CHAPTER 12

Connection problem

12.1. Connection formula

For a realizable tuple m € Py, let Pnu = 0 be a universal Fuchsian differen-
tial equation with the Riemann scheme

z=0 cg =1 cj cp = 00
Podlmey Pl 0 Wiale, 0 Pealmgn
(12.1) : : : : : :
[)‘O,no](mo,no) [)‘l,m](ml,nl) T [)‘jmj](mj,nj) T [)‘Pﬂp](mp,np)
The singular points of the equation are ¢; for j = 0,...,p. In this section we always
assume ¢ = 0, ¢c; =1 and ¢, = o0 and ¢; ¢ [0,1] for j =2,...,p— 1. We also

assume that A;, are generic.

DEFINITION 12.1 (connection coefficients). Suppose A, are generic under the

Fuchs relation. Let u(®" and u}"" be normalized local solutions of P = 0 at

2z = 0 and = 1 corresponding to the exponents \g ,, and A1 ,, , respectively, so that

Xo,v A
up™"® = 2o mod ror 1Oy and uytt = (1 — 2)* mod (1 — 2)Mm 1O,

0,19

A . . .
Here 1 <1y <mgand 1 < vy <ng. fmg,, =1, y is uniquely determined

and then the analytic continuation of u())\o’”“ to z = 1 along (0,1) C R defines a

connection coefficient with respect to ui\l’”l, which is denoted by ¢(0: Ag,yy ~» 1:
A, ) or simply by ¢(Ao, ~* A1, ). The connection coefficient ¢(1: A1, ~>0:Ao.0,)

vy 20

or ¢(A1,, ~> Ao.y) Of ui\l’ with respect to ugo’ are similarly defined if my ,, = 1.

Moreover we define c(c; : Ai, ~¢;j @ Aj,;) by using a suitable linear fractional
transformation T of C U {oco} which transforms {c;,¢;} to {0,1} so that T'(c,) ¢
(0,1) for v =0,...,p. If p =2, we define the map T so that T'(¢x) = oo for the
other singular point ¢;. For example if ¢; ¢ [0,1] for j = 2,...,p — 1, we put
T'(x) = %5 to define c(0: Ag,py ~+00 1 Apy,) Or ¢(00 1 Ap oy, 0 Ao up)-

In the definition uéo’”o (z) = 2?00 ¢(x) with analytic function ¢(x) at 0 which
satisfies ¢(0) = 1 and if Re A1 ,, < Re Ay, for v # vy, we have

(12.2) Moo~ Arw) = lim (1—z)  mu®0(z)  (z€0,1))
rz—1-0

by the analytic continuation. The connection coefficient ¢(Ag.,, ~ A1,,, ) meromor-
phically depends on spectral parameters A;,. It also holomorphically depends on
accessory parameters g; and singular points % (j=2,...,p—1) in a neighborhood
of given values of parameters.

The main purpose in this section is to get the explicit expression of the connec-
tion coefficients in terms of gamma functions when m is rigid and mg , = m; ,» = 1.

Fist we prove the following key lemma which describes the effect of a middle
convolution on connection coefficients.

119



120 12. CONNECTION PROBLEM

LEMMA 12.2. Using the integral transformation (1.37), we put
(12.3) (TFu)(x) == 2= #(1 —z) "I (1 — z) u(z),
(12.4) (Sypu)(z) =™ Mg (1 — z)u(z)

a

x
for a continuous function u(x) on [0,1]. Suppose Rea > 0 and Rep > 0. Under
the condition Reb+ Rep <0 or Reb+Repu >0, (T u)(z) or Si(u)(x) defines

a
a continuous function on [0,1], respectively, and we have

Ia+1)

(12.5) T (w)(0) = Sy, (u)(0) = mu(o)a
ey w(1) u Tla+p+ 1)D(—p—b)
20 F o " wo e T T Tar ey
S 1 T(a+p+1)

— ' a1 _ b+,u71u
2T 5E,w0) ~ wo) Mot o1y J, C -0

PrOOF. Suppose Rea > 0 and 0 < Rep < —Reb. Then
() Ty (u) ()

_gmemn(l —x)*b*#/ 11— (@ — ) u(t)dt (=51, 0 <2 < 1)
0
1
=(1- x)_b_“/ s4(1 — 1) 11 — xs1) u(as;)ds;
0
la 1—s1\#/1—x51\? ds
’/0 Sl(l—x) ( 1o ) uws) =4
_/1(1_ )a( S9 )H(1+ TrSo )b( B )@ ( _1_ )
= | So - u(r — rso 1= 52

1—2z S9

1

— /01_m (1—s(1- m))as”(l + xs)bu(x —z(l- m)s)% (52 = (1 -2)s).
Since

|sf(1—s)* M1 - xsl)bu(xsl)} < max{(1 — s;)Rer=1 1}37 Reb Jnax lu(t)]

for0<s;<land0<ua< 2, T}, (u)(2) is continuous for x € [0, 2). We have

[(1—s(1— x))as“fl(l + z8)’u(r — (1 — z)s))| < sfen=l(1 4 %)Reborgtag)i |u(t)]

for 1 <2 <1and0< s < L and therefore T, (u)(z) is continuous for z € (3,1].
Hence T"',(x) defines a continuous function on [0, 1] and

" 1 1 a p dsy  T(a+1)
Ty (u)(0) = m/o (1—s2) 52u(0)g — mum%
ap(w)(1) = F(IM)/O Su(1+5)bu(1)%
S T S A S S PR
1 L NS | s (b
=g | (T2 a0 = SR,

The claims for Sg , are clear from

1
L(u) Sy, (u)(z) = /0 s3(1 — s1)P 11 — 2s1)bu(zsy )ds. O
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This lemma is useful for the middle convolution mc, not only when it gives a
reduction but also when it doesn’t change the spectral type.

ExXAMPLE 12.3. Applying Lemma 12.2 to the solution

p—1
wy (@) = / 2o (1 — (H (1--) ) (@ — )" dt
0 =2 G
of the Jordan-Pochhammer equation (cf. Example 1.8 iii)) with the Riemann scheme
=0 c1=1 cj Cp = 0
Ole-1 Ole-n - Ole-n - L—pe-n ¢,
Notp AAp o NApo —SEIEN —p

we have

c(0:hg + 1Ay + p) =

T(Ao 4 4+ DI0(=A — p) § (1 1 )Aj
(Ao + DI(=A1) 7

-1
FAo+p+1) /1 A A1 ] t\Y
Mo+ pe1:0) = 0 THT [ ho(q ks 1——)"dt.
c(0:do +u~1:0) = o imn =gy [ =D E( cj)

Moreover the equation Pu = 0 with
P :=RAdA(0")RAd(z" ) RAA(™*) RAd(z*° (1 — 2))d
is satisfied by the generalized hypergeometric function 3 F5 with the Riemann scheme

z=0 1 00
0 [0](2) 1—
N+ ! L= N—p—u
Ao+ NFpt+p Mtptp “do—A =N —p—p

corresponding to 111,21, 111 and therefore

cQo+N+p+p' ~~>M+p+pu)=CL - Cﬁiwwmw
CTQo+p+ 0= —p) TQo+ N +p+p + DI(=M —p— ')
T T+ D0(=N) T(Mo+ N +p+ DT(=A; — p)
CPQo+p+DFNo+ N +p+p +DI(=A —p— )
a F(Xo + DI(=A) (Ao + N 4 p+ 1) .

We further examine the connection coefficient.

In general, putting ¢ =0 and ¢; =1 and A\ = Ei:o Ak,1 — 1, we have

{ z=c¢ (j=0,....,p—1) 00 }
Njw = (5.0 + 05,00 N1 0m,) P + A0in0 + Atiny ] (mo.)

.rAO»”O(l—m))‘L"l { T =cy oo }
- 7
Pivlomg) Dol

20 TPl (1 ta) TP { [0](mj.1) [)\pJ + ZZ;(I) )‘kyl](mp,l) }
’ 1
[)\j,u - )\jvl](mjyu) [Apvl’ + Zizo )\kvl](mILD)
'~ Th=o k.1 { (0] (. —a) Ap1+ Zi;(l)_)l\k,l - 2)\1](%,1—61)}
Pw =N+ Mmoo + 200 M1 — M,

(d= mr1—(p—1)n)
k=0
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3: =c; 00
Umgi—ay  [Pp1 = 2M]mp1—a) ¢
)\] v + )\1 mJ V) [Ap,u - Al](mpyu)
oM _ C TXone + A1 = Aot + DI(A11 — Ay, — )\1).
Aomy A0 A T AL F(Xo,no — Ao + DA — Aipy)

20,1 Hp—l(l Cfll) 4,1

In general, the following theorem is a direct consequence of Definition 5.7 and
Lemma 12.2.

THEOREM 12.4. Put cg =0, ¢; =1 and ¢;j € C\ {0} for j=3,...,p—1. By
the transformation

RAd( Ao, 11:1?[1(1 - Cﬁj)&n) o RAd(al—Zizo Ak,l) o RAd(a:/\°=1ﬁ(1 B c%)fx_m)

the Riemann scheme of a Fuchsian ordinary differential equation and its connection
coefficient change as follows:

z=¢ (j=0,...,p—1) 00
A} = {Pjlm; )} o<i<p = RYRNICN Ap,1) (im0
1svsny A . A
v l(mg ) D,V I(mp,)
= {)‘in/} = {[ 7, y](mJ ,,)} 0<j<p
1<v<n;
r=¢ (j=0,....,p—1) 00
= [Aji;sl](ij—d) Ap1 —2 Z%:o At + 2)(m,, 1 —d)
v+ 20 Mot = Uomyy P = 2kmo Akt + Umyn)
with
d=mo1+---+mp1— (p—1)ordm,
m}y,/:mj,,,—ddl,yl (1=0,....p, v=1,...,nj),
)\;,1:)\j,1 (]:Oaap_1)7 pl__2)\01_"'_2)\p 1,1 — )\p,1+27
)\;’V:)\j’y-i-)\()J+)\1,1+-'-+>\p’1— (] =0,...,p—1, u:27...,nj),
Apw =Apw = Ao =+ = Ap1 + 1

and if mo n, =1 and ng > 1 and ny > 1, then

(12 8) Cl( 0,n0 ~ )‘1 nl) _ C(>\O,n0 ~ >\1,n1)
Ty — A DTNV = M) Tome = Xoa DT (An — Ay )

Applying the successive reduction by 0,4, to the above theorem, we obtain
the following theorem.

THEOREM 12.5. Suppose that a tuple m € P is irreducibly realizable and
Mone = Min, = 1 in the Riemann scheme (12.1). Then the connection coeffi-
cient satisfies

C()\O,ng ~ )\1777/1 )
E()‘(K)O no W)‘( ) 7711)

B H L(A(F)ome — AME)o,ekyo + 1) - T(ME) 100y, — ME)1,m,)
Ak 4+ 1)0,m0 — AME+ Doy + 1) - T(AE + 1)1, — A+ 1)1,0,)
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under the notation in Definitions 5.12. Here ¢(A(K)on, ~> A(K)1,,) is a corre-
sponding connection coefficient for the equation (0K, Pm)v = 0 with the funda-
mental spectral type fm. We note that

Ak + Dong = Ak + Do ey, +1) + Ak + D1ery, — Ak +1)1n,)
= (Mk)o,ne — AK)o,e0000 + 1) + (AE) 1000y, — A(K)1,m,)
fork=0,..., K —1.

(12.9)

When m is rigid in the theorem above, we note that &(Ag o (K) ~» A1, (K)) =1
and we have the following more explicit result.

THEOREM 12.6. Let m € P be a rigid tuple. Assume mopn, = Mipn, = 1,
ng > 1 and ny > 1 in the Riemann scheme (12.1). Then

no—1 ny—1
I T(home = Ao +1) - H (A — Ainy)
C()\O,n M")\1,71 ): v=1 5
(12.10) 0 ! - AE) ek,
I oo I (1- —)
m’&m’’ =m Jj=2
m(),ng :m/ll,nlzl
(12.11) Z m}, = (n1 —1)mj, —d0(1 —nody,, ) +dj1(L = nidy,,,)
m EBm =m
MY, 1y =M 7y =1 1<v<n;, 0<j<p)

under the notation in Definitions 4.12 and 5.12.

PROOF. We may assume m is monotone and ordm > 1.
We will prove this theorem by the induction on ord m. Suppose

(12.12) m=m'om" with mg, =mj, =1
If 91m’ is not well-defined, then
(12.13) ordm’ =1 and m}l =1 for j=1,2,...,p
and 1+my1+---+mp1 — (p—1)ordm = 1 because idx(m, m’) = 1 and therefore

(1214) dl (m) = MmMop.1-

i

If &1m” is not well-defined,
ordm” =1 and mj1 =1 for j=0,2,...,p,
dl(m) = le.

Hence if di(m) < mp; and di(m) < mq,1, ym’ and 9ym” are always well-
defined and 9ym = 9ym’ @ dym” and the direct decompositions (12.12) of m
correspond to those of dym and therefore Theorem 12.4 shows (12.10) by the in-
duction because we may assume dp (m) > 0. In fact, it follows from (5.15) that the
gamma factors in the denominator of the fraction in the right hand side of (12.10)
don’t change by the reduction and the change of the numerator just corresponds
to the formula in Theorem 12.4.

If di(m) = myg1, there exists the direct decomposition (12.12) with (12.13)
which doesn’t correspond to a direct decomposition of d;m but corresponds to the
term I'([{Am/ }]) = T( Aoy +A110+ -+ Ap 1) = T(Ag,, —Ap1+1) in (12.8). Similarly
if d1(m) = mq 1, there exists the direct decomposition (12.12) with (12.15) and it
corresponds to the term I'([{Am/ }) =T(1 — {Am~}) =T —Xo1 — A1n, — A21 —

—Ap1) = (A1 — A, (cf. (12.21)). Thus Theorem 12.4 assures (12.10) by
the induction on ord m.

(12.15)
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Note that the above proof with (12.9) shows (12.18). Hence

no—1 ni—1
Z {Am} = Z (Aone = Ao +1) + Z (A = Ain)
m’'®&m’’ =m v=1 v=1
m(,J ng = M1,ny =1 no—1 ny—1
=(no—1)+ (no — 1)Ao,ny — Z Ao, + Z Ay
p nj—8j1
nl - 1 (Z mj,l,)\j,,, —-n -+ 1)
j=0 v=1
’nofl
= (’rlo +ny — 2))‘0,n0 + Z ((Tll - 1)m07y - 1))\071,
v=1
ni—1 P no
+ > (= Dmay + DA+ > (= Dmyh,
v=1 Jj=2v=1

—+ (TLO+TL1 72) — (7’L1 — l)ordm.

The left hand side of the above first equation and the right hand side of the above
last equation don’t contain the term A ,, and therefore the coefficients of )A;, in

the both sides are equal, which implies (12.11). O
COROLLARY 12.7. Retain the notation in Theorem 12.6. We have

(12.16) #m';m' om” =m with mg,, =my, =1} =ne+n -2,

(12.17) Z ordm’ = (n; — 1) ord m,

méBm =m

"
mo np=M1,ny =1

no—1 ni—1
(12.18) > {0 =D Como = Aow + 1)+ > (A — Ay
m’ ®&m’ =m v=1 v=1

’ o _
mO)WO —anl =1

Let ¢(Ao,ng + t~> A1n, — t) be the connection coefficient for the Riemann scheme
{[)\j,u + t(éj,oau,no - (;j,l(su,nl)}(mj,u)}' Then

p—1
(12.19) Jm e(0: o 1 Lidra, — 1) = ITa- ;) st
=2

Under the notation in Theorem 10.13, we have

(12.20)
H M) = 1 L (], + (=1)" 01 (AN o))
m ‘&m’ =m m/EA(m)
mo no_m,l/nl 1 mo ng +my, np =1

PrOOF. We have (12.18) in the proof of Theorem 12.4 and then Stirling’s for-
mula and (12.18) prove (12.19). Putting (j,7) = (0,n¢) in (12.11) and considering
the sum ) for (12.11) with j = 1, we have (12.16) and (12.17), respectively.

Comparing the proof of Theorem 12.6 with that of Theorem 10.13, we have
(12.20). Proposition 7.9 also proves (12.20). O

REMARK 12.8. i) When we calculate a connection coeflicient for a given rigid
partition m by (12.10), it is necessary to get all the direct decompositions m =
m’ ® m" satisfying my ., = mY,,, = 1. In this case the equality (12.16) is useful
because we know that the number of such decompositions equals ng+n; —2, namely,
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the number of gamma functions appearing in the numerator equals that appearing
in the denominator in (12.10).

ii) A direct decomposition m = m’ @ m” for a rigid tuple m means that
{@m’, am~ } is a fundamental system of a root system of type As in Ry + Raynr
such that oy = am + am and Q' O

(Ot |omr) = (O [omr) =2, \ i
(am’|am"> =—-L oy
ili) In view of Definition 4.12, the condition m = m’ @ m” in (12.10) means

(12.21) [{Am }H + [{Amr }] = 1.

Hence we have

c()\O,no W)\l,nl) : C()\l,nl “’"’)\O,no)

H sin(|{Am }|7)

’ "_
(12.22) B Em
0,nq 1,nq

no—1 ni—1

H Sin()\o,y — )\1,1,)7T' H Sin()\l,u - )\l,nl)ﬂ—

v=1 v=1
iv) By the aid of a computer, the author obtained the table of the concrete
connection coefficients (12.10) for the rigid triplets m satisfying ord m < 40 together
with checking (12.11), which contains 4,111,704 independent cases (cf. §13.11).
v) Is there an interpretation of A(K); ¢(x); in Theorem 12.6 as (12.20)7

12.2. An estimate for large exponents

The Gauss hypergeometric series

Zala+1)---(at+k—1)-BB+1)---(B+Ek—1) ,
Flo, B,y 2) o=
(o, B,7;2) 1;) BT Do popry s s sy x
uniformly and absolutely converges for

(12.23) reD:={zxeC;|z| <1}

if Rey > Re(a + ) and defines a continuous function on D. The continuous
function F(a, 8,7 + n;x) on D uniformly converges to the constant function 1
when n — 400, which obviously implies

(12.24) lim F(o,8,v+n;1) =1
n—oo
and proves Gauss’s summation formula (0.3) by using the recurrence relation

F ;1 — —
We will generalize such convergence in a general system of ordinary differential
equations of Schlesinger canonical form.

Under the condition

a>0,b>0and ¢c>a+0d,

the function F(a,b,c;z) = Y 7o, %xk is strictly increasing continuous func-

tion of x € [0, 1] satisfying

L(e)T'(c—a—0)
I'(c—a)l'(c—10)
and it increases if a or b or —c increases. In particular, if

0<a<N,0<b<Nandc>2N

1< F(a,b,c;x) < F(a,b,c;1) =
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with a positive integer N, we have

0< F(a,b,c;z)—1

I'(c)T'(c — 2N) _ (c=N)n

N

_(e-N N (1N
~—\¢—2N o c— 2N
N \"' N
c—2N c—2N’

<n(1+

Thus we have the following lemma.

T(c—N)T(c—N) = (c—2N)y :Hc—]:f—u_l

v=1

)

LEMMA 12.9. For a positive integer N we have

N N
12.26 F r) =1 < (14— -1
(12.26 Flasyio) -1 < (14 o)
if
(12.27) r€D, |a] <N, |[B|<N and Revy>2N.
ProOOF. The lemma is clear because
\2: o < S Uk o o), 51, e — 23 ) -
kk' — (Rey)rk
For the Gauss hypergeometric equation
z(1—az)u”" + (v = (a+ B+ 1)z)u' —aBfu=0
we have
(zu) =u' + zu” = ! + (ot B+ Lz = y)u'+abu
1—=x
_af 1 vy a+5+1 ,
_l—xu+<x x(l—:z:)+ 1—2z )xu
_aB L (l=q atBon+l)
1—-=z T 1—-=z
Putting
~ () u
(12.28) U= <u1> = <£2,>
we have
0 o 0 0
(12.29) Lo\ 1—v)_ \B a+p-~+1
u = u+
z 1—=x
In general, for
, A B
v=—v+ v
z 1-—
we have
20’ = Av+ — By
1—x

= Av+z(av' + (B — A)v).
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Thus

TU) = oy,
12.30
( ) {xu’l = (1 = y)ur + z(2u] + Buo + (a + B)uy)

and the functions

ug = F(a7ﬁ7’y;x)7
12.31
( ) u1:%F(a+1,5+1,7+1;m)

satisfies (12.30).

THEOREM 12.10. Let n, ng and ny be positive integers satisfying n = ng + nq

(0 A\ , [0 0
and let A = 0o 4)2=\5 B € M(n,C) such that Ay, By € M(ny,C),

Ao € M(ng,n1,C) and By € M(n1,n9,C). Let D(0,m) = D(0,mq,...,my,) be
the diagonal matriz of size n whose k-th diagonal element is my_n, if k> ng and
0 otherwise. Let u™ be the local holomorphic solution of the system

A—D(0,m) B — D(0,m)
U = u+ U

T 1—=x

(12.32)

at the origin. Then if Rem, are sufficiently large for v = 1,...,nq1, the Taylor
series of u™ at the origin uniformly converge on D = {x € C; |z| < 1} and for
a positive number C, the function u™ and their derivatives uniformly converge to
constants on D when min{Remy,...,Rem,, } — +o0o with |A;j| + |Bi;| < C. In
particular, for x € D and an integer N satisfying

ni

(12.33) Z [(Ao)iv| < N, Z [(A1)i| <N, Z |(Bo)iv| <N, Z |(B1)iv| <N

v=1 v=1 v=1 v=1
we have
2V(N +1)2
. m _ m < m .
(12.34)  max |uji(e) - w?(0)] < max [u?(0) “win Rem, — AV -1
Svsng

if Remy, >5N +4 forv=1,...,n;.
PrOOF. Use the method of majorant series and compare to the case of Gauss

hypergeometric series (cf. (12.30) and (12.31)), namely, limc— o F(a,b,c;2) = 1
on D with a solution of the Fuchsian system

U = —u-+

/U/,
1—2

(0 A (0 0 (v
=) o= oa) ()

zvy = Agvr,
av) = 2®v] + (1 — z) A1 + 2Bovg + 2B1vy

= Ajv + .’1?(3?1}1 + Bovg + (Bl — Al)vl)
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or the system obtained by the substitution A; — A; — D(m) and B; — B; — D(m).
Fix positive real numbers «, § and ~y satisfying
ni no

a>Y (Al (1<i<ng), B> |Bo)wl (1<i<m),
v=1 v=1

a+p> Z|(31*A1)iu\ (1 <i<nyg),

v=1
ni
v =min{Remy,...,Remy, } — 21maX [(A1)i| — 1> a+ 6.
1

<i<ng
=

Then the method of majorant series with Lemma 12.11, (12.30) and (12.31) imply

um < ax1<u<n, (07 (0)] - (e 5,75 2) (I <i<mn),
‘ % ‘maxi<y<p, [UP0)] - Fla+ 1,84+ 1, v+ 1;2) (ng<i<n),

which proves the theorem because of Lemma 12.9 with « = 5 = N as follows. Here
Ziozo a,r’ K ZEOZO bya¥ for formal power series means |a,| < b, for v € Z>.

Put m = min{Rems,...,Rem,, } —2N —1 and L = maxi<,<n, |u2*(0)|. Then
y>m—2N —1andif 0 <i < nyg and z < D,

|u(z) — u™(0)] < L+ (F(a, 8,7 |2]) — 1)

= L<(” %)N - 1)

N N-1 N2 LoN-1 N2
<L(1+- ) - < .
m—4N —1 m—4N —1 m—4N — 1
Ifng<i<nandx €D,
|u§“(x)|§§-LF(@+1,B+1,7+1;|33|)
LN N+1 N+1 LN(2N+ 41
< —FF— (1+_7+) +1 <Q~
m—2N —1 m—4N — 3 m—2N —1 O

LEMMA 12.11. Let A € M(n,C) and put

(12.35) |A| := giagxn; | Ay |-

If positive real numbers mq, ..., m, satisfy

(12.36) Momin := min{my, ..., m,} > 2|4|,

we have

(12.37) |(kI, + D(m) — A) [ < (k4 mpin — 2JA)Y (Vk > 0).

PROOF. Since

|(D(m) = A) ™| = |D(m) " (I, — D(m) " 4)7!|

= ‘D(m)_1 Z(D(m)_lA)k‘

k=0

2/A
<y (1 220) < (i — 200,
Mmin

we have the lemma by replacing m, by m, + k forv=1,...,n. O
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12.3. Zeros and poles of connection coefficients

In this section we examine the connection coefficients to calculate them in a
different way from the one given in §12.1.
First review the connection coefficient ¢(0 : Mgz ~ 1 : Ay 2) for the solution
z=0 1 00
of Fuchsian differential equation with the Riemann scheme ¢ Ao1  Ai1 A2
Aoz A2 A2

Denoting the connection coefficient ¢(0: g 2~>1: A1 2) by c({ ig; - ii; iz; }), we

have
Xo2 _ Ao,1 A1,1 A2,1 A1,2 Xo,1 A2 A2t A1
(1238) U = C({ Ao,2 ~ A1,2 A2 })ul + C({ Ao,2 ~ A1,1 A2 })ul '
C( Ao,1 A11 A2 ) . C( X0,1— 0,2 Ai,1—=A1,2 Ao,2+A1 2+ A2 1 )
(12.39) A0,2 ~ Ar2 A2z B 0 ~ 0 Xo,2HFA1 24+ A2 2

=F(Xo2+ A2+ A21, 02+ A2+ A22,A02 — Ao +1;1)
under the notation in Definition 12.1. As was explained in the first part of §12.2,
the connection coefficient is calculated from

(12.40) tim o({ 3 e h =1

s 00 Aoz~ Al

and

C({ Ao,1 A1 A2 })
(12.41) X0,2A1,2 Az2 (Mo + A+ A22) (Mo + A+ A2n)
. C({ Xo,1—1 Ar;1+1 Ao }) o ()\0,2 — )\071 + 1)()\1,1 — )\172)

Ao,z ~ A2 A22

The relation (12.40) is easily obtained from (12.39) and (12.24) or can be reduced
to Theorem 12.10.

We will examine (12.41). For example, the relation (12.41) follows from the
relation (12.25) which is obtained from

Yy =1-@2y—a-p-1z)F(a,B,v;2) + (v — a)(y = BzF(a, 8,7 + L 2)
=70y = DA —=z)F(a, 8,7 — 1;2)
by putting =1 (cf. [WW, §14.1]). We may use a shift operator as follows. Since

d
L p(a,pvio) = LF@+1,8+ 1,7+ 152)
dx ~

1— —a— 1— 0 —a—
:C({ va“r 3 B%})%U?JW({ ova—a—ﬁg})%uy op

and
%u?fo‘fﬁ =(a+B8-7)(1 -2 mod (1—z)"*P0O,
we have
af — 0 a+1 1—y 0 Iy
76({ 0 ~ y—a—B—1 B+1 }) =(a+p~- 'Y)C({ 0 ~ y—a—B8 B })a
which also proves (12.41) because
C( Ao,1 A1,1 A2 ) C( A0,1— 0,2 0 Ao,2+A1,1+A2 1 )
Ao,2 ~ A1z Az2 . 0 ~ A1,2—A1,1 Ao2+A11+A2 2
C( Ao,1—1 A1,1+1 A2 ) o C( Ao,1—Ao,2—1 0 Ao,2FA1,2+ A2 1+1 )
Aoz~ A2 Az 0 ~ A12—=A1,1—1 Ag,2+A1,2+ A2 2+1

Furthermore each linear term appeared in the right hand side of (12.41) has own

meaning, which is as follows.

Ao,1 A1,1 A2;1 })

Examine the zeros and poles of the connection coefficient c({ Na = At s s

We may assume that the parameters );, are generic in the zeros or the poles.



130 12. CONNECTION PROBLEM

Consider the linear form Ag 2 + A1,1 + A22. The local solution ugw correspond-
ing to the characteristic exponent Ag 2 at 0 satisfies a Fuchsian differential equation
of order 1 which has the characteristic exponents Az 2 and A;,; at co and 1, respec-
tively, if and only if the value of the linear form is 0 or a negative integer. In this

case c({ Ao A Az }) vanishes. This explains the term Ag 2 + A1,1 + A2 in the

Ao,z ~ A12 A2
numerator of the right hand side of (12.41). The term Ao 2 + A1 2 + A2 2 is similarly
explained.
The normalized local solution uéo’z has poles where Ao ;1 — Ag2 is a positive
integer. The residue at the pole is a local solution corresponding to the exponent

Ao,2. This means that c({ ot A1 Az

Xo,2 ~ A2 A22
integer, which explains the term Ag 2 —Ap,1 +1 in the denominator of the right hand
side of (12.41).
There exists a local solution a()\)uil’1 + b()\)ui‘l‘(" such that it is holomorphic
for A;,, and b(\) has a pole if the value of A\ ; — A 2 is a non-negative integer, which

Ao,1 A1,1 A21
Ao,z ~ A12 A2z

}) has poles where Ag .1 — Ag,2 is a positive

means c({ }) has poles where A1 2 — A1 1 is non-negative integer. This

explains the term A; 1 — A1 2 in the denominator of the right hand side of (12.41).
These arguments can be generalized, which will be explained in this section.
Fist we examine the possible poles of connection coefficients.

PRrROPOSITION 12.12. Let Pu = 0 be a differential equation of order n with a
regqular singularity at © = 0 such that P contains a holomorphic parameter A =
(A1, ..., An) defined in a neighborhood of \° = (A{,...,A%) in CN. Suppose that

the set of characteristic exponents of P at x = 0 equals {[A]m,)s- -5 [AN](ma) }
withn =mqy +---+mpy and

(12.42) A=A = A €Z>0 and \] = \] ¢ Z if 1 <i<j< N and j# 2.
Let u; ., be local solutions of Pu = 0 uniquely defined by
(1243) wj, =25 mod 2T 0y (j=1,....,m; andv =0,...,mj —1).

Note that uj, =<0 ki (NN TR with meromorphic functions ay, ., (X) of A
which are holomorphic in a neighborhood of \° if Ao — Ay # A3 1. Then there exist
solutions v;, with holomorphic parameter A in a neighborhood of \° which satisfy
the following relations. Namely

(12.44) vjy=1uj, (B<j<Nandv=0,...,m;—1)

and when A +my1 > A§ + ma,

Ui,y = Ul (O <rv< m1)7
(12.45) _ U2,y = ULv4ag Z by, i1 (0<
2y — v N, o I\ o <v< m2)
Al - )\2 + AQ,I WZ2+)\311§1'<m1 )\1 — AQ + )\271
AAH+T L ATHEASL AT AS A ma—1 A4 my -1
with the diagram o . o o . °
)\g /\g + mo — 1
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which illustrates some exponents and when A +my < A§ 4+ ma,

(12.46)
V2, = U2,y (0 < v < mg),
by iuo ;
Viy =Uly, — Z B e L (0 <v < min{mi,A3,}),
’ ’ ) Al — A2+ A9, ’
max{0,m1—A3 ; }<i<ma ’
ULy — U2p—2g, by iz i o
Uy = N e Z VDV v (/\211 <v<m)
AL = Az + >\2;1 max{0,m1—A3 ; }<i<ma At — A2+ )\271
SN T AN A -1
with o O O . o
5 Ag=Ag+mi—1 Xg+my—1

O O

and here b, ; € C. Note that v;, (1 <j <N, 0<v <m;) are linearly independent
for any fixed X in a neighborhood of \°.

PROOF. See §2.1 and the proof of Lemma 4.5 (and [O3, Theorem 6.5] in a
more general setting) for the construction of local solutions of Pu = 0.

Note that u;, for j > 3 are holomorphic with respect to A in a neighborhood
of A = \°. Moreover note that the local monodromy generator M of the solutions
Pu = 0 at = 0 satisfies Hj-vzl(Mo — e2™V=TX) = (0 and therefore the functions
(A1 = A2 = A3 1)uj,, of A are holomorphically extended to the point A = \? for
7 =1 and 2, and the values of the functions at A = \° are solutions of the equation
Pu =0 with A = A°.

Suppose A +mq > A§+my. Then u;, (j = 1,2) are holomorphic with respect
to A at A = A\° and there exist b;, € C such that

U2,u|>\=/\D = Ul,v—i-/\g)l |)\=)\° + Z bv,i (ul,i|/\=)\°)
ma+A3  <v<my

and we have the proposition. Here

U2y |r=re = 2+ E bl,,i:v)‘lJr” mod 2z Mt O,.

m2+/\gylgu<m1
Next suppose A +m1 < AS + my. Then there exist b;,, € C such that
(A1 = A2+ A3 )u1) |r=ne = Z by,i (Uz,i)x=x°)

max{0,m1—Ag ; }<i<ma

(0 <v< min{mh )\3,1})’

Uly|r=re = Z bui(uzilx=xo) (A5, <v <my)

max{0,m1—Ag ; }<i<mz

and we have the proposition. O

The proposition implies the following corollaries.

COROLLARY 12.13. Keep the notation and the assumption in Proposition 12.12.

i) Let W;(\ x) be the Wronskian of wji,...,Ujm, forj=1,...,N. Then
(A1 — A2+ A3) Wi () and W;(X) with 2 < j < N are holomorphic with respect
to A in a neighborhood of \° by putting

(12.47) (y = max{0, min{my, ma, A3 1, A3 ; +ma —my}}.
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ii) Let
N my
Wy = Z Z @50k (A)Uj ok
j=1v=1
be a local solution defined in a neighborhood of 0 with a holomorphic A in a neigh-
borhood of \°. Then

(= A +28,1)7 det (a7 () 1<om,
1<k<m;
with
lyq = maX{O,min{ml - )\gyl,mg}},
U5 = min{mq,ms},
l; =0 (3<j<N)
are holomorphic with respect to X in a neighborhood of \°.

PROOF. i) Proposition 12.12 shows that u;, (2 < j < N, 0 < v < m;) are
holomorphic with respect to A at A°. The functions u; ,, for min{m;, /\371} <v<m
are same. The functions u; ,, for 0 < v < min{m;, A ; } may have poles of order 1
along A2 — A1 = AZ; and their residues are linear combinations of U27i|)\2:)\1+/\g‘1
with max{0,m1 — A§ 1} <i < my. Since

min{#{v; 0 <v <min{my, A }}, #{i; max{0,m1 — A3} <i <my}}
= max{O,min{ml, A3 1, M2, Mg —my + /\g,l}},

we have the claim.
ii) A linear combination of v;, (1 < j < N, 0 < v < m;) may have a pole of
order 1 along A\; — A2 + A3 ; and its residue is a linear combination of

(u1,0 + Z buiag i) o=nag, (A3 < v <minfmy,my +A3,}),
m2+)\g71§i<m1

(uz, + > butag,itizi) o=n+rg, (0<v<mi—A3,),

max{0,m1—Ag ; }<i<ma

E by iug

max{0,m1—A3 ; }<i<ma

A2=A1+A3 | (O <v< min{mla )‘g,l})

Since
#{v; A3, <v <min{my,ms + A3} } = max{0, min{my — A3, m2}},
#{r;0<v<my — A3}
+ min{#{i; max{0,m; — gl} <i<mel,#{r;0<v< min{ml,)\;l}}}
= min{my, ma},
we have the claim. (]
REMARK 12.14. If the local monodromy of the solutions of Pu =0 at z =0

is locally non-degenerate, the value of (A; — Az + A3 ;) Wi(X) at A = X° does not
vanish.

COROLLARY 12.15. Let Pu = 0 be a differential equation of order n with a
regular singularity at x = 0 such that P contains a holomorphic parameter A =
(M1, ..., AN) defined on CN. Suppose that the set of characteristic exponents of P
at v = 0 equals {[Al](ml), A [)\N](mN)} with n = my + --- +my. Let u;, be the
solutions of Pu =0 defined by (12.43).
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i) Let Wi(z, \) denote the Wronskian of u11,...,U1,m,. Then
Wl (1’, )‘)
N
Hj:2 HO§V<min{m1,mj} F(Al - /\j +my — V)

is holomorphic for A € CN.

(12.48)

ii) Let
N mj
(12.49) ) =D Ny 1<k <m)
j=lv=1

be local solutions of Pu = 0 defined in a neighborhood of 0 which have a holomor-
phic parameter X\ € CN. Then

det (al,u,k()‘)> 1<v<m;
(12.50) N T
[lj=s Thcvcmingmim;y T = A= m1+v)

is a holomorphic function of A\ € CN.

PROOF. Let A?; € Z. The order of poles of (12.48) and that of (12.50) along
)\j - /\1 = /\?’1 are
#{v; 0 <v <min{my,m;} and my; —AJ; —v <0}
= ##{v; max{0,m1 — A7} <v < min{m,m;}}

= max{0, min{my,m;, AJ 1 AT +my — mi}}

and
#{v; 1 <v <min{my,m;} and A\7; —m; +v <0}
= max{(), min{mi, m;, mi — )\]0471}},
respectively. Hence Corollary 12.13 assures this corollary. O

REMARK 12.16. The product of denominator of (12.48) and that of (12.50)
equals the periodic function

3 [min{ml,mj}] T min{mi,m;}
H( 1) ’ o (sin(/\1 - )\j)’fr) '

j=2

DEFINITION 12.17 (generalized connection coefficient). Let Pymu = 0 be the
Fuchsian differential equation with the Riemann scheme

r=c =0 cp=1 Co ¢y = 00
(12.51) [)\0,1]'(1%0,1) [)‘1,1].(m1,1) [/\2,1]'(7”2,1) . [)‘p,l]'(mp,l)
[)\O,'ﬂo].(mo,no) [/\1,111]'(7,“%1) [)‘27”2].(7112.712) - [)‘pynp].(mp,np)
We assume ca,...,cp—1 ¢ [0,1]. Let ug’o;—s-k (1<v<ng 0<k < mg,) and
“1\,1,}V+k (1 <v<mng, 0<k<m,) belocal solutions of Pyu = 0 such that

12.52
( ) b = (1= )Mtk mod (1 — z)Metmie ).

1,v

Ao,v+k
{uoj’y + = provtk mod x)\o,,,+mo,,,00,
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They are uniquely defined on (0,1) C R when A;, — \;,» ¢ Z for j = 0, 1 and
1 <v < v <nj. Then the connection coefficients cZ’]’f (M) are defined by

’
(12:53) ugly = D el

v k!

Note that ¢, ,’Ck (A) is a meromorphic function of A when m is rigid.
Fix a positive integer n’ and the integer sequences 1 < 1) < 1§ < --- <12 <,
and 1 Sz/ll <1/21 < - <1/i, < ny such that

(12.54) n' =m0+ M0 =my b+ My,

Then a generalized connection coefficient is defined by

(12.55)
C(O . [/\07V10](m07y?), ey [)\071’2](”10,,,2) ~ 1 [)‘17’/11]("11,”%)’ ey [/\1 o1 ](mlyyl/))

b ’
L L

_ vk
T det(cu,k ()\)) VE{V?,...,VQ}, 0<k<mg,, °*
V’E{ull,...,yé,}, 0K <my ,r

The connection coefficient defined in §12.1 corresponds to the case when n' = 1.

REMARK 12.18. i) When mg; = my 1, Corollary 12.15 assures that

¢(0: [Mot)(moer) ~> 1 [A11)(mys))

IT TOor—Xoj+mor—k)- IT TOw = Xa—mia+k)
2<j<no 2<j<n,
0<k<min{mg,1,mo,;} 0<k<min{mi 1, m1 ;}

is holomorphic for A;, € C.

ii) Let v1,...,v, be generic solutions of Pyu = 0. Then the generalized con-
nection coefficient in Definition 12.17 corresponds to a usual connection coefficient
of the Fuchsian differential equation satisfied by the Wronskian of the n’ func-
tions vy, ...,v, . The differential equation is of order (:,). In particular, when
n’ = n — 1, the differential equation is isomorphic to the dual of the equation
Py = 0 (cf. Theorem 4.19) and therefore the result in §12.1 can be applied to the

connection coefficient. The precise result will be explained in another paper.

REMARK 12.19. The following procedure has not been completed in general.
But we give a procedure to calculate the generalized connection coefficient (12.55),
which we put ¢(X) here for simplicity when m is rigid.

(1) Let € = (€;,,) be the shift of the Riemann scheme {Ap,} such that

fop=-1 (re{1,2,...;n0}\ {#?,...,0%}),
(12.56) G,=1  (ve{l,2,....n}\{vi,...,vi.}),
€,=0  (otherwise).

Then for generic A we show that the connection coefficient (12.55) con-
verges to a non-zero meromorphic function &(A) of A by the shift {\y,} —
{(A+ k&)m} when Z-g 3 k — oo.

(2) Choose suitable linear functions b;(A) of A by applying Proposition 12.12
or Corollary 12.15 to ¢(\) so that e(\) := Hfil F(bi()\))_l ce(N)e(\) s
holomorphic for any A.
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In particular, when L = L’ = 1 and 1 = v{ = 1, we may put

no
{bl} = U {)\071 — )\07]‘ +mo1 —V; 0<rv< min{m071,m07j}}
j=2
ni
@] U {)\Lj — )\1’1 — ml,l + V3 1 S 14 S min{mlﬂl,ml,j}}.
j=2
(3) Find the zeros of e(\) some of which are explained by the reducibility or
the shift operator of the equation Pynu = 0 and choose linear functions

ci(A) of Aso that f()\) := Hf\il I'(¢;(X)) - e(A) is still holomorphic for any

A
(4) If N = N"and >, d;(A) = >, ¢i()\), Lemma 12.20 assures f(A\) = ¢(\)
and
L, DY)
(12.57) c\) = =—x———= ¢\
12 (ei(V)
because f{ /&)6) is a rational function of A, which follows from the existence

of a shift operator assured by Theorem 11.2.

LEMMA 12.20. Let f(t) be a meromorphic function of t € C such that r(t) =

% s a rational function and

(12.58) p k) =1
Then there exists N € Z>o and b;, ¢; € C fori=1,...,n such that
(12.59) bi+-4+by=c1+-+cn,
N
T+ 0b;
(12.60) () = %
[Tz Dt + )

Moreover, if f(t) is an entire function, then f(t) is the constant function 1.

PROOF. Since limg_,o, (¢t + k) = 1, we may assume

= Diatt+ed)

TLL (¢ + i)
and then )
i [yt +ce+v
7y = Lizi L= (e +n)
[Lici [L—o(t+ b +v)
Since | .
nln*—
li — =T'(z),

the assumption implies (12.59) and (12.60).
We may assume b; # ¢j for 1 <7 < N and 1 < j < N. Then the function
(12.60) with (12.59) has a pole if N > 0. O

We have the following proposition for zeros of c¢(A).
PRrROPOSITION 12.21. Retain the notation in Remark 12.19 and fix A so that
(12.61) Niw =N €Z (j=0,1 and 0<v <v <ny).

i) The relation c¢(A) = 0 is valid if and only if there exists a non-zero function

A k A k
v = 2 : Cuykuoo,u-‘r _ 2 : xl/,kullwu-i_

ve{v?,... 19} ve{l,..,ni\{vi,...v},}
0<k<mo,» 0<k<mi,,
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on (0,1) with Cyx, C,, , € C.

ii) Fiz a shift e = (¢;,,) compatible to m and let Ry (€, X) be the shift operator
in Theorem 11.2. Suppose Rm(€,\) is bijective, namely, c¢m(e;A) # 0 (cf. Theo-
rem 11.8). Then c¢(A +¢€) =0 if and only if c(N\) =0

PROOF. Assumption (12.61) implies that {uéo"’+k} and {ui‘l’”Jrk} define sets

of basis of local solutions of the equation Pyuu = 0. Hence the claim i) is clear from
the definition of ¢(\).

Suppose ¢(\) = 0 and Rm(€, A) is bijective. Then applying the claim i) to
Rm(e, \)v, we have ¢(A +¢€) = 0. If Rm(e, A) is bijective, so is Rm(—€, A + €) and
c¢(A+¢€) = 0 implies ¢(A\) = 0. O

COROLLARY 12.22. Let m = m’ ®m” be a rigid decomposition of m such that

(12.62) SNooomp, > Y. m,.

Then T'([{A\m }]) - ¢(A) is holomorphic under the condition (12.61).

PROOF. When |{Am}|=0, we have the decomposition Py, = PuyPm and
hence ¢(A) = 0. There exists a shift e compatible to m such that

P
/ —
E g m; €5 = 1.

j=0v=1
Let A be generic under |[{Am}| = 0 and [{Am'}| € Z\ {0}. Then Theorem 11.9) ii)
assures ¢m(€; ) # 0 and Proposition 12.21 proves the corollary. O

REMARK 12.23. Suppose that Remark 12.19 (1) is established. Then Proposi-
tion 12.12 and Proposition 12.21 with Theorem 11.8 assure that the denominator
c(X)
c(A+e)
tain linear functions of A and therefore (12.57) is valid with suitable linear functions

b;i(M\) and ¢;(\) of A satisfying Zf\;l bi(\) = Zi\; ci(N).

and the numerator of the rational function which equals are products of cer-

EXAMPLE 12.24 (generalized hypergeometric function). The generalized hy-
pergeometric series (0.7) satisfies the equation P, («; 8)u = 0 given by (13.21) and
[Kh, §4.1.2 Example 9] shows that the equation is isomorphic to the system of
Okubo normal form

1 —Bn 1
0 a2 0 1
du a3z, 1 1 ~
(12.63) (x - )— = o i
dx : . "
Qn—1,1 n—3 1
0 Qn,1 —Cp—1 —Cp—2 =+ —C2 —c1+(n—2)
with
ul n n
u=| |, u=u and E o, = E B,.
Up, v=1 v=1

Let us calculate the connection coefficient
C(O:O ~ 1:_Bn) = Erlrlo(]'_x)B”nanl(ala ceey Qg ﬁla T 7577.71; $) (Re Bn > 0)

Applying Theorem 12.10 to the system of Schlesinger canonical form satisfied by
Ad((1 — z)P»), the connection coefficient satisfies Remark 12.19 i) with ¢(\) = 1,
namely,

(1264) lim C(OZO ~ 1:_6n)‘ajo—)a]‘+k, Bj—Bi+k (1<j<n) = 1.

k—+o00
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Then Remark 12.19 ii) shows that H;-lzl ['(B;)-c(0:0 ~ 1:—4,,) is a holomorphic
function of (a, 8) € C**+(n=1),

Corresponding to the Riemann scheme (0.8), the existence of rigid decomposi-
tions

n n n—1 i n—1 i

~ ~

~ ~  ~ —~
1.--1;n-1151---1=0---01;10;0---1---01---10;n —11;1---0---1
for i = 1,...,n proves that [[[_, [(c;) - [[j—; T(B;)~" - ¢(0:0 ~ 1:—f,) is also
entire holomorphic. Then the procedure given in Remark 12.19 assures

(12.65) c(0:0 ~ 1:—f,) = w

| [(a;)

We can also prove (12.65) as in the following way. Since

iF(oz;,é’;ac) = uF(ozl—&-1,...,an—~-1;ﬁl—&—1,...,571714—1;95)
dx ﬂl 1
and
L—a) 1+ -0)0) = (1 -2) " (14 (- 2)0)),
we have

c(0:0~ 1:=0y) _ap...op

C(O:OW 1:_6n)‘aj»—>aj+1, Bj—B;+1 Br-.. -
which proves (12.65) because of (12.64).

A further study of generalized connection coefficients will be developed in an-
other paper. In this paper we will only give some examples in §13.5 and §13.7.5.



