = exp(tAj) and let
gj(ϕ) (j = 1, 2, 3) be the matrix representing a rotation of angle ϕ around
the xj-axis. Then,

Φ
(
etAj

)
= gj(2t) for j = 1, 2, 3 ;(1.8)

etA1 =

(
cos t i sin t
i sin t cos t

)
, etA2 =

(
cos t − sin t
sin t cos t

)
, etA3 =

(
eti 0
0 e−ti

)
;

g1(t) =




1 0 0
0 cos t − sin t
0 sin t cos t


 , g2(t) =




cos t 0 sin t
0 1 0

− sin t 0 cos t


 ,

g3(t) =




cos t − sin t 0
sin t cos t 0
0 0 1


 .

Returning to the rotation group SO(3), we have a natural basis of its Lie
algebra so(3) given by Bj := d

dt
gj(t)|t=0, and with the commutation relation

[Bi, Bj] = Bk for (i, j, k) cyclically permuted of (1, 2, 3). From (1.8), the di�er-
ential dΦ of Φ is given by dΦ(Aj) = 2Bj (1 ≤ j ≤ 3). Put H ′ := iB3, X ′

± :=
iB1 ∓ B2, then [H ′, X ′

±] = ±X ′
±, [X ′

+, X ′
−] = 2H ′. The natural isomorphism

dΦ : su(2) → so(3) maps H 7→ 2H ′, X± 7→ X ′
±.
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Actually the set of all equivalence classes of irreducible representations (=IRs)
of the covering group SU(2) corresponds to the following set of IRs of Lie algebra
su(2) or rather of sl(2,C). Let ` ≥ 0 be an integer or a half-integer (half an odd
integer), and put Ω` := {−`,−` + 1, . . . , ` − 1, `}, and prepare an orthonormal
basis {vk (k ∈ Ω`)} of a Hilbert space of dimension 2` + 1. Then the di�erential
of a unitary IR π` of SU(2) is given as follows, described from the base level of
so(3) (or of SO(3)) and denoted as dπ′` = dπ` ◦ dΦ−1 ,





dπ′`(H
′)vk = k vk ,

dπ′`(X
′
+)vk = a`,k vk+1 ,

dπ′`(X
′
−)vk+1 = a`,k vk ,

(k ∈ Ω`),(1.9)

with a`,k =

√
(` + k + 1)(`− k)

2
.

Here the eigenvalues k of dπ′`(H
′) are called weights, and the highest weight `

characterizes the equivalence class of IR π`.
A global realization of IR π` of SU(2) is given as follows. For ` = 1

2
, take the

identical mapping u 7→ u of SU(2), then this gives a spin (or double-valued) IR
π 1

2
of SO(3) on the two-dimensional vector space V 1

2
:= C2. For ` = (2`) · 1

2
, IR

π` is given by restricting the (2`)-times tensor product of π 1
2
on the (2`)-times

symmetric tensor product space V` of V 1
2
. We can see that π` with a half-integer

` is spin, and π` with an integer ` is non-spin (cf. the character formula (1.10)
below).

Every element in SU(2) is conjugate to an element exp(tic) = diag(eit, e−it)
in the Cartan subgroup C := exp(R ic), and the character χπ`

is uniquely deter-
mined by its value on C. On the other hand, with respect to the basis in (1.9),
the matrix π`

(
exp(tic)

)
takes the diagonal form as diag(e2i`t, e2i(`−1)t, . . . , e−2i`t),

and so the character is given by the formula

χπ`

(
exp (tic)

)
=

e(2`+1)it − e−(2`+1)it

eit − e−it
=

sin (2` + 1)t

sin t
.(1.10)

Note that, if we see from the level of SO(3), formulas (1.9) and (1.10) give
double-valued representations and characters, in case ` is odd.

Remark 1.2. Let q = α+βi+γj+δk ∈ H (α, β, γ, δ ∈ R) be a quaternion

which is found by W.R. Hamilton [Ham] in 1843. Put ‖q‖ =
(
α2+β2+γ2+δ2

)1/2
,

and let H− be the set of all pure quaternions x′ = x1i + x2j + x3k. We know
that the universal covering group of SO(3) is also realized as the group of unit
quaternions H1 := {q ∈ H ; ‖q‖ = 1} as follows:

Identify E3 with H− through their coordinates, and for each q ∈ H1 consider
the transformation R(q) on H− given by x′ 7→ qx′q−1. Then R(q) belongs to
SO(3), and H1 3 q 7→ R(q) ∈ SO(3) gives a covering map.

In 1838, preceding to the discovery by Hamilton, O.Rodrigues described this
covering map in [Rod] from the geometric point of view in a form of a variant of
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spherical trigonometry but actually using the quaternion multiplication rule. Its
formula is called Rodrigues' formula, and see also [Alt, 1989] in this connection.

Remark 1.3. Let O(p, q), p ≥ q ≥ 0, be the real orthogonal group leaving
the (inde�nite) quadratic form x 2

1 +· · ·+x 2
p −x 2

p+1−· · ·−x 2
p+q in R p+q invariant.

Then it is not connected, and it has two connected components if q = 0, and
four if q > 0. Moreover it has 4 covering groups if q = 0, and 8 otherwise. At
most two of them admit Cli�ord algebras as representations, and are denoted by
Pin(p, q) and Pin(q, p) (di�erent from each other if p 6= q), as is given in [ABS].

On the intimate connection of Cli�ord algebra and IRs of the covering group
D̃n of the n-times direct product Dn of the cyclic group Zm, see Part II, ��5�6
in [II].

Apart from the �rst motivation of Schur � Determination of all �nite sub-
groups of GL(n, C) or of PGL(n, C) �, and Cartan's result in [Car, 1913], we
have various natural sources where projective representations of groups should
come out naturally. We simply list up them without detailed explanations and
proofs hereafter in ��2�4, numbering them as E-1∼E-10, and these sections are
devoted to introduce the theory of projective representations and explain how
such projective objects occur naturally and why they are so interesting to be
studied.

2 Pauli's spin quantum number and Dirac's

equation

E-1. Spin angular momentum of electron. In 1925, W. Pauli in-
troduced, in his paper [Pau1], a new quantum degree of freedom, or a fourth
quantum number, for an electron, and discovered a general principle which as-
serts that, with four quantum numbers containing the new one, electrons of an
atom can be identi�ed. We quote from the original paper the related parts in
the following :

[Pau1, 1925], p.775, lines 24�28
(eine weitere Quantenzahl m1) :

· · · · · · · · · . Wir sind dort, auf die Möklichkeit der Aufrechterhaltung
der Permanenz der Quantenzahlen gestützt, dazu gelangt, jedes Elek-
tron im Atom auÿer durch die Hauptquantenzahl n durch die beiden
Nebenquantenzahlen k1 und k2 zu charakterisieren. In starken Ma-
gnetfeldern kam noch eine Inpulsquantenzahl m1 für jedes Elektron
hinzu und · · · · · ·

[Pau1, 1925], p.776, lines 5�10
(allgmeine Regel über das Vorkommen von äquivalenten Elektronen in Atom) :
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Es kann niemals zwei oder mehrere äquivalente Elektronen im
Atom geben, für welche in starken Feldern die Werte aller Quanten-
zahlen n, k1, k2,m1 (oder, was dasselbe ist, n, k1,m1,m2) übereinstim-
men. Ist ein Elektron im Atom vorhanden, für das diese Quantenzah-
len (im äuÿeren Felde) bestimmte Werte haben, so ist dieser Zustand
�besetzt�.

P.M.A. Dirac called in [Dir1, 1926] this principle as Pauli's exclusion principle,
and quoted as �not more than one electron can be in any given orbit� . The
discovery of this principle leads Pauli to his Nobel prize in 1945.

After Pauli's discovery of the forth quantum number in 1925, to explain this
new quantum number of an electron, R. Kronig and then S.A. Goudsmit and
G.E. Uhlenbeck presented ideas of electron spin, that is, a virtual rotation of
electron around a �xed axis.

In 1927, Pauli succeeded to formulate these ideas in a clear form by intro-
ducing the so-called Pauli matrices to treat `die Drehimpulskomponenten' of an
electron. The principal idea was the following, quoted from the introduction of
[Pau2, 1927], p.601, lines 1�9 :

Es wird gezeigt, wie man zu einer Formulierung der Quantenme-
chanik des magnetischen Elektrons nach der S c h r ö d i n g e r schen
Methode der Eigenfunktionen ohne Verwendung zweideutiger Funk-
tionen gelangen kann, indemman, gestützt auf die allgemeine D i r a c -
J o r d a n sche Transformationstheorie, neben den Ortskoordinaten je-
des Elektrons, um seinen rotatorischen Freiheitsgeraden Rechnung zu
tragen, die Komponente seines Eigenimpulsmomentes in einer festen
Richtung als weitere unabhängige Veränderliche einführt. Im Gegen-
satz zur klassischen Mechanik kann diese Variable jedoch, · · · · · · · · · · ,
nur die Werte +

1

2

h

2π
und −1

2

h

2π
annehmen.

Mathematically speaking, this means that electrons do not live in the usual
three-dimensional Euclidean space E3 where the rotation group SO(3) acts, but
they live in the space V 1

2
= C2 (real four-dimensional), where the covering group

SU(2) acts (cf. 1.2.2).
In connection to spin representations of SO(3), let us try to describe Pauli's

result in today's framework of group representations. To do so, we �rst introduce
a mathematical formalism for a group action on certain function spaces.

Mathematical formalism for a group action :
Let G be a group, and Y a set on which G acts as Y 3 y 7→ gy ∈ Y (g ∈ G).

Take a vector space V on which G acts linearly as V 3 v 7→ π(g)v ∈ V (g ∈ G),
and consider a space F(Y ; V ) of V -valued functions on Y . Then G acts on
F(Y ; V ) by the following formula: for g ∈ G and f ∈ F(Y ; V ),

(
Tπ(g)f

)
(y) := π(g)

(
f(g−1y)

)
(y ∈ Y ),(2.1)
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where π(g) acts on the value v = f(g−1y) ∈ V . In fact, it is not di�cult to prove
Tπ(g1g2) = Tπ(g1)Tπ(g2) (g1, g2 ∈ G), and Tπ(e) = I for the identity element
e ∈ G, where I denotes the identity map on F(Y ; V ).

In this formalism, (π, V ) is a linear representation of G, for which V is also
denoted by V (π). Here we may also take as π a projective representation, that is,
multiple-valued representation of G, then we get a multiple-valued representation
Tπ of G on the function space F(Y ; V ).

In Pauli's case in [Pau2], we take as Y the Euclidean space E3 (since the
theory is non-relativistic here), and as (π, V ) the irreducible representation π 1

2

on V 1
2

= C2 with the highest weight 1
2
, and as a function f a wave function ψ of

an electron which is a pair of two scalar-valued functions, written with respect
to the canonical coordinates in V 1

2
, as

ψ(x) =

(
ψ1(x)
ψ2(x)

)
(x ∈ E3).

Note that, for canonical coordinates in V 1
2

= C2, the di�erential dπ 1
2
(H) = 1

2
c

has eigenvalues +1
2
and −1

2
respectively.

The formula (2.1) can be understood in two ways. On the one hand, if we
take G = SO(3), as might be the case of Pauli, then π = π 1

2
is double-valued

seeing from SO(3). On the other hand, if we take G = SU(2), the covering group
of SO(3), since π 1

2
(u) = u

(
u ∈ SU(2)

)
, the formula (2.1) is written as

(
Tπ(u)ψ

)
(x) := u

(
ψ1(g

−1x)
ψ2(g

−1x)

)
(u ∈ SU(2), x ∈ E3),(2.2)

where g = Φ(u) ∈ SO(3) is the image of u under the covering map Φ : SU(2) →
SO(3). The natural norm in V 1

2
is given for v =

(
v1
v2

)
as ‖v‖V =

√
|v1|2 + |v2|2,

which is SU(2)-invariant. We put

‖ψ‖2 :=

∫

E3

‖ψ(x)‖ 2
V dx, dx :=dx1dx2dx3.

A wave function ψ is in the Hilbert space L2(E3, V ; µ) of V -valued L2-functions
on E3, and the norm ‖ψ‖ is SU(2)-invariant as ‖Tπ(u)ψ‖ = ‖ψ‖ (

u ∈ SU(2)
)
.

For a ψ normalized as ‖ψ‖ = 1, the integral
∫
D ‖ψ(x)‖2 dµ(x) over a domain D

in E3 gives the probability for that the electron, described by ψ, exists in D.
Now rewrite the coordinates (x1, x2, x3) as (x, y, z). Then Pauli [Pau2] pro-

posed to consider �die Drehimpulskomponenten sx, sy, sz� of an electron as vari-
ables which can take values only ±c′, as seen on p.605, lines 17�20, as

Indessen kann man das Auftreten solcher Zweiseitigkeiten, wie
überhaupt die explizite Verwendung irgendwelcher Polarwinkel da-
durch vermeiden, daÿ man an Stelle von ϕ die Impulskomponente sz

als unabhängige Variable in die Eigenfunktion einführt. · · · · · · · · · · · ·
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Then he represented sx, sy, sz by operators sx, sy, sz acting on a wave function
ψ as

sx(ψ) =

(
0 1
1 0

)
ψ ; sy(ψ) =

(
0 −i
i 0

)
ψ ; sz(ψ) =

(
1 0
0 −1

)
ψ .(2.3)

Here these three matrices are exactly a, b, c in (1.6) in �1.2. They are called Pauli
matrices, and in today's notation

σ1 = σx := a, σ2 = σy := b, σ3 = σz := c,(2.4)

and the commutation relations are expressed as

[σi, σj] = 2iεijk σk, {σj, σj} = 2δijE2 ,(2.5)

where εijk is the Levi-Civita symbol.
Pauli discussed the invariance (or covariance) under a coordinates change

(x, y, z) 7→ (x′, y′, z′). The invariance of Pauli's equation for a free electron under
the SU(2)-action (2.2) is explained in detail in [HiYa, Chap. 4]. Note that, purely
in the framework of the theory of group representations, the in�nitesimal action
on ψ corresponding to the �Drehimpulskomponente� sz is calculated as

(
dTπ(c)ψ

)
=

1

i

d

dt

(
Tπ(etA3)ψ(x)

)∣∣∣
t=0

= sz(ψ) + 2
(
− x2

∂

∂x1

+ x1
∂

∂x2

)
ψ .

E-2. Dirac equation and spin representations of Lorentz group.
In 1928, P.A.M. Dirac gave in [Dir2] a relativistic wave equation for an elec-

tron (called Dirac equation), which comes out of Klein-Gordon equation. He
stated at the top of Introduction (loc. cit., p.610, lines 1�10) as

The new quantum mechanics, when applied to the problem of
the structure of the atom with point-charge electrons, does not give
results in agreement with experiment. The discrepancies consist of
�duplexity� phenomena, the observed number of stationary states for
an electron in an atom being twice the number given by the theory.
To meet the di�culty, Goudsmit and Uhlenbeck have introduced the
idea of an electron with a spin angular momentum of half a quantum
and a magnetic moment of one Bohr magneton. This model for the
electron has been �tted into the new mechanics by Pauli,∗ and Dawin,†

working with an equivalent theory, has shown that it gives results in
agreement with experiment for hydrogen-like spectra to the �rst order
of accuracy.

Then, at the end of �1. Previous Relativity Treatments,
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In the present paper we shall be concerned with the removal of
the �rst of these two di�culties. The resulting theory is therefore still
only an approximation, but it appears to be good enough to account
for all the duplexity phenomena without arbitrary assumptions.

Minkowski space and Lorentz groups : To describe the things cor-
rectly, we introduce the Minkowski space M4 consisting of x = t(x1, x2, x3, x4),
a column vector, with t(x1, x2, x3) ∈ E3, x4 = ct ∈ R, and equipped with the
inde�nite quadratic form

〈x,x〉3,1 := x 2
1 + x 2

2 + x 2
3 − x 2

4 = tx J3,1x ,

where J3,1 := diag(1, 1, 1,−1) is a diagonal matrix with entries 1, 1, 1,−1. The
group O(3, 1) consists of g ∈ GL(4, R) satisfying 〈gx, gx〉3,1 = 〈x,x〉3,1 (x ∈
M4) or tgJ3,1g = J3,1, and has 4 connected components. The one containing
the identity element e = E4 is called (proper) Lorentz group and is given as

SO0(3, 1) :=
{
g = (gij)1≤i,j≤4 ∈ O(3, 1) ; det(g) = 1, g44 ≥ 1

}
,

which is denoted also as L4.

Dirac equation : Dirac's wave function ψ(x) is a function on M4, valued
in V = C4, and denoted as ψ(x) =

(
ψj(x)

)
1≤j≤4

in the form of column vector.
He proposed in [Dir2] a relativistic wave equation for an electron. Changing the
notation in [loc. cit.] appropriately, we put

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ4 =

(
1 0
0 1

)
,(2.6)

and let γ1, γ2, γ3, γ4 be 4× 4 matrices given as

γj =

(
02 −iσj

iσj 02

)
(1 ≤ j ≤ 3), γ4 =

(−iσ4 02

02 iσ4

)
,(2.7)

with 02 the zero matrix of order 2. Then the Dirac equation is expressed as
follows: in the case of no electromagnetic �eld

(
D + κ

)
ψ = 0, D :=

∑
1≤j≤4

γj∂xj
, ∂xj

:=
∂

∂xj

, κ :=
mc

h
.(2.8)

Note that the Klein-Gordon equation is factored as

(¤− κ2)ψ = (D − κ)(D + κ)ψ = 0, ¤ :=
∑

1≤j≤3

∂ 2
xj
− ∂ 2

x4
.
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Dirac's proof of Lorentz-invariance:
Mathematically speaking, this invariance means that, under a natural trans-

formation of ψ in the formula below, with a certain representation $ of G = L4

on V ,

(
T$(g)ψ

)
(x) = $(g)

(
ψ(g−1x)

)
(g ∈ G),(2.9)

the di�erential operator D is invariant, that is,

D T$(g)ψ = T$(g) Dψ (g ∈ G),

or T$(g)−1 ·D ·T$(g) = D. Here the representation $ is left to be determined.

Dirac's proof of the Lorentz invariance proceeds as follows. The discussions
have a strong similarity as those in ��3 � 4 and also in ��7�10 in [II]. For x ∈ M4

and g = (gij)1≤i,j≤4 ∈ G, put x′ = g−1x, then x = gx′ and so

∂ ′ = ∂g, ∂ ′ := (∂x′1 , ∂x′2 , ∂x′3 , ∂x′4), ∂ := (∂x1 , ∂x2 , ∂x3 , ∂x4),(2.10)

where the matrix multiplication rule is applied. Consider γ := (γj)1≤j≤4 as a
row vector (of matrix entries), then we have

D = γ · t∂ = γ · t(∂ ′g−1) = γ ′ · t∂ ′, γ ′ := γ tg−1.

On the other hand, the matrices γj's satisfy

{
γ 2

j = E4 (1 ≤ j ≤ 3), γ 2
4 = −E4 ,

γjγk + γkγj = 0 (1 ≤ j, k ≤ 4, j 6= k),
(2.11)

and this is symbolically written as tγ γ+t(tγ γ) = 2J3,1, where tγ γ := (γiγj)1≤i,j≤4,
and the entries 1 and 0 in J3,1 is replaced by E4 and 04 respectively. Then we
have

tγ ′ γ ′ + t(tγ ′ γ ′) = g−1
{
(tγ γ) + t(tγ γ)

}
tg−1 = g−12J3,1

tg−1 = 2J3,1 ,

that is, γ ′ satis�es the analogous relations as (2.11).
Then Dirac proved [loc. cit., pp.616�617] essentially that � by a canonical

transformation, γ′j's can be brought into the form of γj's .� Mathematical ex-
pression of this fact is that, for g ∈ G, there exists a linear transform Sg on V
such that

γ′k = S −1
g γkSg (1 ≤ k ≤ 4), for γ′ = g−1γ,

and we should identify the canonical transformation Sg, which will be $(g) in
(2.9). The answer is well-known, and here we give a short and mathematically
clear proof for it (for more details, see [HiYa, Chap. 5]).
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Lemma 2.1. For ε = (ε1, ε2, ε3, ε4), εk = 0, 1, put γε := γ ε1
1 γ ε2

2 γ ε3
3 γ ε4

4 ,
where γ0 = E4 for ε = 0 = (0, 0, 0, 0). Then, the set of γε over all ε gives a
linear basis of the full matrix algebra M(4,C).

Proof. First note that, for ε 6= 0, we have tr
(
γε

)
= 0. Then, take a

linear relation as
∑
ε aεγ

ε = 0 (aε ∈ C). Multiply the both sides by γε
0
with

ε0 = (ε0
1, ε

0
2, ε

0
3, ε

0
4), and take the trace of both sides. Then, since γεγε

0
= ±γε−ε0

,
we obtain ±4aε0 = 0. This proves the linear independence of γε's.

Since the number of γε's is 24 = 16, the assertion is thus proved. 2

Now suppose that S −1
g γkSg = S ′g

−1γkS
′
g (1 ≤ j ≤ 4) for two matrices Sg

and S ′g. Then, since γk's generate M(4,C) and so we have S −1
g ASg = S ′g

−1AS ′g
for all A ∈ M(4,C), whence S ′g = λgSg with λg ∈ C×. This implies that the
correspondence g 7→ Sg gives a projective representation of G. The point is to
identify what is this representation and to verify if it is really projective or not.
Before that, we prepare spin representations of the Lorentz group G.

Spin representations of Lorentz group : Lorentz group G := SO0(3, 1)

is not simply connected and its universal covering group G̃ is realized by H =
SL(2,C) with the following double covering map Φ, an extension of the covering
map in �1.2.2 from SU(2) onto SO(3) a maximal compact subgroup of G. Let
H2 be the space of all 2× 2 Hermitian matrices, then M4 is expressed by H2 by
the map M4 3 x = t(x1, x2, x3, x4) 7→ X ∈ H2 as

X =

(
x3 + x4 x1 + ix2

x1 − ix2 −x3 + x4

)
=

4∑
j=1

σjxj ,

then 〈x,x〉3,1 = − det X. Note that σj's gives a basis of H2, and put σ :=
(σ1, σ2, σ3, σ4) a row vector of matrix entries. Then X = σ · x in the matrix
multiplication rule. The group H acts on H2 through X 7→ hXh∗ (h ∈ H), and
this gives us a linear transformation x 7→ gx. As an action on the basis σ, this
is expressed as

(hσ1h
∗, hσ2h

∗, hσ3h
∗, hσ4h

∗) = (σ1, σ2, σ3, σ4)g = σg .(2.12)

Since det
(
hXh∗) = det X, the element g belongs to O(3, 1) and moreover

to SO0(3, 1). Thus we get a holomorphic map Φ : H 3 h 7→ g ∈ G. Put
A4 =

(
1 0
0 −1

)
= −A3 ∈ sl(2,C) and consider a one-parameter subgroup etA4 ∈

SL(2,C), then Φ(etA4) = g4(2t) ∈ SO0(3, 1), where

etA4 =

(
et 0
0 e−t

)
, g4(t) :=




1 0 0 0
0 1 0 0
0 0 cosh t sinh t
0 0 sinh t cosh t


 .
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From this, together with Φ
(
etAj

)
= gj(2t) (1 ≤ j ≤ 3) for SU(2) → SO(3)(

cf. (1.7)
)
, we see that Φ is actually surjective, and we have

1 −→ {±E2} −→ SL(2,C)
Φ−→ SO0(3, 1) −→ 1 (exact)(2.13)

Through a section Ψ of this covering map Φ, an irreducible representation
(= IR) π of H = SL(2,C) is a spin (projective) representation of Lorentz group
G = SO0(3, 1) if π(−E2) = −I, and is a (non-spin) linear representation of G if
π(−E2) = I.

Consider H as a complex Lie group. Then π1,0(h) := h (h ∈ H) is a holo-
morphic IR, and π0,1(h) := h (complex conjugate) is an anti-holomorphic IR.
The tensor product πp,q := (⊗pπ1,0) ⊗ (⊗qπ0,1) is spin or non-spin according
as p + q is odd or even. Note that π0,1 is unitary equivalent to the representa-

tion π′0,1(h) := (h∗)−1 (h ∈ H), since (h∗)−1 = th
−1

= w hw−1 (h ∈ H) with
w =

(
0 −1
1 0

)
. We de�ne a representation $′ ∼= π1,0 ⊕ π0,1 by putting

$′(h) := π1,0(h)⊕ π′0,1(h) =

(
h 02

02 (h∗)−1

) (
h ∈ H = SL(2, C)

)
.

Then, on the subgroup SU(2), we have $′(u) = u⊕ u
(
u ∈ SU(2)

)
.

Identi�cation of the representation $ coming from g 7→ Sg :
Consider a bijective map from V = C4 to V ′ := V ($′) = C4 given as

MU : V 3 v −→ v′ = Uv ∈ V ′, U =
1√
2

(
E2 −E2

E2 E2

)
,

and M̃U : ψ 7→ φ from a V -valued function ψ(x) =
(
ψj(x)

)
1≤j≤4

on M4 to a V ′-

valued function φ(x) := U
(
ψ(x)

)
. Then the Dirac equation on ψ is transformed

to that on φ as follows:
(
DU + κ

)
φ = 0, with DU := UDU−1 = Γ · t∂ ,(2.14)

Γ := (Γ1, Γ2, Γ3, Γ4), Γj := UγjU
−1 (1 ≤ j ≤ 4),

where Γj are calculated as

Γj =

(
02 −iσj

iσj 02

)
(1 ≤ j ≤ 3), Γ4 =

(
02 −iσ4

−iσ4 02

)
.

Decompose φ = (φj)1≤j≤4 into two components as φ = φ+ ⊕ φ− with φ+ :=
t(φ1, φ2), φ− := t(φ3, φ4). Then, for h ∈ H, with g = Φ(h) ∈ G,

T$′(h)
(
φ+ ⊕ φ−

)
(x) = h φ+(g−1x)⊕ (h∗)−1φ−(g−1x),(2.15)

and Dirac equation takes the form
{ −i

(
σ1∂x1 + σ2∂x2 + σ3∂x3 + σ4∂x4

)
φ− + κφ+ = 0,

i
(
σ1∂x1 + σ2∂x2 + σ3∂x3 − σ4∂x4

)
φ+ + κφ− = 0.

(2.16)
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Under the variable change x′ = g−1x, we have ∂ = ∂ ′g−1 as in (2.10), and
so DU = Γ′ · t∂ ′ with Γ′ = Γ tg−1. Moreover, from the simple forms of Γj's, we
see easily that for h ∈ H,

$′(h)−1Γj$
′(h) =

(
02 −ih−1σj(h

∗)−1

ih∗σjh 02

)
(1 ≤ j ≤ 3),

$′(h)−1Γ4$
′(h) =

(
02 −ih−1σ4(h

∗)−1

−ih∗σ4h 02

)
.

Here we apply the formula (2.12) and the following one, obtained from (2.12) by
multiplying J3,1 from the right to the both sides and using gJ3,1 = J3,1

tg−1 :

(hσ1h
∗, hσ2h

∗, hσ3h
∗,−hσ4h

∗) = (σ1, σ2, σ3,−σ4)
tg−1.(2.17)

Then we get
(
$′(h)−1Γj$

′(h)
)
1≤j≤4

= Γ tg−1 = Γ′.(2.18)

Theorem 2.2. The map g 7→ Sg gives a spin representation $ of Lorentz
group G = SO0(3, 1) which is equivalent to $′ = π1,0 ⊕ π′1,0

∼= π1,0 ⊕ π1,0.

Under the isomorphic map MU from V = C4 onto V ′ = V ($′), transform
a V -valued wave function ψ to V ′-valued one φ(x) = U

(
ψ(x)

)
. Then Dirac

equation for ψ is transformed to

(DU + κ)φ = 0, DU = Γ · t∂ =
∑

1≤j≤4

Γj
∂

∂xj

,

and this is Lorentz-invariant in the sense that the operator DU +κ is invariant
under the transform T$′(h)φ(x) = $′(h)

(
φ(g−1x)

)
(x ∈ M4) for h ∈ H =

SL(2,C) and g = Φ(h) ∈ G = SO0(3, 1).

Note 2.1. For this kind of schemes, where spin (projective) representations
of a group G are naturally born, see also E-5 and E-8∼E-10 below.

Remark 2.1. The term ` Spinor ' was probably coined by P. Ehrenfest, as is
seen in the introduction of van der Waerden's paper [Waer, 1929], quoted below,
1st � 9th lines of its introduction :

� Nennen wir die neuartigen Göÿen, die neben den Vektoren und
Tensoren in der Quantenmechanik des Spinning Electron aufgetreten
sind, und die sich bei der Lorentzgruppe ganz anders transformieren
wie Tensoren, kurz Spinoren. Gibt es keine Spinoranalyse, die jeder
Physiker lernen kann wie Tensoranalyse, und mit deren Hilfe man
erstens alle möglichen Spinoren, zweitens alle invarianten Gleichun-
gen, in denen Spinoren auftreten, bilden kann ? � So fragte mich Herr
Ehrenfest, und die Antwort soll im folgenden gegeben werden.
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3 Sources where projective representations oc-

cur (1)

E-3. Ray representations of groups. In 1927, J. von Neumann, gave a
rigorous mathematical foundation of quantum mechanics, and H. Weyl pursued
it as seen in [Wey1]. He observed that, for a wave function ψ and any �xed
number λ ∈ C, |λ| = 1, ψ and λψ describe identical quantum states, so one
should employ ray (or projective) representations rather than ordinary linear
representations. We quote from [Wey1] as

(Quotation from [Wey1], �16)
In der Quantentheorie �nden die Darstellungen im Systemraum

statt; dieser ist aber nicht als Vektor-, sondern als Strahlenkörper zu
verstehen, weil der einzelne reine Fall nicht durch den Vektor, sondern
durch den Strahl repräsentiert wird. Zwei unitäre Transformationen
U und εU , die sich um einen Zahlfaktor ε vom absoluten Betrage 1
unterscheiden, sind hier einander gleich, U ' εU , da sie dieselbe Dre-
hung im Strahlenkörper bewirken. In der �Strahldarstellung�, welche
jedem Element s der abstrakten Gruppe g eine unitäre Drehung U(s)
im Strahlenkörper des n-dimensionalen Darstellungsraumes entspre-
chen läÿt, werde der Eichfaktor ε für jede unitäre Matrix U(s) in will-
kürlicher Weise festgelekt; doch so, daÿ U(s) stetig von s abhängt,
wenn g eine kontinuierliche Gruppe ist. Die Darstellungsbedingung
verlangt jetzt nur

U(s)U(t) ' U(st)
d. i.

U(s)U(t) = δ(s, t)U(st),

δ(s, t) ist ein von s und t abhängiger Zahlfaktor vom absoluten Be-
trage 1. · · · · · · · · · · · · · · · · · · · · ·

(English translation by H.P. Robertson):
In quantum theory the representations take place in system space ;

but this is to be considered as a ray rather than a vector space, for a
pure state is represented by a ray rather than a vector. Two unitary
representations U and εU which di�er only by a numerical factor ε of
absolute magnitude 1 are consequently to be considered as the same,
U ' εU , for they determine the same rotation of the ray �eld. In a
�ray representation� · · · · · · · · · · · · · · · · · · · · ·

Before publishing this book, he has worked out, in 1925 �'26, calculation of
characters of all irreducible representations of classical groups, containing spin
ones for orthogonal groups. These results were collected together in another
book [Wey2]. However at this stage all representations considered are still �nite-
dimensional.
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E-4. Projective representations of �nite abelian groups.
Schur studies in [Sch2, 1907], the so-called Schur multiplier M := H2(G, C×)

of a �nite group G, and also the number of non-isomorphic representation groups.
In �4 [loc. cit.] he determined explicitly H2(G, C×) for several interesting exam-
ples. Here we comment only for the case of abelian groups.

(S3) Let G be a direct product of cyclic groups of orders m1,m2, . . . , mr.
Then H2(G,C×) is a direct product of r(r − 1)/2 number of cyclic groups of
orders (mj,mk) (j < k), where (mj,mk) denotes GCD of mj and mk.

In fact, �rst we present the group G as an abstract group by giving

set of generators : {y1, y2, . . . , yr} ,

set of fundamental
equations

:

{
y

mj

j = e (1 ≤ j ≤ r),

yjyk = ykyj (j 6= k).

Let π be a projective representation of G and put Sj = π(yj). Then, as a
re�ection of fundamental relations, we have, with λj, λjk ∈ C×,

S
mj

j = λjI (1 ≤ j ≤ r), SjSk = λjkSkSj (j 6= k).

First we have λkj = λ −1
jk . Replace each Sj by a scalar multiple S ′j = µjSj. Then

the corresponding constants λ′j, λ′jk are given as

λ′j = λj/µ
mj

j (1 ≤ j ≤ r), λ′jk = λkj (j 6= k).

Hence we may assume that λj = 1 (1 ≤ j ≤ r) from the beginning. Then
Sj = Sj(Sk)

mk = λ mk
jk (Sk)

mkSj = λ mk
jk Sj, whence λ mk

jk = 1 (j 6= k). Therefore
λ mk

jk = λ
mj

jk = 1 (j 6= k) and so

λ
(mj ,mk)

jk = 1 (j 6= k).(3.1)

We see that no further normalization of the set of constants λ := {λjk ; 1 ≤ j, k ≤
r, j 6= k} is possible. This means that, if λ 6= λ′, the factor sets corresponding
to them (if exist) are not mutually equivalent.

Conversely, for a given λ satisfying (3.1), to prove the existence of a factor
set corresponding to it, we can check that the cocycle condition (1.2) is satis�ed.
Or, it is enough to give explicitly a projective representation π corresponding to
λ.

Example 3.1. Direct product of cyclic groups of the same order.
Let Zm be a cyclic group of order m and denote the product by multiplication.

We treat in Part I in [II] the case of the group Dn := T n, the n-times direct
product of T = Zm . The Schur multiplier of Dn is n(n − 1)/2 -times direct
product of Zm, and so a representation group, denoted by R(Dn) here, is of
order mn(n+1)/2, very big.
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In Part I and the subsequents in [II], Dn appears as a normal subgroup of a
generalized symmetric group G(m, 1, n) = Dn oSn (cf. �4 or �2 for de�nition).
In a representation group R

(
G(m, 1, n)

)
of G(m, 1, n), there appears only the

double covering group D̃n which is a quotient group of R(Dn). In case m is odd,
the order of R(Dn) is also odd, and so there exists no double cover of Dn. This
situation re�ects to Theorem 2.2 (case m odd) and Theorem 2.3 (case m even)
on the structure of the representation group R

(
G(m, 1, n)

)
.

Remark 3.1. For further account on the representation groups of �nite
abelian groups and their projective representation, see e.g. [Fruc, 1955], [Mor2,
1973] etc.

E-5. A work of Cli�ord. A.H. Cli�ord studied in [Clif, 1937] the re-
striction π|N of an IR π of a group G onto its normal subgroup N . We restate
some of his results in the case of a �nite group G, and explain that projective
representations of a certain subgroup appear here naturally. Assume that π is
de�ned over any �eld P and the restriction π|N is reducible.

(C1) Let ρ(1), ρ(2), . . . , ρ(m) be the complete set of mutually non-equivalent
IRs of N appearing in π|N . Then, they are all mutually conjugate under G,
and has the same dimension (say) n, and each of them appears in π|N with the
same multiplicity (say) `. We have dim π = `mn, and denoting the multiplicity
by [`] ,

π|N ∼=
∑⊕

1≤i≤m

[`] · ρ(i).(3.2)

(C2) Let Vi be the subspace of the representation space V of π on which
the irreducible components of π|N are equivalent to ρ(i). Then V is a direct
sum of Vi's. Moreover they are permuted bodily among themselves by π(g)
for any g ∈ G (in Cli�ord's terminology, V1, V2, . . . , Vm constitute a system of
imprimitivity of π). Put, for 1 ≤ i ≤ m,

Hi := {g ∈ G ; π(g)Vi = Vi},

and let τ (i) be the representation of Hi induced from π on the subspace Vi. Then,
each τ (i) is irreducible, and the triplet (Hi, τ

(i), Vi) is conjugate to (H1, τ
(1), V1)

by an element gi ∈ G such that π(gi)Vi = V1.

(C3) For any 1 ≤ i ≤ m, τ (i)|N ∼= [`] · ρ(i) and π ∼= IndG
Hi

τ (i).

Thus, through (C2) � (C3), the structure of π can be analysed by studying
(H, τ) := (H1, τ

(1)), and we have the following theorem, which will be applied in
E-9 below.

Theorem 3.1 (cf. ��2�3 in [Clif]). Let N be a normal subgroup of a �nite
group H. For an irreducible representation τ of H, assume that all irreducible
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component of τ |N are mutually equivalent, or τ |N ∼= [`] · ρ , a multiple of an
IR ρ of N , and that the ground-�eld P is algebraically closed.

(i) The IR τ is equivalent to the tensor product of two matrix irreducible
projective representations C and Γ of H:

(3.3) τ(h) ∼= C(h)⊗ Γ(h),

where dim C = dim ρ, ρ(h−1uh) = C(h)−1ρ(u)C(h) (h ∈ H, u ∈ N), dim Γ = `.
(ii) It can be normalized in such a way that, for h ∈ H and u ∈ N ,

C(hu) = C(h)ρ(u), C(u) = ρ(u); Γ(hu) = Γ(h), Γ(u) = E`.

Then h 7→ Γ(h) is actually a projective representation of H/N , and the factor
sets associated to C and Γ, mutually inverse to the other, are actually for the
quotient group H/N .

E-6. Unitary representations of Lorentz groups and so on.
In [Wig, 1936], E. Wigner studied unitary representations of the inhomoge-

neous Lorentz group, starting from the point of view of quantum mechanics.
This group is the semidirect product group

P↑+ := N o L4, L4 = SO0(3, 1), N = R4,(3.4)

where N is the translation group acting on the Minkowski space M4 as

for y ∈ N : M4 3 x −→ x + y ∈ M4.

Naturally (cf. E-3) the representations considered are projective ones as he
stated at the end of 1. Origin and Characterization of the Problem as

We shall endeavor, in the ensuing sections, to determine all the
continuous unitary representations up to a factor of the inhomoge-
neous Lorentz group, i.e., all continuous systems of linear, unitary
operators satisfying (3a).5 · · · · · · · · · · · ·

The universal covering group of P↑+ is realized as the double cover P̃↑+ = NoS
with S = SL(2,C) as the universal covering group of L4. Wigner's theory to
construct irreducible unitary representations (=IURs) of P̃↑+ is the following,
which is a protocol of Lie group version of Theorem 3.1 for �nite groups :

(W-1) Take an element χ ∈ N̂ , the unitary dual of N , and its stationary
subgroup in S as S(χ) := {s ∈ S ; s(χ) = χ}.

5 The equation (3a) quoted here is the following:
For a Lorentz transformation L, there corresponds a unitary operator D(L), and for

two such transformations L1 and L2,

(3a) D(L1)D(L2) = ω D(L1L2),
where ω is a number of modulus 1 and can depend on L2 and L1.
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(W-2) Take an IUR π1 of S(χ). Then (χ ·π1)(x, s) := χ(x) π1(s) is an IUR
of N o S(χ).

(W-3) One obtains an IUR of N o S by inducing up as IndNoS
NoS(χ)(χ · π1).

For N = R4, its dual is N̂ = R4, and for χ ∈ N̂ there corresponds a unique
ξ = (ξj)1≤j≤4 ∈ R4 as χ(x) := exp

(
i〈x, ξ〉) with 〈x, ξ〉 =

∑
j xjξj. Stationary

subgroups S(χ) in the cases ξ 6= 0 are isomorphic, modulo the center {±E2} of
S, to

(1) the 3-dimensional rotation group SO(3),
(2) the motion group of Euclidean plane, or
(3) the low-dimensional Lorentz group L3 := S0(2, 1) ;

and (4) the stationary subgroup in the case ξ = 0 is L4 itself.
Note that the universal covering group of L3 is a covering of in�nitely many

times, since such one for the maximal compact subgroup SO(2) is R, and that the
double covering group is given by SL(2, R) with the restriction of Φ : SL(2, C) →
L4 in (2.13) as the covering map SL(2, R) → L3.

Determinations of spin or non-spin IURs of homogeneous Lorentz groups L3

and L4 in the case (3) and (4) are put aside in [loc. cit.], where S(χ) are actually
S3 = SL(2,R) or S4 = SL(2,C) respectively.

Thus the problems of determining all the IURs of these homogeneous Lorentz
groups were left open.

After the world war II, in the same year 1947, there appear three papers on
IURs of homogeneous Lorentz groups. The one [Bar, 1947] is by V. Bargmann,
in which he constructed all the IURs of S3 = SL(2,R) or all spin or non-spin
IURs of the Lorentz group L3, and studied their properties. In particular, the
continuous principal series, the continuous exceptional series, and also the holo-
morphic and the anti-holomorphic discrete series of IURs were discovered. From
Introduction of that paper, we quote

Plan of the investigation. We shall discuss both single- and
double-valued representations and hence deal with the corresponding
spinor groups S3 and S4 rather than with L3 and L4. · · · · · · · · · · · · · · ·

The other [GeNa, 1947] is by I.M. Gelfand and M.A. Naimark, in which all
the IURs of S4 = SL(2,C) (spin or non-spin of L4), were constructed, and in
particular the principal series and the supplementary series of IURs were found.
We quote from its Abstract (from the top till the 5th row)

V rabote nahad�ts� vse unitarnye neprivodimye predstavleni�

unimodul�rno� kompleksno� gruppy vtorogo por�tka, lokal�no

izomorfno� gruppe Lorenca.

Dokazyvaets�, qto vs�koe unitarnoe predstavrenie razlagaets�

na na�dennye neprivodimye.

(English Translation in [GeNa])
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In this paper all unitary irreducible representations of the uni-
modular complex group of second order are determined; This group
is locally isomorphic to the Lorentz group.

It is proved also that an arbitrary unitary representation can be
decomposed into these irreducible representations.

The last one [HC, 1947] is by Harish-Chandra, in which spin IURs and
non-spin IURs of Lorentz group L4 were studied principally by an in�nitesimal
method. Almost at the end of Introduction, he wrote

Further, as pointed out by Dirac (1945), it is possible to use ex-
pinors to describe the transformation properties of the wave function
of a spinning particle. In a theory based on these expinors it is
possible to make the charge density positive de�nite for particles of
integral spin or the energy density positive de�nite for particles of
half-integral spin, in contradistinction with the results of the existing
theory (see Pauli 1940). This is made possible by the circumstance
that in�nite unitary representations of the Lorentz group exist for
both integral and half-integral spins. · · · · · · · · · · · · · · · · · · · · · · · · · · ·

E-7. Projective representations of locally compact groups.
In 1958, G.W. Mackey begun to study unitary ray (or projective) represen-

tations [Mac], after �nishing his fundamental works on unitary representations
of locally compact groups, in particular on induced representations. Apart from
mathematical interest, another important reason why ray representations should
be studied comes from quantum electrodynamics. He laid the foundation of the
general theory of projective representations for locally compact groups by giving
several fundamental results, and gave some interesting examples. He also stud-
ied in particular multipliers, which correspond to factor sets in the case of �nite
groups.

4 Sources where projective representations oc-

cur (2)

E-8. Action of a group and related intertwining operators.
Suppose that a group S acts on a group G as its automorphisms, that is, for

σ ∈ S there is assigned an automorphism G 3 g 7→ σ(g) ∈ G of G satisfying
(στ)(g) = σ

(
τ(g)

)
(σ, τ ∈ S). Take a unitary representation π of G on a Hilbert

space H. Then S acts naturally on π as
(

σπ
)
(g) := π

(
σ−1(g)

)
. Denote by [π]

the equivalence class of π and put

S([π]) :=
{

σ ∈ S ;
[
σπ

]
= [π] or σπ ∼= π

}
.(4.1)

For σ ∈ S([π]), take an intertwining operator Jπ(σ) such that

Jπ(σ)−1π(g)Jπ(σ) =
(

σπ
)
(g) (g ∈ G).
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Then Jπ(σ) is determined modulo non-zero scalar multiples, and Jπ(τ)Jπ(σ) =
λτ,σ Jπ(τσ) (τ, σ ∈ S), λτ,σ ∈ C×, and so S([π]) 3 σ 7→ Jπ(σ) gives a projective
representation.

This situation is quite general, and here is one of natural sources where pro-
jective representations are born. For instance, we may assume that a group S
acts directly on representations of G, not necessarily on G itself. Or, replacing a
group algebra by an associative algebra, we may assume more generally a group
S acts on an algebra A. Taking a linear representation π of A, we can discuss
quite parallel as above.

From another point of view, at �rst, take a linear algebra B over C, say the
one generated by π(G) = {π(g); g ∈ G} or π(A), or else. Then consider the
group Jπ of all linear invertible operators J such that b 7→ JbJ−1 (b ∈ B) leaves
B invariant (thus giving an automorphism of B). Then Jπ has a property that
λJ ∈ J for any J ∈ Jπ and λ ∈ C×. Now, take a group S̃ inside Jπ and a
subgroup Z contained in S̃ ∩{λI ; λ ∈ C×}, and put S = S̃/Z. Then, naturally
S̃ is a covering group (or a central extension) of S as

1 −→ Z −→ S̃
Φ−→ S −→ 1 (exact).

Then any section Ψ : S → S̃ gives a projective representation of S.
The above mentioned two cases, linear representations of a group G or of an

algebra A, on which S acts, suggest how to �nd such a system.
For similar situations, we refer E-9 below. For more explicit examples, see

Section 3 below where the algebra A2k = M(2k,C) of all matrices of special
degree 2k and its several hidden symmetries are treated. This topic has very
intimate relations with the contents in the main body of this paper.

E-9. Construction of IRs of semidirect product groups.
For simplicity, let G be a �nite group and semidirect product of a normal

subgroup U and a subgroup S as G = U o S, where the action of s ∈ S on
u ∈ U is denoted by s(u). Take an IR ρ of U and consider its equivalence class
[ρ]. Take a stationary subgroup S([ρ]) of [ρ] in S, and put H := U o S([ρ]). For
s ∈ S([ρ]), we determine explicitly an intertwining operator Jρ(s) :

ρ
(
s(u)

)
= Jρ(s) ρ(u) Jρ(s)

−1 (u ∈ U).(4.2)

Then it is determined up to a non-zero scalar factor. Thus we have a projective
representation S([ρ]) 3 s 7→ Jρ(s). Let αs,t be its factor set given as

Jρ(s)Jρ(t) = αs,t Jρ(st)
(
s, t ∈ S([ρ])

)
.

By the result of Schur [Sch1], we know that, by going up to an appropriate
quotient of a representation group S([ρ])∼ of S([ρ]), denoted as

{e} −→ Z ′ −→ S([ρ])∼
ΦS−→ S([ρ]) −→ {e} (exact),
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Jρ can be linearized to a usual representation J̃ρ of S([ρ])∼. Here ΦS denotes the
canonical homomorphism. Put, for H̃ := U o S([ρ])∼ with s′(u) := s(u), s′ ∈
S([ρ])∼, s = ΦS(s′),

π0
(
(u, s′)

)
= ρ(u) · J̃ρ(s

′)
(
u ∈ U, s′ ∈ S([ρ])∼

)
,

then π0 = ρ · J̃ρ is an IR of H̃. Take an IR π1 of S([ρ])∼ and consider it as
a representation of H̃ through the homomorphism H̃ → S([ρ])∼ ∼= H̃/U , and
consider inner tensor product π := π0 ¡ π1 as an IR of H̃. Let the factor set of
π1, viewed as a spin representation of the base group S([ρ]), be βs,t , then that
of π is βs,t αs,t.

To get an IR of G, we should restrict ourselves to pick up π1 with the factor
set α −1

s,t , the inverse of αs,t. Then π is nothing but a linear representation of
H = U o S([ρ]). Then we obtain an IR Π(π0, π1) of G by inducing it up as

Π(π0, π1) := IndG
H π = IndG

H π0 ¡ π1.(4.3)

By applying the results of Cli�ord in E-5, in particular, Theorem 3.1, we
obtain the following theorem, and we call the method given here classical induced
representation method (of constructing all IRs) .

Theorem 4.1. Let G be a �nite semidirect product group as G = U o S.
Then, the induced representation Π(π0, π1) constructed above is irreducible, and
conversely any IR of G is equivalent to Π(π0, π1) for a certain (π0, π1).

Moreover two IRs Π(π0, π1) and Π(π′ 0, π′ 1) are mutually equivalent if and
only if the pairs (π0, π1) and (π′ 0, π′ 1) are mutually equivalent under conjuga-
tion of an element in G.

In the paper [II], we study, with Theorem 4.1 as a background, the cases of
covering groups (quotients of a representation group) G̃(m, 1, n) of the general-
ized symmetric group G(m, 1, n) = D(m,n)oSn, where D(m,n) = Z n

m is the n-
times direct product of the cyclic group Zm, and Sn is the n-th symmetric group,
with the action of σ ∈ Sn by permuting components of d = (t1, t2, . . . , tn) ∈ Z n

m.
The setting in these cases can be translated in the above general scheme by

taking G to G̃(m, 1, n), U to D̃(m,n) a certain covering group of D(m,n), and
S to Sn or to a double covering S̃n of Sn.

E-10. Projective representations of �nite groups.
For our present interest, spin representations of �nite groups, after a long

vacancy from the ages of Schur, in 1962, Morris begun with recapturing from
another point of view Schur's results on the spin theory for symmetric groups by
noting that it is a subgroup of Pin+(n) or of Pin−(n). Since then, many followers
of Morris and then Ho�mann, Humphreys, Kleshchev and Nazarov and so on are
working heavily on this interesting subject.
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5 Weil representations of symplectic groups

In this section, we explain about the famous Weil representations from the frame-
work of E-8 above. A.Weil treated in his important work [Weil, 1964] symplectic
groups over a locally compact abelian group, auto-dual in the sense of Pontrjagin,
but here we restrict ourselves to the case of the real �eld R.

5.1 Sp(2n, R) acts on Heisenberg group Hn

The (2n + 1)-dimensional Heisenberg group Hn or H(V ) is de�ned as a central
extension of 2n-dimensional real symplectic vector space (V, ω), where ω is a
non-degenerate skew symmetric bilinear form on V :

0 −→ Z = R −→ H(V ) −→ V −→ 0 (exact).

Here Heisenberg group H(V ) on (V, ω) is V ×R endowed with the group law

(v1, t1) · (v2, t2) =
(
v1 + v2 , t1 + t2 +

1

2
ω(v1, v2)

)
,(5.1)

where V = {v = (x, y) ; x, y ∈ Rn} = R2n, and for v = (x, y), v′ = (x′, y′),

ω(v, v′) = 〈x, y′〉 − 〈x′, y〉 = tv Qnv
′, Qn :=

(
0n En

−En 0n

)
,

where 〈x, y〉 :=
∑

1≤i≤n xiyi denotes the bilinear form on Rn ×Rn.
The group Sp(2n, R) acts on Hn as g · (v, t) := (gv, t)

(
(v, t) ∈ Hn, g ∈

Sp(2n, R)
)
, since Sp(2n, R) is nothing but the orthogonal group for the inde�nite

quadratic form Qn : tg Qng = Qn, and so ω(gv, gv′) = ω(v, v′). Thus we have
a special case of the general situation in E-8. A basis of the Lie algebra hn :=
Lie(Hn) is given in such a manner that

{ {
Z0, I1, I2, . . . , In ; J1, J2, . . . , Jn

}
, Z0 central,

[Ii, Ij] = 0, [Ji, Jj] = 0, [Ii, Jj] = δij Z0 .
(5.2)

An element h(x, y ; z) ∈ Hn is given as

h(x, y; z) := exp
(
x · I + y · J + zZ0) ,(5.3)

where I = (I1, . . . , In),J = (J1, . . . , Jn) and x · I :=
∑

1≤i≤n xiIi etc. We denote
h(x, y; z) simply by (x, y; z). The group Hn has one-dimensional center Z = R Z0.

It is known that Hn has a series of in�nite-dimensional unitary IRs determined
uniquely by their central characters. Let us review it shortly. De�ne subgroups
of Hn as

X := { (x, 0 ; 0) ; x ∈ Rn}, Y := { (0, y ; 0) ; y ∈ Rn},
Nn := { (x, 0 ; z) ; x ∈ Rn, z ∈ R }.
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Then Nn is abelian and normal in Hn, and Hn is a semidirect product as Hn
∼=

Nn o Y and the action of Y on Nn is given by

(0, y ; 0) (x, 0 ; z) (0, y ; 0)−1 = (x, 0 ; z − 〈x, y〉).
We can work in a similar framework as in E-9. The dual group N̂n consists of
characters ψξ,ζ : (x, 0 ; z) 7→ ψξ(x)ψζ(z), where ψξ(x) := ei tξx, ψζ(z) := eiζz,
for (ξ ; ζ) ∈ Rn × R. The action of (0, y ; 0) ∈ Y on ψξ,ζ ∈ N̂n is de�ned as
(x, 0 ; z) 7→ ψξ,ζ

(
(0, y ; 0)−1(x, 0 ; z) (0, y ; 0)

)
and is described by

(ξ ; ζ) −→ (ξ + ζy ; ζ).(5.4)

The orbits under this action of Y are
(1) for any ζ 6= 0, Oζ := {(ξ ; ζ); ξ ∈ Rn}, and the stationary subgroup of

(0 ; ζ) ∈ Oζ in Y is trivial ;
(2) for ζ = 0 and ξ ∈ Rn, Oξ;0 := {(ξ ; 0)} (one point set), and its stationary

subgroup in Y is Y itself.

Theorem 5.1. The IR πζ associated to (0 ; ζ) ∈ Oζ is realized as an induced
representation on the space L2(Y ) as πζ = IndHn

Nn
ψ0,ζ : for y ∈ Y ,





πζ

(
(x0, 0 ; 0)

)
f(y) = ψζ(−〈x0, y〉)f(y)

(
(x0, 0 ; 0) ∈ X

)
,

πζ

(
(0, y0 ; 0)

)
f(y) = f(y + y0)

(
(0, y0 ; 0) ∈ Y

)
,

πζ

(
(0, 0 ; z0)

)
= ψζ(z0) I

(
(0, 0 ; z0) ∈ Z

)
,

where I denotes the identity operator.

We explain how to construct πζ . Consider the space of continuous func-
tions ϕ on Hn which have the homogeneity with respect to Nn as ϕ(ξh) =
ψ(0,ζ)(ξ)ϕ(h) (ξ ∈ Nn, h ∈ Hn), and action of h0 ∈ Hn on ϕ is de�ned by right
translation as ϕ(hh0). By its homogeneity, ϕ is determined by its restriction
on Y ∼= Nn\Hn, which is denoted by ϕ′. The space of Schwartz functions ϕ′

is completed to get the Hilbert space H = L2(Y ) with respect to the measure
dν(y) := dy1dy2 · · · dyn, y = (y1, y2, · · · , yn) ∈ Y , where (0, y; 0) ∈ Y are de-
noted by y for simplicity. The action of h0 on ϕ′ is given by taking into account
the transformation of the measure dν as follows: for y ∈ Y , decompose yh0 as
yh0 = ξ′y′ (ξ′ ∈ Nn, y′ ∈ Y ) and denote y′ by yh0, then

(
πζ(h0)ϕ

′)(y) :=
(dν(yh0 )

dν(y)

)1/2

ψ(0,ζ)(ξ
′) ϕ′

(
yh0

)
= ψ(0,ζ)(ξ

′) ϕ′
(
yh0

)
.

For example, to get the formula for πζ

(
(x0, 0 ; 0)

)
, we calculate as

(0, y; 0) (x0, 0 ; 0) = (x0, y;−1
2
〈x0, y〉) = (x0, 0 ;−〈x0, y〉) (0, y; 0).

Any automorphism of Hn, which is trivial on the center Z, �xes the equiva-
lence class of any in�nite-dimensional IR πζ , ζ 6= 0, because the central char-
acter Z 3 z 7→ exp(iζz) determines its equivalence class. Since the action
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of S = Sp(2n, R) on Hn leaves the center Z elementwise-invariant, we have
S([πζ ]) = S. Then, according to the general scheme given in E-8, we obtain, for
any in�nite dimensional IR πζ of Hn , a projective representation s 7→ Jπζ

(s) of S

by (sπζ)(h) = Jπζ
(s)−1πζ(h)Jπζ

(s) or πζ

(
s(h)

)
= Jπζ

(s)πζ(h)Jπζ
(s)−1 (h ∈ Hn).

Remark 5.1. A matrix expression h′(x, y ; z) of Heisenberg group Hn is
given as follows: For x, y ∈ Rn, z ∈ R, let h′(x, y ; z) = exp X(x, y ; z) with

X(x, y ; z) =




0 0 0
y 0n 0
z tx 0


 , then h′(x, y ; z) =




1 0 0
y 1n 0

1
2
〈x, y〉+z tx 1


 .

5.2 Group of intertwining operators and Sp(2n, R)

We de�ne certain elements of G = Sp(2n, R). Let Symn (resp. SymGLn
) be the

set of symmetric matrices in M(n, R)
(
resp. in GL(n, R)

)
, and put

d(α) :=

(
α 0n

0n
tα−1

)
, b(β) :=

(
En β
0n En

)
, c(γ) :=

(
En 0n

γ En

)
,(5.5)

where α ∈ GL(n, R), and β, γ ∈ Symn. Denote by D, B and C the subgroups
of G consisting of d(α)'s, b(β)'s and c(γ)'s respectively.

Lemma 5.2. (i) An element g =
(
a b
c d

)
∈ G, with a, b, c, d ∈ M(n, C)

is uniquely decomposed as g = b(β) d(α) w b(β′) if c is regular, where α =
−tc−1, β = ac−1, β′ = c−1d and w := Qn .

(ii) G = Sp(2n, R) is generated by w and the subgroup B = {b(β) ; β ∈
Symn}.

(iii) There hold the relations




w2 = −E2n , b(β)b(β′) = b(β + β′) (β, β′ ∈ Symn),

d(α) = b(α) w b(α−1) w b(α) w (α ∈ SymGLn
),

d(α) b(β) d(α−1) = b(α β tα) (α ∈ GL(n,R), β ∈ Symn),

d(α) d(α′) = d(αα′), w d(α) w−1 = d(tα−1)
(
α, α′ ∈ GL(n, R)

)
.

The relations listed here determine the product rule of G completely, by an-
alytic continuation.

In fact, the assertions (i) and (iii) are proved by calculations. Then the
assertion (ii) follows from them by the fact that the subset SymGLn

generates
GL(n,R) as is easily seen for n = 2. For more detailed assertion than the last
paragraph in (iii) above, cf. Lemma 6 in [Weil, p.195].

Note moreover the following relations :

w b(β) w−1 = c(−β) for β ∈ Symn, and

b(β)c(γ) = c(γ′)d(α′)b(β′), β′ := α′−1β, γ′ := γα′−1,
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if α′ := En+βγ is regular for β, γ ∈ Symn.

Lemma 5.3. (i) A maximal compact subgroup K of Sp(2n, R) is iso-
morphic to the unitary group U(n), and a natural isomorphism ΨK is given as
follows: express an element of U(n) as U = u + iv with u, v ∈ M(n, R), then
u tu + v tv = En, u tv − v tu = 0n, and

U(n) 3 U = u + iv
ΨK−−−→

(
u −v
v u

)
∈ K ⊂ Sp(2n, R).

The element w ∈ K corresponds to iEn ∈ U(n) : ΨK(iEn) = w, and
ΨK(−En) = w2 = −E2n is the unique non-trivial central element of G.

(ii) A universal covering group of U(n) is given as

R
(
U(n)

)
:= R× SU(n) 3 (θ, h)

ΦU−−→ eiθ h ∈ U(n),

where ΦU denotes the canonical homomorphism. Let κ0 := (2π
n

, e−
2πi
n En) ∈

R
(
U(n)

)
, then the kernel of ΦU is Z := 〈κ0〉 = {κ q

0 = (2qπ
n

, e−
2qπi

n En) ; q ∈ Z}.
For any p ≥ 2, a p-times covering group Ũp(n) is given by R

(
U(n)

)/Zp, Zp =
〈κ p

0 〉, which has a section [0, 2π
n

p)× SU(n) ⊂ R
(
U(n)

)
.

Lemma 5.4. The group G = Sp(2n, R) has an Iwasawa decomposition
G = K × A×N , where

A =
{
a(t) ; a(t) = diag(et1 , . . . , etn , e−t1 , . . . , e−tn), t = (t1, t2, . . . , tn) ∈ Rn

}

and N is a maximal unipotent subgroup consisting of elements of the form

(
a b
0n

ta−1

)
, a ∈ GL(n, C), b ∈ M(n, C),

where a is unipotent upper triangular matrix. Then a p-times covering group
G̃p of G is given by G̃p = K̃p × A × N, K̃p ∼= Ũp(n), with the product rule
analytically extended from G = K × A×N .

We calculate, for any in�nite dimensional IR πζ of Hn , a projective represen-
tation s 7→ Jπζ

(s) of S = Sp(2n, R) by (sπζ)(h) = Jπζ
(s)−1πζ(h)Jπζ

(s) (h ∈
Hn). Then we obtain the following.

Theorem 5.5. For elements s = b(β), w and d(α) of Sp(2n, R) the inter-
twining operators Jπζ

(s) are given modulo scalar multiples of modulus 1 as

Jπζ

(
b(β)

)
ϕ(y) = ψζ(

1
2
〈βy, y〉)ϕ(y) (β ∈ Symn),

Jπζ
(w)ϕ(y) = Fζϕ(y) ,

Jπζ

(
d(α)

)
ϕ(y) = |det α|−1/2 ϕ(tα−1y)

(
α ∈ GL(n, R)

)
,
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where ϕ ∈ H := L2(Y ), y ∈ Y , and Fζ is a Fourier transform on H given as

(Fζϕ
)
(x) :=

∫

Y

ϕ(y)ψζ(〈x, y〉) dµζ(y) (x ∈ Y ).(5.6)

Here the measure µζ on Y = Rn is chosen in such a way that Fζ de�nes a
unitary operator on H.

Proof. (1) To prove the formula for Jπζ

(
b(β)

)
, put π′ := b(β)(πζ) or

π′(h) := πζ

(
b(β)−1(h)

)
. Since b(β)−1(x0, y0; z0) = (x0 − βy0, y0; z0), we have

for y ∈ Y ,




π′
(
(x0, 0 ; 0)

)
ϕ(y) = ψζ(−〈x0, y〉) ϕ(y),

π′
(
(0, y0; 0)

)
ϕ(y) = ψζ(〈βy0, y + 1

2
y0〉) ϕ(y + y0),

π′
(
(0, 0 ; z0)

)
ϕ(y) = ψζ(z0) ϕ(y),

which come from the following calculations respectively:

• (0, y; 0) · b(β)−1(x0, 0 ; 0) = (0, y; 0) · (x0, 0 ; 0) = (x0, y ;−1
2
〈x0, y〉) =

= (x0, 0 ; −〈x0, y〉)(0, y, 0) ;

• (0, y; 0) · b(β)−1(0, y0; 0) = (0, y; 0) · (−βy0, y0; 0) =

= (−βy0, y + y0,
1
2
〈βy0, y〉) = (−βy0, 0 ; 〈βy0, y + 1

2
y0〉)(0, y + y0; 0).

Then, noting that β is symmetric, we obtain an intertwining operator Jπζ

(
b(β)

)
between πζ and π′ = b(β)πζ as

Jπζ

(
b(β)

)
ϕ(y) := ψζ(

1
2
〈βy, y〉)ϕ(y) (y ∈ Y ).(5.7)

In fact, for A := Jπζ

(
b(β)

)
, we solve the equations π′(h) = A−1 πζ(h) A for

h = (x0, 0 ; 0), (0, y0; 0), which are generators of Hn. In commutative diagrams,
this is displayed for h = (x0, 0 ; 0) and h = (0, y0, 0) respectively as

ϕ(y)
π′((x0,0 ;0))−−−−−−→ ψζ(−〈x0, y〉) ϕ(y)

A
y ª

x A−1

ϕ′(y) −−−−−−−→
πζ((x0,0 ;0))

ψζ(−〈x0, y〉) ϕ′(y)

ϕ(x)
π′((0,y0;0))−−−−−−→ ψζ(〈βy0, y+ 1

2
y0〉)ϕ(y+y0)

A
y ª

x A−1

ϕ′(y) −−−−−−→
πζ((0,y0;0))

ϕ′(y + y0)

Here ϕ′(y) := (Aϕ)(y) = ψζ(
1
2
〈βy, y〉)ϕ(y).
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To show the second diagram, the calculation necessary is

ψζ(
1
2
〈β(y + y0), y + y0〉)

/
ψζ(

1
2
〈βy, y〉) = ψζ

(〈βy0, y + 1
2
y0〉

)
.

(2) To get the formula for Jπζ
(w), note that w−1(x0, y0; z0) = (−y0, x0; z0),

and put π′ = wπζ or π′(h) := πζ

(
w−1(h)

)
. Then,

{
π′

(
(x0, 0 ; 0)

)
ϕ(y) = ϕ(y + x0) (x0 ∈ X),

π′
(
(0, y0; 0)

)
ϕ(y) = ψζ(〈y0, y〉)ϕ(y) (y0 ∈ Y ).

Then an intertwining operator A = Jπζ
(w) is obtained from π′(h) = A−1πζ(h)A

(h ∈ Hn) as Jπζ
(w) := λwFζ with a scalar λw, |λw| = 1.

(3) For d(α), put π′ := d(α)πζ or π′(h) := πζ

(
d(α)−1(h)

)
(h ∈ Hn). Since

d(α)−1(x0, y0; z0) = (α−1x0,
tαy0; z0), we have

{
π′

(
(x0, 0 ; 0)

)
ϕ(y) = ψζ(−〈α−1x0, y〉) ϕ(y) (x0 ∈ X),

π′
(
(0, y0; 0)

)
ϕ(y) = ϕ(y + tαy0) (y0 ∈ Y ).

As an intertwining operator Jπζ

(
d(α)

)
between πζ and π′, we have

Jπζ

(
d(α)

)
ϕ(y) := να |det α|−1/2 ϕ(tα−1y) (y ∈ Y ),

with να ∈ C, |να| = 1. This completes the proof of the theorem. 2

Remark 5.2. Since ψζ(t) = ψ1(ζt) with ψ1(t) = eit (t ∈ R), the selfdual
measure µζ for Fourier transform Fζ is dµζ(y) = (|ζ|/2π)n/2dy1dy2 · · · dyn, y =
(y1, y2, . . . , yn) ∈ Y . The relation Fζ and the standard Fourier transform F1 is
Fζ = M|ζ|1/2 · F ε

1 ·M −1
|ζ|1/2 , where ε = sgn(ζ) and Maϕ(y) = an/2ϕ(ay) (y ∈ Y )

for a > 0.

5.3 Obtained projective representations of Sp(2n, R)

Now we consider that the operators Jπζ
(·) are acting on the Hilbert space L2(W )

of the abelian group W = Rn ∼= Y . We should check if the projective representa-
tion Jπζ

is really projective. If so, among p-times covering groups for 2 ≤ p ≤ ∞
of Sp(2n,R), which one is enough to get a linearization of Jπζ

?

Denote by Φ2 the canonical homomorphism G̃2 → G. The subgroup B of
G = Sp(2nR) is simply-connected and is imbedded into the double covering
G̃2 = Mp(2n, R) = K̃2 × A×N as a subgroup B′, then Φ −1

2 (B) = {e, z′} × B′

with the non-trivial central element z′ ∈ K̃2 such that Φ2(z
′) = e. We denote

by b′(β) ∈ B′ the preimage of b(β) ∈ B. According to Lemma 5.3, we have
ΨK(iEn) = w and det(iEn) = in, and then take a preimage w′ = (θ, hw) ∈
R

(
U(n)

)
of iEn ∈ U(n) under ΦU in the section

[
0, 2π

n
·2) × SU(n) ∼= K̃2 with
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the smallest θ. Then (w′)8 = e′, but (w′)2 and (w′)4 depend on the parity of n
modulo 8, and we list up them in Table 5.1 below. Remark that

R
(
U(n)

)
=R×SU(n)

ΦU−→ U(n)
ΨK−−→∼= K ⊂ Sp(2n, R)

w′ = (θ, hw) 7−→ eiθhw = iEn 7−→ w

Table 5.1. List of w′, (w′)2, (w′)4, depending on n modulo 8.

Put hn := e
4πi
n En ∈ SU(n), then κ 2

0 = (4π
n

, h−1
n ).

n 4k 8k + 1 8k + 2 8k + 3 8k + 5 8k + 6 8k + 7
w′ (0, iEn) ( π

2n , h k
n ) (π

n , h k
n ) (3π

2n , h k
n ) (5π

2n , h k
n ) (3π

n , h k
n ) (7π

2n , h k
n )

(w′)2 (0,−En) (π
n , h 2k

n ) (2π
n , h 2k

n ) (3π
n , h 2k

n ) (π
n , h2k+1

n ) (2π
n , h2k+1

n ) (3π
n , h2k+1

n )
(w′)4 e′ κ0 e′ κ0 κ0 e′ κ0

The group G̃2 is generated by B′ and w′, since B and w generate G. Put D′ :=
Φ −1

2 (D), and choose a preimage d′(α) ∈ D′ of d(α) ∈ D, for α ∈ SymGLn
, accord-

ing as the 2nd equality in Lemma 5.2 (iii), or d(α) = b(α) w b(α−1) w−1b(α) w−1,
in such a way that

d′(α) := b′(α) w′ b′(α−1) w′ −1
b′(α) w′ −1 (

α ∈ SymGLn

)
.(5.8)

Then D′ is generated by the set of d′(α), α ∈ SymGLn
.

The result on the present construction of (possibly) spin representations is the
following. We give the symbol Jζ(·) to a linearization to G̃2 of Jπζ

(·), and denote
by m+(α)

(
resp. m−(α)

)
the number of positive (resp. negative) eigenvalues of

α ∈ SymGLn
.

Theorem 5.6. Let ζ ∈ R, 6= 0, be �xed. Put for ϕ ∈ H,

Jζ

(
b′(β)

)
ϕ(x) := ψζ(

1
2
〈βx, x〉)ϕ(x) (β ∈ Symn),

Jζ(w
′)ϕ(x) := λ(w)Fζϕ(x) , λ(w) = exp

(nπi

4
sgn(ζ)

)
,

Then they determine a unique representation Jζ of Mp(n, R), for which

Jζ

(
d′(α)

)
ϕ(x) = ν(α) |det α|−1/2 ϕ(tα−1x) (α ∈ SymGLn

),(5.9)

with ν(α) = exp
(
−πi

2
m−(α) sgn(ζ)

)
, and ν(α)2 = sgn(det α).

The representation Jζ is double-valued seeing from the level of Sp(2n, R),
and so a spin one. The formulas for Jζ should be essentially well-known but we
cannot �nd an appropriate reference. The direct origin of the appearance of 8th
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root eπi/4 of 1 is the following numerical integral : for b > 0 and a ∈ R×, with a
positive constant C[a, b] > 0,

∫ ∞

−∞

(∫ ∞

−∞
e−b(x−y)2eiay2

dy
)
dx = C[a, b] · exp

(πi

4
sgn(a)

)
.(5.10)

Proof. Put b = 1, then
∫∞
−∞

(∫∞
−∞ e−(x−y)2eiay2

dy
)
dx =

∫∞
−∞

(∫∞
−∞ e−(1−ia)(y− 1

1−ia
x)2dy · e ia

1−ia
x2

)
dx

= c(a) · I(a)I(a−1) with c(a) > 0, I(a) :=
∫∞
−∞ e−(1−ia)y2

dy.

On the other hand, I(a)2 = π
1−ia

, and

I(a)I(a−1) = c′(a) · exp
(

πi
4

sgn(a)
)

with c′(a) > 0. 2

Note that the factor ν(α) on the subset SymGLn
⊂ GL(n, R) is not continu-

ous but piecewise constant, whereas ν(α)2 = sgn(det α) is continuous. It might
be denoted as ν(α) |det α|−1/2 =

√
det α |det α|−1, but with serious faults of the

ambiguity
√

1 = ±1,
√−1 = ±i, and of the disappearance of the e�ect of sgn(ζ).

Corollary 1. As a representation of the double covering D′ of D ∼=
GL(n,R), the formula (5.9) for the operators Jζ

(
d′(α)

)
(α ∈ SymGLn

) de-
�nes a double-valued representation of GL(n, R). In another point of view, it
de�nes a double covering group of GL(n,R) (but not a continuous one).

Sketch of a proof of the theorem. A proof of the theorem is done by
checking relations among the operators Jπζ

(·) corresponding to the product rule
in Lemma 5.2 (iii). Since we cannot calculate completely the factor set r(g1, g2)
for Jπζ

(g1)Jπζ
(g2) = r(g1, g2)Jπζ

(g1g2) (g1, g2 ∈ G), we are forced to proceed
as follows. Choose appropriately scalar factors λ(β), λ(w) and ν(α) of modu-
lus 1 and then check if Jζ

(
b′(β)

)
:= λ(β)Jπζ

(
b(β)

)
, Jζ(w

′) := λ(w)Jπζ
(w) and

Jζ

(
d′(α)

)
:= ν(α)Jπζ

(
d(α)

)
actually give a linear representation of the double

covering G̃2. At �rst, since the group B′ ∼= B is simply-connected, we may and
do put λ(β) ≡ 1.

Then, we should get a relation between λ(w) and ν(α) from (5.8). We cal-
culate the product of operators corresponding to each side of b′(−α)d′(α) w′ =
w′ b′(α−1) w′ −1b′(α) : for any ϕ in the Schwartz space S(W ) on W , and x ∈ W ,

Jπζ

(
b(−α)

)
ν(α)Jπζ

(
d(α)

)
λ(w)Fζϕ(x) = FζJπζ

(
b(α−1)

)F −1
ζ Jπζ

(
b(α)

)
ϕ(x).

Take an a ∈ GL(n, R) such that α′ := taα a = diag(ε1, ε2, . . . , εn), εj = ±1.
Then | det a| = |det α|−1/2. Put x = 0 ∈ W . Then the left hand side is equal to

left = ν(α)λ(w) |det α|−1/2

∫
ϕ(y) dµζ(y).

The right hand side is written as

right =

∫∫
ϕ(ξ) ψζ(

1
2
〈αξ, ξ〉) ψζ(−〈ξ, y〉) ψζ(

1
2
〈α−1y, y〉) dµζ(ξ) dµζ(y),
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and put ξ = aξ′, y = ta−1y′, then

right =

∫∫
ϕ(aξ′) ψζ(

1
2
〈α′ξ′, ξ′〉) ψζ(−〈ξ′, y′〉) ψζ(

1
2
〈α′ −1

y′, y′〉) dµζ(ξ
′) dµζ(y

′),

where α′ −1 = α′ and

ψζ(
1
2
〈α′ξ′, ξ′〉) ψζ(−〈ξ′, y′〉) ψζ(

1
2
〈α′ −1y′, y′〉) =

∏
1≤j≤n

exp
(
i 1

2
ζεj(ξ

′
j − εjy

′
j)

2
)
.

Now, as a function ϕ, we take ϕ(aξ′) =
∏

1≤j≤n e−ξ′j
2

, then
∫

ϕ(y) dµζ(y) > 0
for the left hand side, and we apply the formula (5.10) for each j-th integral in the
right hand side. Comparing argument parts of both hand sides, modulo positive
constants, we obtain

ν(α)λ(w) =
∏

1≤j≤n

exp
(πi

4
εj sgn(ζ)

)
= exp

(πi

4

(
m+(α)−m−(α)

)
sgn(ζ)

)

= exp
(nπi

4
sgn(ζ)

)
· exp

(
− πi

2
m−(α) sgn(ζ)

)
.

Thus our choice of λ(w) and ν(α) in the theorem is very natural.
On the other hand, since D′ is generated by d′(α)

(
α ∈ SymGLn

)
, the

operators Jζ

(
d′(α)

)
generate a double-valued representation of D′. Therefore

Jζ(b
′)

(
b′ ∈ Φ −1

2 (B)
)
, Jζ(w

′), Jζ(d
′) (d′ ∈ D′) and Jζ(c

′) := Jζ(w
′)Jζ(b

′)Jζ(w
′)−1

with b′ = w′ −1c′w′ (c′ ∈ Φ −1
2 (C)

)
generate a double-valued representation of G,

not more than triple-valued.
This is the end of the sketch of the proof. 2

For the choice of a preimage d′(α) ∈ D′ for d(α) ∈ D
(
α ∈ SymGLn

)
, we

remark the following. Let α, α′ ∈ SymGLn
and assume that αα′ ∈ SymGLn

.
To compute the exponent X for d′(α)d′(α′) = z′Xd′(αα′), we can utilize the
faithful realization Jζ(d

′) of D′ as follows. Since α and α′ commute with each
other, they can be diagonalized simultaneously by a u ∈ O(n) as tuαu =
diag(a1, a2, . . . , an), tuα′u = diag(a′1, a

′
2, . . . , a

′
n), and so

tu(αα′)u = diag(a1a
′
1, a2a

′
2, . . . , ana′n).

Then we get

m−(α) = ]{ j ; aj < 0}, m−(α′) = ]{ j ; a′j < 0}, m−(αα′) = ]{ j ; aja
′
j < 0},

∴ m−(α) + m−(α′) = m−(αα′) + 2 ]{ j ; aj < 0, a′j < 0},
∴ ν(α) ν(α′) = ν(αα′) · (−1)X , X = ]{ j ; aj < 0, a′j < 0}.
Corollary 2. Let α, α′ ∈ SymGLn

. If the product αα′ is again symmetric,
then, with the exponent X = ]{ j ; aj < 0, a′j < 0} just above, we have

d′(α)d′(α′) = z′Xd′(αα′).
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Usually, to study Weil type representations, one appeals to the results of Weil
in [Wei1], in particular, Corollaires 1 and 2, p.162, of Théorème 2, as is done in
[Sait] and [Yos]. There the formulas for Fourier transform of so-called characters
of the second degree are given. Its very special case is the formula (5.10) above.

6 Hidden symmetries in the algebra M(2k,C)

The full matrix algebra An := M(n, C) is special at the point that any auto-
morphism is inner, that is, Aut(An) = Int(An). For the degree n = 2k, k ≥ 1,
A2k = M(2k,C) is again more special at the point that several �nite groups
act naturally on it, and it gives especially Schur's Hauptdarstellung of S2k and
S2k+1. We explain these things in this section, which have intimate relations
with the main body of this paper. For g ∈ GL(n,C), denote by J(g) the inner
automorphism x 7→ gxg−1 (x ∈ An) of An.

6.1 Hidden symmetries inside GL(2, C) and M(2, C)

Put as in (1.6) and (2.6),

a = σ1 =

(
0 1
1 0

)
, b = σ2 =

(
0 −i
i 0

)
, c = σ3 =

(
1 0
0 −1

)
,(6.1)

and ε = diag(1, 1) the identity matrix. Then σ1σ2 = iσ3 and the set

{σ ε1
1 σ ε2

2 ; εj = 0, 1 (j =1, 2)} (resp. {ε, σ1, σ2, σ3})

forms a linear basis of the full matrix algebra A2 = M(2,C). When we take
Ω := {σ1, σ2, σ3} as a set of generators, the algebra A2 is presented by the
following set of fundamental relations:





σ 2
j = ε (1 ≤ j ≤ 3) ;

σjσk = −σkσj (j 6= k, 1 ≤ j, k ≤ 3);
σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2 .

(6.2)

6.1.1. Group action of U = Z 2
2 as ` basis sign changes' :

The group generated by {σ1, σ2} is of order 8 and is given as an abstract
group Ũ as

set of generators : {u′1, u′2, z′ },

set of fundamental
relations :





z′ 2 = e′, z′u′j = u′jz
′ (j = 1, 2),

u′j
2 = e′ (j = 1, 2) ,

u′j u′k = z′u′k u′j (j 6= k) ,

where e′ denotes the identity element. On the other hand, let U = 〈u1〉 × 〈u2〉,
with u 2

1 = u 2
2 = e, be the direct product of Z2 with itself, where e = the identity
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element. Then the `universal' covering group or the representation group of U
is realized as the double covering group Ũ with the canonical homomorphism as
u′j 7→ uj (j = 1, 2), z′ 7→ e. Here we show that U acts on A2 naturally, and it

produces the double covering group Ũ naturally through intertwining operators
along with the general scheme in E-8.

Put u3 = u1u2 = u2u1, then U = {e, u1, u2, u3}. For ui ∈ U , put

ui(σi) = σi, ui(σj) = −σj (j 6= i),(6.3)

then this ` basis sign change' de�nes actually an action of U on A2. Put ρ0(ui) :=
σi (i = 1, 2). Then the inner automorphism J

(
ρ0(ui)

)
by ρ0(ui) is just the above

action of ui for i = 1, 2. By this property, the element ρ0(ui) is uniquely deter-
mined modulo non-zero scalar multiples. The map U 3 u 7→ ρ0(u), with ρ0(e) =
ε, gives a double-valued representation of U , since ρ0(u1)ρ0(u2) = −ρ0(u2)ρ0(u1).

By this, we can �nd a faithful linear representation ρ′0 of Ũ by putting

ρ′0
(
u′1

)
:= σ1 , ρ′0

(
u′2

)
:= σ2 .(6.4)

6.1.2. Action of S3 as ` basis permutations' :
Let S3 = 〈s1, s2〉 be the symmetric group of degree 3 with the standard

generators s1 = (1 2), s2 = (2 3). Note that the Schur multiplier of S3 is trivial
and the representation group of S3 is nothing but itself. As an abstract group,
S3 is presented by the set of generators {s1, s2} and the set of fundamental
relations as

S3 = 〈s1, s2〉, s 2
1 = s 2

2 = e, (s1s2)
3 = e.(6.5)

Actions on A2 of sj (j = 1, 2) are given by Tj as ` basis permutations' as
{

T1 : (σ1, σ2, σ3) 7→ (−σ2,−σ1,−σ3),

T2 : (σ1, σ2, σ3) 7→ (−σ1,−σ3,−σ2).
(6.6)

To prove that Tj gives an automorphism of A2, it is su�cient to verify the set of
fundamental relations (6.2) for TjΩ = {σ′1, σ′2, σ′3}, instead of Ω.

Moreover the correspondence sj 7→ Tj de�nes a linear representation of S3.
To con�rm this, we should verify the fundamental relations (6.5): in fact, T 2

1 =

T 2
2 = I (the identity map on A2), and

(
T1T2

)3
= I.

Now look for elements τj ∈ A2 (j = 1, 2) which realize Tj as inner auto-
morphisms: Ti = J(τj). We omit the calculations and give directly the answer
as

τ1 =
1√
2

(
a− b

)
, τ2 =

1√
2

(
b− c

)
.(6.7)

Moreover we get τ 2
1 = τ 2

2 = ε, (τ1τ2)
3 = ε, and see that the correspondence

sj 7→ τj (j = 1, 2) gives a linear representation π0 of S3 of dimension 2. Put
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S̃3 := 〈τ1, τ2〉, then S̃3
∼= S3.

6.1.3. Semidirect product group Ũ oS3
∼= Ũ o S̃3 :

Unifying the above two groups acting onA2, we get an action of the semidirect
product group Ũ o S̃3 on the algebra. Since Ũ = {±ε,±σ1,±σ2,±iσ3}, the
action of generators τ1 and τ2 of S̃3 on Ũ is given by T1 and T2 respectively:

τj(u
′) = τju

′τ −1
j := Tju

′ (
j = 1, 2 ; u′ ∈ Ũ

)
.(6.8)

Theorem 6.1. The group U = Z 2
2 acts on the algebra A2 = M(2,C) as

` basis sign changes' as in (6.3). It induces through inner automorphisms of A2

an irreducible projective representation ρ0 of U , unique up to equivalence, which
comes from a faithful linear representation ρ′0 in (6.4) of the universal covering

group Ũ . The character of ρ′0 is given as tr
(
ρ′0(±ε)

)
= ±2, tr

(
ρ′0(u

′)
)

= 0
otherwise.

The group S3 acts on A2 as ` basis permutations' as in (6.6). It gives
a faithful, irreducible linear representation π0 of S3 by (6.7), unique up to
equivalence.

These two groups Ũ and S3 produces a semidirect product group Ũ oS3 in
GL(2,C) according to (6.8).

6.2 Hidden symmetries in A2k = M(2k, C), k ≥ 2

6.2.1. Action of Sk as ` basis factor permutations' :
Let a, b, c, ε be as above, and let Ωk be the set of elements of A2k given as

x = x1 ⊗ x2 ⊗ · · · ⊗ xk , xp ∈ Ω1 := {a, b, c, ε} (1 ≤ p ≤ k).

Then Ωk gives a linear basis of the algebra A2k . We can de�ne a natural action
of Sk on A2k by permuting the factors xp : for σ ∈ Sk ,

σ(x) := xσ−1(1) ⊗ xσ−1(2) ⊗ · · · ⊗ xσ−1(k).

For the convenience of calculations, denote this action by T (σ), then T (σ1)T (σ2) =
T (σ1σ2). Since T (σ) can be realized as an inner automorphism J(gσ) by a
gσ ∈ GL(2k,C), we will determine gσ for the transposition σ = s1 = (1 2).
The calculation can be pursued inside the case k = 2. In that case, put g2 := gs1 ,
then

g2 (x⊗ y) = (y ⊗ x) g2

(
x, y ∈ Ω1

)
.(6.9)

Under this equation, g2 is determined uniquely modulo scalar multiples. An
answer, satisfying g 2

2 = ε⊗ ε, is given by

g2 :=
1
2

(
ε⊗ ε + a⊗ a + b⊗ b + c⊗ c

) ∈ A22 ,(6.10)
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which is expressed by a 2× 2 matrix as

g2 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 under the rule x⊗ y :=

(
x11 y x12 y
x21 y x22 y

)
,(6.11)

for x = (xij) and y inA2. This answer can be con�rmed by an explicit veri�cation
of (6.9).

Coming back to the general case of k ≥ 2, we put




υ1 := g2 ⊗ ε⊗ · · · ⊗ ε = g2 ⊗
(
ε⊗(k−2)

)
,

υ2 := ε⊗ g2 ⊗ ε⊗ · · · ⊗ ε = ε⊗ g2 ⊗
(
ε⊗(k−3)

)
,

· · · · · · · · ·
· · · · · · · · ·
υk−1 := ε⊗ · · · ⊗ ε⊗ g2 =

(
ε⊗(k−2)

)⊗ g2,

(6.12)

where ε⊗q denotes q-times tensor product of ε. Then υi ∈ GL(2k,C) realize
the action T (si) : x 7→ si(x), as a `basis factor permutation', for the simple
re�ection si = (i i+1) as si(x) = υi x υ −1

i .
From the general scheme in E-8, the correspondence si 7→ T (si) (1 ≤ i ≤

k − 1) gives a (possibly) projective representation si 7→ vi of Sk. Let us check if
this is really projective or multiple-valued, or is just a linear representation after
certain adjustment of scalar multiples.

Theorem 6.2. (i) There hold the following identities for `basis factor
transpositions' : with e = E2k the identity matrix in A2k ,





υ 2
i = e (1 ≤ i ≤ k − 1),

(υiυi+1)
3 = e (1 ≤ i ≤ k − 2),

υiυj = υjυi (|i− j| ≥ 2).

(ii) The correspondence si 7→ υi (1 ≤ i ≤ k − 1) de�nes a linear represen-
tation π(k) of Sk of dimension 2k.

(iii) The trace of π(k) is given as follows: For a σ ∈ Sk, take a decomposi-
tion into disjoint cycles, and let `1, `2, . . . , `s ≥ 2 be their lengths. Then

tr
(
π(k)(g)

)
= 2k−∑1≤j≤s(`j−1).(6.13)

Proof. The assertion (ii) follows from (i), since the relations listed are just
the fundamental relations for the set of simple re�ections in Sk.

The relation υ 2
i = e in (i) is proved by an easy calculation. For (υiυi+1)

3 = e,
we work in the case k = 3, i = 1, then

4 v1v2 = 4(g2 ⊗ ε)(ε⊗ g2) = X + iY with

X = a⊗ ε⊗ a + ε⊗ a⊗ a + a⊗ a⊗ ε + b⊗ ε⊗ b + ε⊗ b⊗ b + b⊗ b⊗ ε +
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+ c⊗ ε⊗ c + ε⊗ c⊗ c + c⊗ c⊗ ε + ε⊗ ε⊗ ε ;

Y = −a⊗ b⊗ c− b⊗ c⊗ a− c⊗ a⊗ b + a⊗ c⊗ b + b⊗ a⊗ c + c⊗ b⊗ a ;

∴ (X + iY )2 = X2 − Y 2 + i(XY + Y X) with

X2 = 8 ε⊗ ε⊗ ε + 2X, Y 2 = 8 ε⊗ ε⊗ ε− 2X, XY = Y X = −2Y ;

∴ (υ1υ2)
2 = 1

4
(X − iY ), υ1υ2 = 1

4
(X + iY ),

∴ (υ1υ2)
3 = 1

16
(X2 + Y 2) = ε⊗ ε⊗ ε.

The last relation in (i) is evidently true.
The assertion (iii) is proved by explicit calculations. The point is that tr(a) =

tr(b) = tr(c) = 0. We omit the details. 2

Remark 6.1. The representation π(k) of Sk is reducible and the �rst step
to its irreducible decomposition is given as follows: Let k := (k0, k1, k2, k3), k0 +
k1 + k2 + k3 = k, be a decomposition of k, and consider an element

x[k] := (ε⊗k0)⊗ (a⊗k1)⊗ (b⊗k3)⊗ (c⊗k3) ∈ Ωk

and its Sk-orbit Ω[k] ⊂ Ωk. Then, on the linear span of Ω[k], π(k) induces
a representation equivalent to the induced representation IndSk

S[k]1S[k], where
S[k] := Sk0 × Sk1 × Sk2 × Sk3 and 1S[k] denotes its trivial representation.
Each of this induced representation contains exactly once the trivial representa-
tion 1Sk

of Sk.

6.2.2. `Generator permutations' as actions of S2k, S2k+1 and A2k+1.

The contents of this and the next terms are inspired by [Sch3, Abschnitt VI],
and have intimate relations with Part II in [II], in particular with ��5 and 8
loc. cit.

The algebraA2k = M(2k,C) has a very special structure with which it admits
a `standard' action of S2k and also of S2k+1. Put Y1, Y2, . . . , Y2k+1 ∈ GL(2k,C) ⊂
A2k as

Y1 = a⊗ ε⊗(k−1) (k-times tensor product),
Y2 = b⊗ ε⊗(k−1),

Y3 = c⊗ a⊗ ε⊗(k−2),

Y4 = c⊗ b⊗ ε⊗(k−2),

· · · · · · · · ·
· · · · · · · · ·

Y2k−1 = c⊗(k−1) ⊗ a ,

Y2k = c⊗(k−1) ⊗ b ,

Y2k+1 = c⊗(k−1) ⊗ c .

Then they have the following properties.
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Lemma 6.3. (i) The set {Y1, Y2, . . . , Y2k} generates A2k , and there hold





Y 2
p = E (p ∈ I2k+1),

YpYq = −YqYp (p 6= q, p, q ∈ I2k+1),

Y1Y2 · · ·Y2k+1 = ik E
(
i =

√−1
)
,

(6.14)

where E := E2k is the identity matrix in A2k , and In := {1, 2, . . . , n}.
(ii) Any non-trivial monomial product Yj1Yj2 · · ·Yjp , 1 ≤ j1 < j2 < . . . <

jp ≤ 2k, has trace 0. Such a monomial product containing Y2k+1 has non-zero
trace only when it is actually equal to Y1Y2 · · ·Y2kY2k+1. Or

tr
(
Yj1Yj2 · · ·YjpY2k+1

)
= 0 for 1 ≤ j1 < j2 < . . . < jp ≤ 2k,

whenever one of Yj, j ≤ 2k, is absent.
(iii) The set B2k :=

{
Y a1

1 Y a2
2 · · · Y a2k

2k ; aj = 0, 1 (j ∈ I2k)
}
gives a linear

basis of the algebra A2k .

Proof. We prove here only (iii). Consider a linear relation
∑

ai=0,1 (j∈I2k)

λa1,...,a2k
Y a1

1 Y a2
2 · · · Y a2k

2k = O.(6.15)

Multiply Y a1
1 Y a2

2 · · · Y a2k
2k from the left of this equation, and then take trace,

then by (i) � (ii) we have

λa1,...,a2k
tr

((
Y a1

1 Y a2
2 · · · Y a2k

2k

)2
)

= λa1,...,a2k
· 2k = 0,

whence λa1,...,a2k
= 0. 2

The set Y2k := {Y1, . . . , Y2k} generates a group G2k of order 22k+1 given as

G2k :=
{± Y a1

1 Y a2
2 · · · Y a2k

2k ; aj = 0, 1 (j ∈ I2k)
}
.(6.16)

De�ne an abstract group G ′2k by giving a set of generators and a set of funda-
mental relations as follows:

set of generators:
{
z, η1, . . . , η2k

}
,

set of fundamental relations:




z2 = e, zηj = ηjz (j ∈ I2k) (z is a central element) ,

η 2
j = e (j ∈ I2k),

ηiηj = z ηjηi (i, j ∈ I2k, i 6= j).

(6.17)

Theorem 6.4. (i) The groups G ′2k and G2k are mutually isomorphic under
the correspondence z 7→ −E, ηj 7→ Yj (j ∈ I2k). Moreover this correspon-
dence gives a faithful linear representation π2k of the group G ′2k of dimension
2k.
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(ii) The algebra A2k is a quotient of the group algebra C[G ′2k] of G ′2k as its
homomorphic image, where z is mapped to −E.

We see from the set of fundamental relations (6.17) that the symmetric group
S2k acts on the group G ′2k naturally in two ways : for σ ∈ S2k,

σ(ηj) := ησ(j) (j ∈ I2k);(6.18)

and also, with the factor relative to sgn(σ),

σ(ηj) := z(1−sgn(σ))/2 · ησ(j) (j ∈ I2k).(6.19)

In fact, the transform ηj 7→ σ(ηj), z 7→ z, preserves (6.17). Then, through the
representation π2k these actions induce an action of the algebra A2k respectively
given by Yj 7→ Yσ(j), and Yj 7→ sgn(σ)Yσ(j), for j ∈ I2k . We call them generator
permutations. Note that this is a special case of the general situation in E-8.

In connection to the contents in the later part of this paper, we call these
actions as `actions in CASE II ' and denote them respectively as σII(Yj) := Yσ(j),
and σII−(Yj) := sgn(σ)Yσ(j), for j ∈ I2k.

Moreover we de�ne another action, called CASE I, as follows. Put

Y ′
j = (−1)j−1Yj (j ∈ I2k+1).

Then, replace the role of Yj's by Y ′
j 's, then we get similarly as above an action

of S2k on A2k . Thus we have three di�erent actions on A2k listed below: for
j ∈ I2k,





σI(Y ′
j ) := sgn(σ)Y ′

σ(j) (σ ∈ S2k);

σII−(Yj) := sgn(σ)Yσ(j) (σ ∈ S2k);

σII(Yj) := Yσ(j) (σ ∈ S2k).

(6.20)

Let us now de�ne actions of S2k+1 on the algebra A2k , extending those of
S2k. This is also a special case of the situation in E-8. Taking into account the
relation in (6.14), we give an abstract group G ′2k+1 as follows:

set of generators:
{
z′, η1, η2, . . . , η2k, η2k+1

}
,

set of fundamental relations:




z′ 4 = e, z′ηj = ηjz
′ (j ∈ I2k+1) ,

η 2
j = e (j ∈ I2k+1),

ηiηj = z′ 2 ηjηi (i, j ∈ I2k+1, i 6= j),

η1η2 · · · η2kη2k+1 = z′ k.

(6.21)

Then, thanks to (6.14), we have a linear representation π2k+1 of the group G ′2k+1

by the formula

π2k+1(ηj) := Yj (j ∈ I2k+1), π2k+1(z
′) := iE .(6.22)
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By this representation of dimension 2k, the group algebra C[G ′2k+1] is mapped
homomorphically onto A2k . Note that, when k is even, we can reduce (6.21) sim-
ilarly as (6.17), by using z = z′ 2 only. But for a general treatment, irrespective
of the parity of k, we use (6.21) here.

From the symmetry of the fundamental relation (6.21), we see that the sym-
metric group S2k+1 can acts on G ′2k+1 as follows: for σ ∈ S2k+1 ,

σ(ηj) = (z′)1−sgn(σ) ησ(j) (j ∈ I2k+1), σ(z′) = z′ .(6.23)

Through the representation π2k+1, this action induces an action on A2k ex-
tending σII− for S2k above. Also, we can get another action σI by using Y ′

j :=
(−1)j−1Yj (j ∈ I2k+1). Moreover we de�ne an action of the alternating group
A2k+1, by σII(Yj) := Yσ(j) (j ∈ I2k+1), taking into account the fourth relation
η1 · · · η2k+1 = z′ k in (6.21). Summarizing them, we have the following theorem.

Theorem 6.5. On the full matrix algebra A2k = M(2k,C), the symmet-
ric group S2k+1 and the alternating group A2k+1 act according to the following
formulas: for j ∈ I2k+1 ,




σI(Y ′
j ) := sgn(σ)Y ′

σ(j) (σ ∈ S2k+1);

σII−(Yj) := sgn(σ)Yσ(j) (σ ∈ S2k+1);

σII(Yj) := Yσ(j) (σ ∈ A2k+1).

(6.24)

Remark 6.2. The action σII of the symmetric group S2k in (6.20) cannot be
extended to the whole S2k+1. Instead, its restriction on the alternating group A2k

can be extended to A2k+1. This situation re�ects to a very delicate, complicated
relations between spin representations of S2k and those of S2k+1 or of A2k+1,
and so resulted to one of main reasons why theory of spin representations and
spin characters in CASE II, in the paper [II], are so much complicated (see the
related sections).

6.3 Intertwining operators and spin representations of
symmetric groups

Since each of the isomorphism σI, σII− and σII ofA2k is inner, we look for elements
in A2k , modulo scalar multiples, which gives respectively these isomorphisms
as inner automorphisms. In other words, we determine intertwining operators
between π2k+1 and its transformed one under the action of σ. We do this for
simple transpositions sj = (j j +1) (j ∈ I2k) as generators of S2k+1. After
obtaining these elements explicitly, we can decide if the representation of S2k+1

or of A2k+1, obtained through intertwining operators, is actually a spin one or a
non-spin ordinary linear representation.

Recall that S2k+1 is given as an abstract group by the following set of fun-
damental relations:{

s 2
j = e (j ∈ I2k), (sjsj+1)

3 = e (j ∈ I2k−1),

sisj = sjsi (|i− j| ≥ 2, i, j ∈ I2k).
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For Sn, Schur proved in [Sch3] that, for n = 2, 3, its representation group is
Sn itself, and for n ≥ 4, it has two representation groups Tn and T′n, which are
mutually isomorphic only when n = 6. In this paper, we prefer to use T′n and
denote it by S̃n. It is given as





z 2
1 = e, z1 central,

r 2
j = e (j ∈ In−1), (rjrj+1)

3 = e (j ∈ In−2),

rirj = z1rjri (|i− j| ≥ 2, i, j ∈ In−1).

(6.25)

e −→ Z = {e, z1} −→ S̃n
ΦS−→ Sn −→ e (exact),

where the canonical homomorphism ΦS is given by ΦS(rj) = sj (j ∈ In−1) (cf.
�1, Theorem 1.2 below). Note that the representation group Bn of the alternating
group An, n ≥ 4, n 6= 6, 7, is given by the full inverse image Ãn := Φ −1

S

(
An

)
(cf. [Sch3, �5]).

Now put n = 2k or n = 2k + 1. For the intertwining operators, we de�ne, a
priori assuming to treat spin things, for generators rp (p ∈ In−1) of S̃n = T′n or
for generators rprq (p, q ∈ In−1) of Ãn, invertible elements in the algebra A2k as
follows.

De�nition 6.1.

∇n(rp) :=
1√
2

(Y ′
p − Y ′

p+1) =
(−1)p−1

√
2

(Yp + Yp+1) (p ∈ In−1) ;

∇′
n(rp) :=

1√
2

(Yp − Yp+1) (p ∈ In−1) ;

∇′′
n(rp) := ∇′

n(rp) · iY2k+1 (p ∈ In−1, i =
√−1 ) ;

0n(rprq) := ∇′
n(rp)∇′

n(rq) (p, q ∈ In−1).

Note that, for p, q ∈ I2k−1, we have 0n(rprq) = ∇′′
n(rp)∇′′

n(rq) too.
By explicit calculations we can prove the following intertwining relations. On

the other hand, these intertwining relations for Y ′
j (j ∈ In) or Yj (j ∈ In)

determine the intertwining operators uniquely up to scalar multiples, since the
latter generates the total algebra A2k .

Theorem 6.6. There hold the following intertwining relations.
(i) Let n = 2k + 1. For generators Y ′

j (j ∈ In) or Yj (j ∈ In) of A2k ,

∇n(rp) Y ′
j ∇n(rp)

−1 = −Y ′
sp(j) (p ∈ In−1),

∇′
n(rp) Yj ∇′

n(rp)
−1 = −Ysp(j) (p ∈ In−1),

0n(rprq) Yj 0n(rprq)
−1 = Yspsq(j) (p, q ∈ In−1).

(ii) Let n = 2k. For the generators Yj (j ∈ In) of A2k ,

∇′′
n(rp)Yj∇′′

n(rp)
−1 = Ysp(j) (p ∈ In−1).
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By using explicit formulas in De�nition 6.1, we can check if we get actually
spin representations or non-spin ordinary linear representations of Sn or of An.
Then we get the following result.

Theorem 6.7. (i) For n = 2k + 1, ∇n and ∇′
n de�ne respectively spin

representations of S̃n, and 0n de�ne a spin representation of Ãn.

(ii) For n = 2k even, ∇′′
n de�nes a spin representation of S̃n.

Sketch of Proof. We check the fundamental relations in (6.25). For instance
for ∇n, we prove the following relations:

∇n(rp)
2 = E (p ∈ In−1),(∇n(rp)∇n(rp+1)

)3
= E (p ∈ In−2),

∇n(rp)∇n(rq) = −∇n(rq)∇n(rp) (|p− q| ≥ 2, p, q ∈ In−1).

We omit here the details, but the readers, who are interested in the proof,
can continue by imitating calculations in ��7 � 8 below. 2

From these two theorems, we obtain the following.

Theorem 6.8. For the representations ∇n, ∇′
n, 0n and ∇′′

n, there hold the
following intertwining relations: for elements Y in the algebra A2k = M(2k,C),

∇n(σ′) Y ∇n(σ′)−1 = σI(Y ) (σ′ ∈ S̃n, n = 2k + 1) ;

∇′
n(σ′) Y ∇′

n(σ′)−1 = σII,−(Y ) (σ′ ∈ S̃n, n = 2k + 1) ;

0n(σ′) Y 0n(σ′)−1 = σII(Y ) (σ′ ∈ Ãn, n = 2k + 1) ;

∇′′
n(σ′) Y ∇′′

n(σ′)−1 = σII(Y ) (σ′ ∈ S̃n, n = 2k) ;

where σ = ΦS(σ′). Thus the `generator permutation' actions of Sn or of An on
the algebra A2k are realized by spin representations of Sn or An respectively.

Remark 6.3 (Relation to Schur's Hauptdarstellung ∆n of Tn).

In the case of n = 2k even, the spin representations ∇n and ∇′
n of S̃n are of

dimension 2k and both are equivalent to the direct sum ∆′
n⊕

(
sgn·∆′

n

)
, where ∆′

n

denotes `Schur's Hauptdarstellung' rewritten for S̃n = T′n of dimension 2(n−1)/2 =

2k−1, and sgn denotes the one-dimensional character S̃n → Sn
sgn−→ {±1}.

On the other hand, in the case of n = 2k + 1 odd, the spin representations
∇n and ∇′

n of S̃n are of dimension 2k and both are equivalent to ∆′
n itself, where

∆′
n
∼= sgn ·∆′

n .
These facts can be proved by calculating characters of them (see �15 in [II]).
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