
CHAPTER 4

Fuchsian differential equation and generalized
Riemann scheme

In this chapter we introduce generalized characteristic exponents at every singu-
lar point of a Fuchsian differential equation which are refinements of characteristic
exponents and then we have the generalized Riemann scheme as the corresponding
refinement of the Riemann scheme of the equation. We define the spectral type
of the equation by the generalized Riemann scheme, which equals the multiplicity
data of eigenvalues of the local monodromies when they are semisimple.

4.1. Generalized characteristic exponents

We examine the Fuchsian differential equations

(4.1) P = an(x)
dn

dxn + an−1(x)
dn−1

dxn−1 + · · ·+ a0(x)

with given local monodromies at regular singular points. For this purpose we first
study the condition so that monodromy generators of the solutions of a Fuchsian
differential equation is semisimple even when its exponents are not free of multi-
plicity.

Lemma 4.1. Suppose that the operator (4.1) defined in a neighborhood of the
origin has a regular singularity at the origin. We may assume aν(x) are holomor-

phic at 0 and an(0) = a′n(0) = · · · = a
(n−1)
n (0) = 0 and a

(n)
n (0) ̸= 0. Then the

following conditions are equivalent for a positive integer k.

P = xkR with a suitable holomorphic differential operator R(4.2)

at the origin,

Pxν = o(xk−1) for ν = 0, . . . , k − 1,(4.3)

Pu = 0 has a solution xν + o(xk−1) for ν = 0, . . . , k − 1,(4.4)

P =
∑
j≥0

xjpj(ϑ) with polynomials pj satisfying pj(ν) = 0(4.5)

for 0 ≤ ν < k − j and j = 0, . . . , k − 1.

Proof. (4.2) ⇒ (4.3) ⇔ (4.4) is clear.
Assume (4.3). Then Pxν = o(xk−1) for ν = 0, . . . , k−1 implies aj(x) = xkbj(x)

for j = 0, . . . , k−1. Since P has a regular singularity at the origin, aj(x) = xjcj(x)
for j = 0, . . . , n. Hence we have (4.2).

Since Pxν =
∑∞

j=0 x
ν+jpj(ν), the equivalence (4.3) ⇔ (4.5) is clear. □

Definition 4.2. Suppose P in (4.1) has a regular singularity at x = 0. Under
the notation (1.57) we define that P has a (generalized) characteristic exponent
[λ](k) at x = 0 if xn−k Ad(x−λ)(an(x)

−1P ) ∈W [x].

Note that Lemma 4.1 shows that P has a characteristic exponent [λ](k) at x = 0
if and only if

(4.6) xnan(x)
−1P =

∑
j≥0

xjqj(ϑ)
∏

0≤i<k−j

(ϑ− λ− i)
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with polynomials qj(t). By a coordinate transformation we can define generalized
characteristic exponents for any regular singular point as follows.

Definition 4.3 (generalized characteristic exponents). Suppose P in (4.1) has
regular singularity at x = c. Let n = m1 + · · ·+mN be a partition of the positive
integer n and let λ1, . . . , λN be complex numbers. We define that P has the (set
of generalized) characteristic exponents {[λ1](m1), . . . , [λN ](mN )} and the spectral
type {m1, . . . ,mN} at x = c ∈ C ∪ {∞} if there exist polynomials qℓ(s) such that

(4.7) (x− c)nan(x)−1P =
∑
ℓ≥0

(x− c)ℓqℓ
(
(x− c)∂

) N∏
ν=1

∏
0≤i<mν−ℓ

(
(x− c)∂−λν − i

)
in the case when c ̸=∞ and

(4.8) x−nan(x)
−1P =

∑
ℓ≥0

x−ℓqℓ
(
ϑ)

N∏
ν=1

∏
0≤i<mν−ℓ

(
ϑ+ λν + i

)
in the case when c =∞. Here if mj = 1, [λj ](mj) may be simply written as λj .

Remark 4.4. i) In Definition 4.3 we may replace the left hand side of (4.7) by
ϕ(x)an(x)

−1P where ϕ is analytic function in a neighborhood of x = c such that
ϕ(c) = · · · = ϕ(n−1)(c) = 0 and ϕ(n)(c) ̸= 0. In particular when an(c) = · · · =
a
(n)
n (c) = 0 and an(c) ̸= 0, P is said to be normalized at the singular point x = c

and the left hand side of (4.7) can be replaced by P .
In particular when c = 0 and P is normalized at the regular singular point

x = 0, the condition (4.7) is equivalent to

(4.9)

N∏
ν=1

∏
0≤i<mν−ℓ

(s− λν − i)
∣∣ pj(s) (∀ℓ = 0, 1, . . . ,max{m1, . . . ,mN} − 1)

under the expression P =
∑∞

j=0 x
jpj(ϑ).

ii) In Definition 4.3 the condition that the operator P has a set of generalized
characteristic exponents {λ1, . . . , λn} is equivalent to the condition that it is the
set of the usual characteristic exponents.

iii) Any one of {λ, λ+ 1, λ+ 2}, {[λ](2), λ+ 2} and {λ, [λ+ 1](2)} is the set of
characteristic exponents of

P = (ϑ− λ)(ϑ− λ− 1)(ϑ− λ− 2 + x) + x2(ϑ− λ+ 1)

at x = 0 but {[λ](3)} is not.
iv) Suppose P has a holomorphic parameter t ∈ B1(0) (cf. (2.7)) and P has

regular singularity at x = c. Suppose the set of the corresponding characteristic ex-
ponents is {[λ1(t)](m1), . . . , [λN (t)](mN )} for t ∈ B1(0)\{0} with λν(t) ∈ O

(
B1(0)

)
.

Then this is also valid in the case t = 0, which clearly follows from the definition.
When

P =
∑
ℓ≥0

x−ℓqℓ
(
(x− c)∂

) N∏
ν=1

∏
0≤i<mν−ℓ

(
(x− c)∂ − λν − i

)
,

we put

Pt =
∑
ℓ≥0

x−ℓqℓ
(
(x− c)∂

) N∏
ν=1

∏
0≤i<mν−ℓ

(
(x− c)∂ − λν − νt− i

)
.

Here λν ∈ C, q0 ̸= 0 and ordP = m1+ · · ·+mN . Then the set of the characteristic
exponents of Pt is {[λ̃1(t)](m1), . . . , [λ̃N (t)](mN )} with λ̃j(t) = λj + jt. Since λ̃i(t)−
λ̃j(t) /∈ Z for 0 < |t| ≪ 1, we can reduce certain claims to the case when the
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values of characteristic exponents are generic. Note that we can construct local
independent solutions which holomorphically depend on t (cf. [O4]).

Lemma 4.5. i) Let λ be a complex number and let p(t) be a polynomial such
that p(λ) ̸= 0. Then for non-negative integers k and m we have the exact sequence

0 −→ O0(λ, k − 1) −→ O0(λ,m+ k − 1)
p(ϑ)(ϑ−λ)k−−−−−−−→ O0(λ,m− 1) −→ 0

under the notation (2.5).
ii) Let m1, . . . ,mN be non-negative integers. Let P be a differential operator

of order n whose coefficients are in O0 such that

(4.10) P =
∞∑
ℓ=0

xℓrℓ(ϑ)
N∏

ν=1

∏
0≤k<mν−ℓ

(
ϑ− k

)
with polynomials rℓ. Put mmax = max{m1, . . . ,mN} and suppose r0(ν) ̸= 0 for
ν = 0, . . . ,mmax − 1.

Let m∨ = (m∨
1 , . . . ,m

∨
mmax

) be the dual partition of m := (m1, . . . ,mN ),
namely,

(4.11) m∨
ν = #{j ; mj ≥ ν}.

Then for i = 0, . . . ,mmax − 1 and j = 0, . . . ,m∨
i+1 − 1 we have the functions

(4.12) ui,j(x) = xi logj x+

mmax−1∑
µ=i+1

j∑
ν=0

cµ,νi,j x
µ logν x

such that cµ,νi,j ∈ C and Pui,j ∈ O0(mmax, j).

iii) Let m′
1, . . . ,m

′
N be non-negative integers and let P ′ be a differential oper-

ator of order n′ whose coefficients are in O0 such that

(4.13) P ′ =
∞∑
ℓ=0

xℓr′ℓ(ϑ)
N∏

ν=1

∏
0≤k<m′

ν−ℓ

(
ϑ−mν − k

)
with polynomials q′ℓ. Then for a differential operator P of the form (4.10) we have

(4.14) P ′P =
∞∑
ℓ=0

xℓ
( ℓ∑
ν=0

r′ℓ−ν(ϑ+ ν)rν(ϑ)
) N∏

ν=1

∏
0≤k<mν+m′

ν−ℓ

(
ϑ− k

)
.

Proof. i) The claim is easy if (p, k) = (1, 1) or (ϑ − µ, 0) with µ ̸= λ. Then
the general case follows from induction on deg p(t) + k.

ii) Put P =
∑

ℓ≥0 x
ℓpℓ(ϑ) and m

∨
ν = 0 if ν > mmax. Then for a non-negative

integer ν, the multiplicity of the root ν of the equation pℓ(t) = 0 is equal or larger
than m∨

ν+ℓ+1 for ℓ = 1, 2, . . . . If 0 ≤ ν ≤ mmax − 1, the multiplicity of the root ν
of the equation p0(t) = 0 equals m∨

ν+1.
For non-negative integers i and j, we have

xℓpℓ(ϑ)x
i logj x = xi+ℓ

∑
0≤ν≤j−m∨

i+ℓ+1

ci,j,ℓ,ν log
ν x

with suitable ci,j,ℓ,ν ∈ C. In particular, p0(ϑ)x
i logj x = 0 if j < m∨

i . If ℓ > 0 and
i+ ℓ < mmax, there exist functions

vi,j,ℓ = xi+ℓ

j∑
ν=0

ai,j,ℓ,ν log
ν x
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with suitable ai,j,ℓ,ν ∈ C such that p0(ϑ)vi,j,ℓ = xℓpℓ(ϑ)x
i logj x and we define a

C-linear map Q by

Qxi logj x = −
mmax−i−1∑

ℓ=1

vi,j,ℓ = −
mmax−i−1∑

ℓ=1

j∑
ν=0

ai,j,ℓ,νx
i+ℓ logν x,

which implies p0(ϑ)Qx
i logj x = −

∑mmax−i−1
ℓ=1 xℓpℓ(ϑ)x

i logj and Qmmax = 0.

Putting Tu :=
∑mmax−1

ν=0 Qνu for u ∈
∑mmax−1

i=0

∑N−1
j=0 Cxi logj x, we have

PTu ≡ p0(ϑ)Tu+

mmax−1∑
ℓ=1

xℓpℓ(ϑ)Tu mod O0(mmax, j)

≡ p0(ϑ)(1−Q)Tu mod O0(mmax, j)

≡ p0(ϑ)(1−Q)(1 +Q+ · · ·+Qmmax−1)u mod O0(mmax, j)

= p0(ϑ)u.

Hence if j < m∨
i , PTx

i logj x ≡ 0 mod O0(mmax, j) and ui,j(x) := Txi logj x are
required functions.

iii) Since

xℓ
′
r′ℓ′(ϑ)

N∏
ν=1

∏
0≤k′<m′

ν−ℓ′

(ϑ−mν − k′) · xℓrℓ(ϑ)
N∏

ν=1

∏
0≤k<mν−ℓ

(ϑ− k)

= xℓ+ℓ′r′ℓ′(ϑ+ ℓ)rℓ(ϑ)
N∏

ν=1

∏
0≤k′<m′

ν−ℓ′

(ϑ−mν − k′ + ℓ)
∏

0≤k<mν−ℓ

(ϑ− k)

= xℓ+ℓ′r′ℓ′(ϑ+ ℓ)rℓ(ϑ)

N∏
ν=1

∏
0≤k<mν+mν′−ℓ−ℓ′

(ϑ− k),

we have the claim. □
Definition 4.6 (generalized Riemann scheme). Let P ∈ W [x]. Then we call

P is Fuchsian in this paper when P has at most regular singularities in C ∪ {∞}.
Suppose P is Fuchsian with regular singularities at x = c0 = ∞, c1,. . . , cp and

the functions
aj(x)
an(x)

are holomorphic on C \ {c1, . . . , cp} for j = 0, . . . , n. Moreover

suppose P has the set of characteristic exponents {[λj,1](mj,1), . . . , [λj,nj ](mj,nj
)} at

x = cj . Then we define the Riemann scheme of P or the equation Pu = 0 by

(4.15)


x = c0 =∞ c1 · · · cp
[λ0,1](m0,1) [λ1,1](m1,1) · · · [λp,1](mp,1)

...
...

...
...

[λ0,n0 ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λp,np ](mp,np )

 .

Remark 4.7. The Riemann scheme (4.15) always satisfies the Fuchs relation
(cf. (2.21)):

(4.16)

p∑
j=0

nj∑
ν=1

mj,ν−1∑
i=0

(
λj,ν + i

)
=

(p− 1)n(n− 1)

2
.

Definition 4.8 (spectral type). In Definition 4.6 we put

m = (m0,1, . . . ,m0,n0 ;m1,1, . . . ;mp,1, . . . ,mp,np),

which will be also written as m0,1m0,2 · · ·m0,n0 ,m1,1 · · · ,mp,1 · · ·mp,np for simplic-
ity. Then m is a (p+1)-tuple of partitions of n and we define that m is the spectral
type of P .
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If the set of (usual) characteristic exponents

(4.17) Λj := {λj,ν + i ; 0 ≤ i ≤ mj,ν − 1 and ν = 1, . . . , nν}
of the Fuchsian differential operator P at every regular singular point x = cj are n
different complex numbers, P is said to have distinct exponents.

Remark 4.9. We remark that the Fuchsian differential equationM : Pu = 0
is irreducible (cf. Definition 1.12) if and only if the monodromy of the equation is
irreducible.

If P = QR with Q and R ∈W (x; ξ), the solution space of the equation Qv = 0
is a subspace of that of M and closed under the monodromy and therefore the
monodromy is reducible. Suppose the space spanned by certain linearly indepen-
dent solutions u1, . . . , um is invariant under the monodromy. We have a non-trivial

simultaneous solution of the linear relations bmu
(m)
j + · · · + b1u

(1)
j + b0uj = 0 for

j = 1, . . . ,m. Then
bj
bm

are single-valued holomorphic functions on C∪{∞} exclud-
ing finite number of singular points. In view of the local behavior of solutions, the

singularities of
bj
bm

are at most poles and hence they are rational functions. Then

we may assume R = bm∂
m + · · ·+ b0 ∈W (x; ξ) and P ∈W (x; ξ)R.

Here we note that R is Fuchsian but R may have a singularity which is not a
singularity of P and is an apparent singularity. For example, we have

(4.18) x(1−x)∂2+(γ−αx)∂+α =
(γ
α
−x
)−1(

x(1−x)∂+(γ−αx)
)((γ

α
−x
)
∂+1

)
.

We also note that the equation ∂2u = xu is irreducible and the monodromy of its
solutions is reducible.

4.2. Tuples of partitions

For our purpose it will be better to allow some mj,ν equal 0 and we generalize
the notation of tuples of partitions as in [O6].

Definition 4.10. Let m =
(
mj,ν

)
j=0,1,...
ν=1,2,...

be an ordered set of infinite number

of non-negative integers indexed by non-negative integers j and positive integers ν.
Then m is called a (p + 1)-tuple of partitions of n if the following two conditions
are satisfied.

∞∑
ν=1

mj,ν = n (j = 0, 1, . . .),(4.19)

mj,1 = n (∀j > p).(4.20)

A (p+ 1)-tuple of partition m is called monotone if

(4.21) mj,ν ≥ mj,ν+1 (j = 0, 1, . . . , ν = 1, 2, . . .)

and called trivial if mj,ν = 0 for j = 0, 1, . . . and ν = 2, 3, . . .. Moreover m is
called standard if m is monotone and mj,2 > 0 for j = 0, . . . , p. The greatest
common divisor of {mj,ν ; j = 0, 1, . . . , ν = 1, 2, . . .} is denoted by gcdm and m is
called divisible (resp. indivisible) if gcdm ≥ 2 (resp. gcdm = 1). The totality of

(p+ 1)-tuples of partitions of n are denoted by P(n)
p+1 and we put

Pp+1 :=
∞∪

n=0

P(n)
p+1, P(n) :=

∞∪
p=0

P(n)
p+1, P :=

∞∪
p=0

Pp+1,(4.22)

ordm := n if m ∈ P(n),(4.23)

1 := (1, 1, . . .) =
(
mj,ν = δν,1

)
j=0,1,...
ν=1,2,...

∈ P(1),(4.24)
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idx(m,m′) :=

p∑
j=0

∞∑
ν=1

mj,νm
′
j,ν − (p− 1) ordm · ordm′,(4.25)

idxm := idx(m,m) =

p∑
j=0

∞∑
ν=1

m2
j,ν − (p− 1) ordm2,(4.26)

Pidxm := 1− idxm

2
.(4.27)

Here ordm is called the order of m. For m, m′ ∈ P and a non-negative integer
k, m+ km′ ∈ P is naturally defined. Note that

idx(m+m′) = idxm+ idxm′ + 2 idx(m,m′),(4.28)

Pidx(m+m′) = Pidxm+ Pidxm′ − idx(m,m′)− 1.(4.29)

For m ∈ P(n)
p+1 we choose integers n0, . . . , np so that mj,ν = 0 for ν > nj and

j = 0, . . . , p and we will sometimes express m as

m = (m0,m1, . . . ,mp)

= m0,1, . . . ,m0,n0 ; . . . ;mk,1, . . . ,mp,np

= m0,1 · · ·m0,n0 ,m1,1 · · ·m1,n1 , . . . ,mk,1 · · ·mp,np

if there is no confusion. Similarly m = (m0,1, . . . ,m0,n0) if m ∈ P1. Here

mj = (mj,1, . . . ,mj,nj ) and ordm = mj,1 + · · ·+mj,nj (0 ≤ j ≤ p).

For example m = (mj,ν) ∈ P(4)
3 with m1,1 = 3 and m0,ν = m2,ν = m1,2 = 1 for

ν = 1, . . . , 4 will be expressed by

m = 1, 1, 1, 1; 3, 1; 1, 1, 1, 1 = 1111, 31, 1111 = 14, 31, 14

and mostly we use the notation 1111, 31, 1111 in the above. To avoid the confusion
for the number larger than 10, we sometimes use the convention given in §13.1.3.

Let S∞ be the restricted permutation group of the set of indices Z≥0 =
{0, 1, 2, 3, . . .}, which is generated by the transpositions (j, j + 1) with j ∈ Z≥0.
Put S′

∞ = {σ ∈ S∞ ; σ(0) = 0}, which is isomorphic to S∞.

Definition 4.11. The transformation groups S∞ and S′
∞ of P are defined by

S∞ := H ⋉ S′
∞,

S′
∞ := {(σi)i=0,1,... ; σi ∈ S′

∞, σi = 1 (i≫ 1)}, H ≃ S∞,

m′
j,ν = mσ(j),σj(ν) (j = 0, 1, . . . , ν = 1, 2, . . .)

(4.30)

for g = (σ, σ1, . . .) ∈ S∞, m = (mj,ν) ∈ P and m′ = gm. A tuple m ∈ P is
isomorphic to a tuple m′ ∈ P if there exists g ∈ S∞ such that m′ = gm. We
denote by sm the unique monotone element in S′

∞m.

Definition 4.12. For a tuple of partitions m =
(
mj,ν

)
1≤ν≤nj

0≤j≤p

∈ Pp+1 and

λ =
(
λj,ν

)
1≤ν≤nj

0≤j≤p

with λj,ν ∈ C, we define

(4.31)
∣∣{λm}∣∣ := p∑

j=0

nj∑
ν=1

mj,νλj,ν − ordm+
idxm

2
.

We note that the Fuchs relation (4.16) is equivalent to

(4.32) |{λm}| = 0
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because

p∑
j=0

nj∑
ν=1

mj,ν−1∑
i=0

i =
1

2

p∑
j=0

nj∑
ν=1

mj,ν(mj,ν − 1) =
1

2

p∑
j=0

nj∑
ν=1

m2
j,ν −

1

2
(p+ 1)n

=
1

2

(
idxm+ (p− 1)n2

)
− 1

2
(p+ 1)n

=
1

2
idxm− n+

(p− 1)n(n− 1)

2
.

4.3. Conjugacy classes of matrices

Now we review on the conjugacy classes of matrices. For m = (m1, . . . ,mN ) ∈
P(n)
1 and λ = (λ1, . . . , λN ) ∈ CN we define a matrix L(m;λ) ∈M(n,C) as follows,

which is introduced and effectively used by [O2] and [O6]:
If m is monotone, then

L(m;λ) :=
(
Aij

)
1≤i≤N
1≤j≤N

, Ai,j ∈M(mi,mj ,C),

Aij =


λiImi (i = j),

Imi,mj :=
(
δµν

)
1≤µ≤mi
1≤ν≤mj

=

(
Imj

0

)
(i = j − 1),

0 (i ̸= j, j − 1).

(4.33)

Here Imi denote the identity matrix of size mi and M(mi,mj ,C) means the set of
matrices of size mi ×mj with components in C and M(m,C) :=M(m,m,C).

For example

L(2, 1, 1;λ1, λ2, λ3) :=


λ1 0 1
0 λ1 0

λ2 1
λ3

 .

Suppose m is not monotone. Then we fix a permutation σ of {1, . . . , N} so that
(mσ(1), . . . ,mσ(N)) is monotone and put

L(m;λ) = L(mσ(1), . . . ,mσ(N);λσ(1), . . . , λσ(N)).

When λ1 = · · · = λN = µ, L(m;λ) may be simply denoted by L(m, µ).
We denote A ∼ B for A, B ∈M(n,C) if and only if there exists g ∈ GL(n,C)

with B = gAg−1.
When A ∼ L(m;λ), m is called the spectral type of A and denoted by spcA

with a monotone m.

Remark 4.13. i) If m = (m1, . . . ,mN ) ∈ P(n)
1 is monotone, we have

A ∼ L(m;λ) ⇔ rank

j∏
ν=1

(A− λν) = n− (m1 + · · ·+mj) (j = 0, 1, . . . , N).

ii) For µ ∈ C, put

(4.34) (m;λ)µ = (mi1 , . . . ,miN ;µ) with {i1, . . . , iN} = {i ; λi = µ}.

Then we have

(4.35) L(m;λ) ∼
⊕
µ∈C

L
(
(m;λ)µ

)
.
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iii) Suppose m is monotone. Then for µ ∈ C

L(m, µ) ∼
m1⊕
j=1

J
(
max{ν ; mν ≥ j}, µ

)
,

J(k, µ) := L(1k, µ) ∈M(k,C).

(4.36)

iv) For A ∈ M(n,C), we put Z(A) = ZM(n,C)(A) := {X ∈ M(n,C) ; AX =
XA}. Then

dimZM(n,C)
(
L(m, λ)

)
= m2

1 +m2
2 + · · ·

v) (cf. [O8, Lemma 3.1]). Let A(t) : [0, 1) → M(n,C) be a continuous
function. Suppose there exist a continuous function λ = (λ1, . . . , λN ) : [0, 1)→ CN

such that A(t) ∼ L(m;λ(t)) for t ∈ (0, 1). Then

(4.37) A(0) ∼ L
(
m;λ(0)

)
if and only if dimZ

(
A(0)

)
= m2

1 + · · ·+m2
N .

Note that the Jordan canonical form of L(m;λ) is easily obtained by (4.35)
and (4.36). For example, L(2, 1, 1;µ) ≃ J(3, µ)⊕ J(1, µ).

4.4. Realizable tuples of partitions

Proposition 4.14. Let Pu = 0 be a differential equation of order n which has
a regular singularity at 0. Let {[λ1](m1), . . . , [λN ](mN )} be the corresponding set of
the characteristic exponents. Here m = (m1, . . . ,mN ) a partition of n.

i) Suppose there exists k such that

λ1 = λ2 = · · · = λk,

m1 ≥ m2 ≥ · · · ≥ mk,

λj − λ1 /∈ Z (j = k + 1, . . . , N).

Let m∨ = (m∨
1 , . . . ,m

∨
r ) be the dual partition of (m1, . . . ,mk) (cf. (4.11)). Then

for i = 0, . . . ,m1 − 1 and j = 0, . . . ,m∨
i+1 − 1 the equation has the solutions

(4.38) ui,j(x) =

j∑
ν=0

xλ1+i logν x · ϕi,j,ν(x).

Here ϕi,j,ν(x) ∈ O0 and ϕi,ν,j(0) = δν,j for ν = 0, . . . , j − 1.
ii) Suppose

(4.39) λi − λj ̸= Z \ {0} (0 ≤ i < j ≤ N).

In this case we say that the set of characteristic exponents {[λ1](m1), . . . , [λN ](mN )}
is distinguished. Then the monodromy generator of the solutions of the equation at
0 is conjugate to

L
(
m; (e2π

√
−1λ1 , . . . , e2π

√
−1λN )

)
.

Proof. Lemma 4.5 ii) shows that there exist ui,j(x) of the form stated in i)
which satisfy Pui,j(x) ∈ O0(λ1 +m1, j) and then we have vi,j(x) ∈ O0(λ1 +m1, j)
such that Pui,j(x) = Pvi,j(x) because of (2.6). Thus we have only to replace ui,j(x)
by ui,j(x)−vi,j(x) to get the claim in i). The claim in ii) follows from that of i). □

Remark 4.15. i) Suppose P is a Fuchsian differential operator with regular
singularities at x = c0 = ∞, c1, . . . , cp and moreover suppose P has distinct expo-
nents. Then the Riemann scheme of P is (4.15) if and only if Pu = 0 has local
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solutions uj,ν,i(x) of the form

(4.40) uj,ν,i(x) =


(x− cj)λj,ν+i

(
1 + o(|x− cj |mj ,ν−i−1)

)
(x→ cj , i = 0, . . . ,mj,ν − 1, j = 1, . . . , p),

x−λ0,ν−i
(
1 + o(x−m0,ν+i+1)

)
(x→∞, i = 0, . . . ,m0,ν).

Moreover suppose λj,ν − λj,ν′ /∈ Z for 1 ≤ ν < ν′ ≤ nj and j = 0, . . . , p. Then

(4.41) uj,ν,i(x) =

{
(x− cj)λj,ν+iϕj,ν,i(x) (1 ≤ j ≤ p)
x−λ0,ν−iϕ0,ν,i(x) (j = 0)

with ϕj,ν,i(x) ∈ Ocj satisfying ϕj,ν,i(cj) = 1. In this case P has the Riemann
scheme (4.15) if and only if at the each singular point x = cj , the set of characteristic
exponents of the equation Pu = 0 equals Λj in (4.17) and the monodromy generator
of its solutions is semisimple.

ii) Suppose P has the Riemann scheme (4.15) and λ1,1 = · · · = λ1,n1
. Then

the monodromy generator of the solutions of Pu = 0 at x = c1 has the eigenvalue

e2π
√
−1λ1,1 with multiplicity n. Moreover the monodromy generator is conjugate to

the matrix L
(
(m1,1, . . . ,m1,n1

), e2π
√
−1λ1,1

)
, which is also conjugate to

J(m∨
1,1, e

2π
√
−1λ1,1)⊕ · · · ⊕ J(m∨

1,n′
1
, e2π

√
−1λ1,1).

Here (m∨
1,1, . . . ,m

∨
1,n∨

1
) is the dual partition of (m1,1, . . . ,m1,n1). A little weaker

condition for λj,ν assuring the same conclusion is given in Proposition 9.9.

Definition 4.16 (realizable spectral type). Letm = (m0, . . . ,mp) be a (p+1)-
tuple of partitions of a positive integer n. Here mj = (mj,1, . . . ,mj,nj ) and n =
mj,1+· · ·+mj,nj for j = 0, . . . , p andmj,ν are non-negative numbers. Fix p different
points cj (j = 1, . . . , p) in C and put c0 =∞.

Then m is a realizable spectral type if there exists a Fuchsian operator P with
the Riemann scheme (4.15) for generic λj,ν satisfying the Fuchs relation (4.16).
Moreover in this case if there exists such P so that the equation Pu = 0 is ir-
reducible, which is equivalent to say that the monodromy of the equation is irre-
ducible, then m is irreducibly realizable.

Remark 4.17. i) In the above definition {λj,ν} are generic if, for example,
0 < m0,1 < ordm and {λj,ν ; (j, ν) ̸= (0, 1), j = 0, . . . , p, 1 ≤ ν ≤ nj} ∪ {1} are
linearly independent over Q.

ii) It follows from the facts (cf. (2.22)) in §2.1 that if m ∈ P satisfies

|{λm′}| /∈ Z≤0 = {0,−1,−2, . . .} for any m′, m′′ ∈ P
satisfying m = m′ +m′′ and 0 < ordm′ < ordm,

(4.42)

the Fuchsian differential equation with the Riemann scheme (4.15) is irreducible.
Hence if m is indivisible and realizable, m is irreducibly realizable.

Fix distinct p points c1, . . . , cp in C and put c0 =∞. The Fuchsian differential
operator P with regular singularities at x = cj for j = 1, . . . , n has the normal form

(4.43) P =
( p∏
j=1

(x− cj)n
)
∂n + an−1(x)∂

n−1 + · · ·+ a1(x)∂ + a0(x),

where ai(x) ∈ C[x] satisfy
deg ai(x) ≤ (p− 1)n+ i,(4.44)

(∂νai)(cj) = 0 (0 ≤ ν ≤ i− 1)(4.45)
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for i = 0, . . . , n− 1.
Note that the condition (4.44) (resp. (4.45)) corresponds to the fact that P has

regular singularities at x = cj for j = 1, . . . , p (resp. at x =∞).

Since ai(x) = bi(x)
∏p

j=1(x − cj)
i with bi(x) =

∑(p−1)(n−i)
r=0 bi,rx

r ∈ W [x]

satisfying deg bi(x) ≤ (p − 1)n + i − pi = (p − 1)(n − i), the operator P has the
parameters {bi,r}. The numbers of the parameters equals

n−1∑
i=0

(
(p− 1)(n− i) + 1

)
=

(pn+ p− n+ 1)n

2
,

The condition (x − cj)−kP ∈ W [x] implies (∂ℓai)(cj) = 0 for 0 ≤ ℓ ≤ k − 1 and
0 ≤ i ≤ n, which equals (∂ℓbi)(cj) = 0 for 0 ≤ ℓ ≤ k − 1 − i and 0 ≤ i ≤ k − 1.
Therefore the condition

(4.46) (x− cj)−mj,ν Ad
(
(x− cj)−λj,ν

)
P ∈W [x]

gives
(mj,ν+1)mj,ν

2 independent linear equations for {bν,r} since
∑mj,ν−1

i=0 (mj,ν −
i) =

(mj,ν+1)mj,ν

2 . If all these equations have a simultaneous solution and they are
independent except for the relation caused by the Fuchs relation, the number of
the parameters of the solution equals

(pn+ p− n+ 1)n

2
−

p∑
j=0

nj∑
ν=1

mj,ν(mj,ν + 1)

2
+ 1

=
(pn+ p− n+ 1)n

2
−

p∑
j=0

nj∑
ν=1

m2
j,ν

2
− (p+ 1)

n

2
+ 1

=
1

2

(
(p− 1)n2 −

p∑
j=0

nj∑
ν=1

m2
j,ν + 1

)
= Pidxm.

(4.47)

Remark 4.18 (cf. [O6, §5]). Katz [Kz] introduced the index of rigidity of
an irreducible local system by the number idxm whose spectral type equals m =
(mj,ν)j=0,...,p

ν=1,...,nj

and proves idxm ≤ 2, if the local system is irreducible.

Assume the local system is irreducible. Then Katz [Kz] shows that the local
system is uniquely determined by the local monodromies if and only if idxm = 2
and in this case the local system and the tuple of partition m are called rigid. If
idxm > 2, the corresponding system of differential equations of Schleginger normal
form

(4.48)
du

dx
=

p∑
j=1

Aj

x− aj
u

has 2Pidxm parameters which are independent from the characteristic exponents
and local monodromies. They are called accessory parameters. Here Aj are con-
stant square matrices of size n. The number of accessory parameters of the single
Fuchsian differential operator without apparent singularities will be the half of this
number 2Pidxm (cf. Theorem 6.14 and [Sz]).

Lastly in this section we calculate the Riemann scheme of the products and the
dual of Fuchsian differential operators.

Theorem 4.19. Let P be a Fuchsian differential operator with the Riemann
scheme (4.15). Suppose P has the normal form (4.43).
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i) Let P ′ be a Fuchsian differential operator with regular singularities also at
x = c0 =∞, c1, . . . , cp. Then if P ′ has the Riemann scheme

(4.49)


x = c0 =∞ cj (j = 1, . . . , p)

[λ0,1 +m0,1 − (p− 1) ordm](m′
0,1)

[λj,1 +mj,1](m′
j,1)

...
...

[λ0,n0 +m0,n0 − (p− 1) ordm](m′
0,n0

) [λj,nj +mj,nj ](m′
j,nj

)

 ,

the Fuchsian operator P ′P has the spectral type m+m′ and the Riemann scheme

(4.50)


x = c0 =∞ c1 · · · cp

[λ0,1](m0,1+m′
0,1)

[λ1,1](m1,1+m′
1,1)

· · · [λp,1](mp,1+m′
p,1)

...
...

...
...

[λ0,n0 ](m0,n0+m′
0,n0

) [λ1,n1 ](m1,n1+m′
1,n1

) · · · [λp,np ](mp,np+m′
1,np

)

 .

Suppose the Fuchs relation (4.32) for (4.15). Then the Fuchs relation for (4.49) is
valid if and only if so is the Fuchs relation for (4.50).

ii) For Q =
∑

k≥0 qk(x)∂
k ∈W (x), we define the formal adjoint Q∗ of Q by

(4.51) Q∗ :=
∑
k≥0

(−∂)kqk(x)

and the dual operator P∨ of P by

(4.52) P∨ := an(x)(an(x)
−1P )∗

when P =
∑n

k=0 ak(x)∂
k. Then the Riemann scheme of P∨ equals

(4.53)


x = c0 =∞ cj (j = 1, . . . , p)

[2− n−m0,1 − λ0,1](m0,1) [n−mj,1 − λj,1](mj,1)

...
...

[2− n−m0,n0 − λ0,n0 ](m0,n0 )
[n−mj,nj − λj,nj ](mj,nj

)

 .

Proof. i) It is clear that P ′P is a Fuchsian differential operator of the nor-
mal form if so is P ′ and Lemma 4.5 iii) shows that the characteristic exponents
of P ′P at x = cj for j = 1, . . . , p are just as given in the Riemann scheme
(4.50). Put n = ordm and n′ = m′. We can also apply Lemma 4.5 iii) to

x−(p−1)nP and x−(p−1)n′
P ′ under the coordinate transformation x 7→ 1

x , we have

the set of characteristic exponents as is given in (4.50) because x−(p−1)(n+n′)P ′P =(
Ad(x−(p−1)n)x−(p−1)n′

P ′)(x−(p−1)n)P .
The Fuchs relation for (4.49) equals

p∑
j=0

nj∑
ν=1

m′
j,ν

(
λj,ν +mj,ν − δj,0(p− 1) ordm

)
= ordm′ − idxm′

2
.

Since
p∑

j=0

nj∑
ν=1

m′
j,ν

(
mj,ν − δj,0(p− 1) ordm

)
= idx(m,m′),

the condition is equivalent to

(4.54)

p∑
j=0

nj∑
ν=1

m′
j,νλj,ν = ordm′ − idxm

2
− idx(m,m′)

and also to

(4.55)

p∑
j=0

nj∑
ν=1

(mj,ν +m′
j,ν)λj,ν = ord(m+m′)− idx(m+m′)

2
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under the condition (4.32).
ii) We may suppose c1 = 0. Then

an(x)
−1P =

∑
ℓ≥0

xℓ−nqℓ(ϑ)
∏

1≤ν≤n1
0≤i<m1,ν−ℓ

(ϑ− λ1,ν − i),

an(x)
−1P∨ =

∑
ℓ≥0

qℓ(−ϑ− 1)
∏

1≤ν≤n1
0≤i<m1,ν−ℓ

(−ϑ− λ1,ν − i− 1)xℓ−n

=
∑
ℓ≥0

xℓ−nsℓ(ϑ)
∏

1≤ν≤n1
0≤i<m1,ν−ℓ

(ϑ+ λ1,ν + i+ 1 + ℓ− n)

=
∑
ℓ≥0

xℓ−nsℓ(ϑ)
∏

1≤ν≤n1
0≤j<m1,ν−ℓ

(ϑ+ λ1,ν − j +m1,ν − n)

with suitable polynomials qℓ and sℓ such that q0, s0 ∈ C×. Hence the set of
characteristic exponents of P∨ at c1 is {[n−m1,ν − λ1,ν ](m1,ν) ; ν = 1, . . . , n1}.

At infinity we have

an(x)
−1P =

∑
ℓ≥0

x−ℓ−nqℓ(ϑ)
∏

1≤ν≤n1
0≤i<m0,ν−ℓ

(ϑ+ λ0,ν + i),

(an(x)
−1P )∗ =

∑
ℓ≥0

x−ℓ−nsℓ(ϑ)
∏

1≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ− λ0,ν − i+ 1− ℓ− n)

=
∑
ℓ≥0

x−ℓ−nsℓ(ϑ)
∏

1≤ν≤n1
0≤j<m0,ν−ℓ

(ϑ− λ0,ν + j + 2− n−m0,ν)

with suitable polynomials qℓ and sℓ with q0, s0 ∈ C× and the set of characteristic
exponents of P∨ at c1 is {[2− n−m0,ν − λ0,ν ](m0,ν) ; ν = 1, . . . , n0} □

Example 4.20. i) The Riemann scheme of the dual P∨
λ1,...,λp,µ

of the Jordan-

Pochhammer operator Pλ1,...,λp,µ given in Example 1.8 iii) is
1
c1

· · · 1
cp

∞
[1](p−1) · · · [1](p−1) [2− 2p+ µ](p−1)

λ1 − µ+ p− 1 · · · −λp − µ+ p− 1 λ1 + · · ·+ λp + µ− p+ 1

 .

ii) (Okubo type) Suppose P̄m(λ) ∈W [x] is of the form (11.34). Moreover sup-
pose P̄m(λ) has the the Riemann scheme (11.34) with (11.33). Then the Riemann
scheme of P̄m(λ)∗ equals

(4.56)



x =∞ x = cj (j = 1, . . . , p)
[2−m0,1 − λ0,1](m0,1) [0](mj,1)

[2−m0,2 − λ0,2](m0,2) [mj,1 −mj,2 − λj,2](mj,2)

...
...

[2−m0,n0 − λ0,n0 ](m0,n0 )
[mj,1 −mj,nj − λj,nj ](mj,nj

)


.


