CHAPTER 3

Non-Triviality of the Godbillon—Vey Class

The aim of this chapter is to show the following Theorem A in Introduction.

THEOREM A.

1) For each q, there are transversely holomorphic foliations of complex co-
dimension q of which the Godbillon—Vey classes are non-trivial.

2) Ifqis odd and q > 3, then there are at least two transversely holomorphic fo-
liations of complex codimension q which are non-cobordant as real foliations
of codimension 2q. If ¢ =5, then there are at least three transversely holo-
morphic foliations such that none of them are cobordant as real foliations

of real codimension 10.

Moreover, these foliations can be realized as locally homogeneous foliations.

For this purpose, we will first introduce locally homogeneous foliations and then
explain how their complex secondary classes are computed. We will show Theorem A
in Section 3.3 by constructing examples. Similar examples in the real category are

studied by several authors. See for example Baker [12] and the references therein.

3.1. Locally Homogeneous Foliations and Complex Secondary Classes

NoTAaTION 3.1.1. Given a Lie group, we denote its Lie algebra by the corres-
ponding German lower case letter, e.g., if G is a Lie group, then its Lie algebra is

denoted by g.

Let G be a Lie group and K its connected closed Lie subgroup. Let H be a
connected subgroup of GG which contains K, and denote by F the foliation of G whose
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28 3. NON-TRIVIALITY OF THE GODBILLON-VEY CLASS

leaves are {gH | g € G}. This foliation induces a foliation F of G/K invariant under
the left action of G. If in addition G/K admits a cocompact lattice I', a foliation
Fr of M = I'\G/K is induced.

DEFINITION 3.1.2. A foliation F obtained from a quadruplet (G, H, K, I") as
above is called a locally homogeneous foliation. If K is trivial, then Fr is called a

(G, H)-foliation or a homogeneous foliation.

DEFINITION 3.1.3. Assume that H is a closed Lie subgroup of G. A foliation
F of M is said to be a transversely (G, G/H)-foliation or transversely homogeneous
foliation if F admits a foliation atlas ({Vy x Bx}, {(¥ux,7ux)}) as in Definition 1.1.1
such that B) is an open subset of G/H and v, is given by the natural left action
of Gon G/H.

Locally homogeneous foliations are transversely (G,G/H)-foliations if H is
closed. Indeed, Fr is locally given by the submersion from G/K to G/H and
the transition functions in the transverse direction is given by the left action of G.

Locally homogeneous and transversely homogeneous foliations are studied by
many people (cf. [12], [15], [63], [61], [20], [14], [44], etc.). For example, there are
following results. Some of statements are slightly modified to meet our notations

and conventions.

THEOREM 3.1.4 (Benson—Ellis [14], see also [20], [44]). Let F be a transversely
(G, G/H)-foliation. If G is semisimple, then all real secondary classes of F are rigid.

THEOREM 3.1.5. Let F be a (G, H)-foliation.

1) (Pittie [63] and Pelletier [61]) If H is nilpotent or reductive, then all real
secondary classes of F are trivial. If H is solvable, then only real secondary
classes which can be non-trivial are the non-zero multiples of the Godbillon—
Vey class.

2) (Pittie [63]) If (G, H) is a parabolic pair, namely, if G is semisimple and

H is parabolic, then only real secondary classes of the form hrc;(F) with
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i1+cy = codimpF +1 can be non-trivial, where i1 is the smallest entry of I.
Moreover, such non-trivial classes are cohomologous to scalar multiples
of hihp ¢ (F).

There are examples where GV ¢(F) and hihp c](F) are non-trivial in the both cases,

where ¢ = codimgF .

Assume now that g/h admits G-invariant complex structures. Then F is trans-
versely holomorphic. It is the case if G and H are complex Lie groups. In what

follows, we pose the following

ASSUMPTION 3.1.6. Let G be a complex Lie group and let H be its closed con-
nected complex Lie subgroup. Assume that there is an Adg-invariant splitting
o:g/h — g, i.e., the image is invariant under the action of Adx. Assume also

that there is an Ad-invariant Hermitian metric on g/b.

It is easy to verify that if o is Adg-invariant, then Adg(o(v)) = o(Adg(v)) for
v € g/h and k € K. Note that a splitting o and a Hermitian metric as above always
exist if K is compact.

Let 7 be the foliation of G /K induced by the foliation F of G as above. Then
the complex normal bundle Q(]? ) of Fis naturally isomorphic to G Xk (g/bh),
where K acts on G x (g/h) on the right by (g,v) - k = (gk, Adg-1v). Hence the
normal bundle Q(Fr) is naturally isomorphic to I'\G xk (g/h). If we denote by
P = P(F) the principal bundle associated with Q(F), then P 2 G x x GL(g/h),
where (g, A) - k = (gk, k' A) for (g, A) € G x GL(g/b).

Connections of the following kind are relevant.

DEFINITION 3.1.7. A connection on Q(Fr) is said to be locally homogeneous if
it is induced by a gl(g/h)-valued 1-form on the trivial bundle G x GL(g/h) and if it

is invariant under the left G-action and the right K-action as above.

The following theorem is known to hold under these assumptions, although the

theorem is usually stated for the real secondary classes derived from H*(WOy).
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THEOREM 3.1.8 (Kamber-Tondeur [49], Baker [12], Pittie [63]). Let (G, H, K, I")
be as above and assume that there are an Adk-invariant splitting of g — g/b and
an Adk-invariant Hermitian metric on g/b. Let gr be the Lie algebra g viewed as
a real Lie algebra. Then the characteristic mapping X© for Fr is factored through
H*(gr, t) if locally homogeneous connections are used in calculation. This mapping
is independent of the choice of locally homogeneous connections so that there is a

well-defined mapping from H*(WU,) to H*(gr,€) which factors the characteristic
mapping.

If g’ is a real Lie algebra and if ¥’ is a Lie subalgebra of g’, then the cohomology
group H*(g',¥') is by definition the cohomology of the complex

C*(g ¥)={we N'g"|ikw=0,igdw=0forall K € '},

where i denotes the interior product with K. We refer to [16] for more details.
Theorem 3.1.8 is quite useful when combined with the following theorem of

T. Kobayashi and K. Ono. The following is a quite reduced form.

THEOREM 3.1.9 ([52, Proposition 3.9 and Example 3.6]). Let G’ be a real con-
nected semisimple Lie group and let K' be its compact subgroup. If I'' is a cocompact

lattice of G'/K', then the natural mapping H*(g¢',¥') — H*(I"\G'/K') is injective.

By virtue of Theorems 3.1.8 and 3.1.9, it suffices to study the characteristic
classes of examples in Section 3.3 as an element of H™(gg, £) rather than H*(I'\G/K).

From now on, we will give a proof Theorem 3.1.8 in steps by following Baker [12].
We do not assume that G is semisimple nor K is compact until Section 3.2.

There is a natural Bott connection as follows.

DEFINITION 3.1.10 (cf. [12, Lemma 4.3]). Let 7: g — g/bh be the projection
and o an Adg-invariant section to 7. Set p = idy — o7, and define a gl(g/h)-valued

1-form 6 on G x GL(g/h) by setting
9(g7A) (X,Y) =Ads— (Lz—lp*ad)(X) + TA(Y)a

where (X,Y') € T4 4)(G x GL(g/b)) and 7 is the Maurer—Cartan form on GL(g/bh).
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Note that p is also an Adg-invariant mapping from g to b.

LeMMA 3.1.11 ([12]). 0 induces a connection on P invariant under the natural
left action of G on P. Moreover, 0 is associated with a Bott connection on the com-

plex normal bundle Q(F).

Proor. We will prove the lemma in steps.
Claim 1. 0 projects down to P.
Let k € K and denote by R, the right action of K on G x GL(g/h). Then

(R3.0)(g,4) = RiO(gk,ad, _, A)
= R (Ada-1Adaq, (Ly-1 Ly-1p"ad) + 7-14)
= AdAflAdAdk (L;,1 Ad,’;_lp*ad) +TA.

Hence it suffices to show that Adj—:1p*ad = Ad Ad, 1 © p*ad. This is a consequence

of the following infinitesimal version.

Claim 2. ad} p*ad = [ad,, p*ad] if w € €, where the right hand side is the Lie
bracket of ad,, and p*ad in gl(g/h).

Indeed, for X,Y € g, one has (ad;, p*ad(X))Y = ad,, x)Y. Since w € € and p

is Adg-invariant,
adp[w7X}Y = Hwa Y]v p(X)] + [w7 [,O(X), Y]]
= —ad,(x)(ad,Y) + ady(ad,x)Y).
Hence Claim 2 and Claim 1 are shown.

Let R4 denote the right action of GL(g/h) on P, and given a vector v € gl(g/h),

v denotes the vertical fundamental vector field induced by v.
Claim 3. R%0 = Ad,-160 and 0(v) = v.
If (X,Y) € Tiy,3)(G x GL(g/h)), then
(R40)(9,8)(X,Y) = 0(g,54)(X, Ra.Y)
= AdA—lAdB_ladp(Lg_l*X) + 78(RAxY)
— Ada 1 (0.5 (X, V).

The second claim is clear.
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Claim 4. 0 is left invariant.

Let Lo be the left action of G on G x GL(g/h). Then,
(L5,0)(g2,2)(X,Y) = Adp-1 (L, 1 L, -1p"ad)(Lg,« X) + Ta(Y)
= 0(g,,.1)(X,Y).

Claim 5. 0 is a Bott connection.

Let [go] € G/K and choose a local decomposition Uy x Us of G around gg, where
Uy and U, are open sets such that U; € K and U, is diffeomorphic to an open set
of G/K containing [go] (in terms of foliations, U; x Us is a foliation chart for the
foliation of G' by cosets of K). Define a local section of P around [go] by setting
s([g]) = [g,1dg/p), where g € Us. If X € Tjy(goH/K) and Y € Q(]?)[go], then one
may assume that L, -1, X € hand L, -1,Y € g/b. It follows that

(870) 190 (X)Y = O(g.id, ) (5::X)s:Y = adxY. O

Let {w',...,w?} be a basis for (g/h)* and consider each w’ as an element of g*
which vanishes when restricted to h. As H is a subgroup, there is a gl(g/h)-valued

1

1-form 6 such that dw = —f Aw, where w = *(w',...,w?). Since w can be considered

as an element of P, one has the following

COROLLARY 3.1.12. Assume that § = 0 when restricted to the image of the
Adg -invariant splitting o as above, then 6 can be regarded as a left invariant Bott

connection on Q(F).

Fix now an Adg-invariant Hermitian metric on g/ so that Adx C U(g/h). Let
h =tdndm be an Adg-invariant splitting such that ¢®n = ¢+ker ad and ad,, = 0,
and denote by p’ the projection from h to €. Finally, choose an Adaq, -invariant

splitting gl(g/h) = ade ® ady, @ [ and denote by p the projection to ade.

LEMMA 3.1.13 (cf. [12, Lemma 4.4]). If we set p, = p'op: g — &, then we have
the following properties:

1) poadp(X> = adpu(X) fOTX cg.
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2) If we set
(. (X, Y) = Ada-1(L-1pyad)(X) + 7a(Y),

then 0% is a unitary connection.

PrROOF. Let X = X1+ Xo+Xg e tdndm = h. Then p,(X) = X; and
ady = adx, + adx,. Hence poadx = adx, = ad,, (x). Since the mapping p,, is
Ad g-invariant, we can show, by a similar argument as in the proof of Lemma 3.1.11,

that 0" is a connection form on P. Finally, 6* is u(g/h)-valued when restricted to

G xk U(g/h). Therefore 0 is unitary. O

PrOOF OF THEOREM 3.1.8. Since the connections given by Lemmata 3.1.11
and 3.1.13 are left invariant, they induce connections on Q(F). When calculated by
these connections, the characteristic mapping is factored through H*(ggr, ). Thus
obtained mapping is shown to be independent of the choice of connections by stand-

ard arguments (cf. [19]). O

Let Fr be a locally homogeneous, transversely holomorphic foliation associated
with (G,H,K,I"). A version of Theorem 3.1.8 for foliations with trivial normal

bundle can be also shown by similar arguments as above.

THEOREM 3.1.14. Let Fr, F and (G,H,K,I') be as above. Assume that Q(]?)
admits a left invariant trivialization, say s. Then the characteristic mapping )?(}ns
is factored through H2q+1(9R,E) by using a locally homogeneous Bott connection.
The factorization is independent of the choice of the connection and depends on left
invariant homotopy type of s. In particular, the Bott class is realized as an element
of H*(gr,¥) and independent of the choice of invariant trivializations and locally

homogeneous Bott connections.

The last part follows from the fact that the Bott class is independent of the

choice of trivializations.
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3.2. Calculation of the Lie Algebra Cohomology

In what follows, we assume that G is a complex semisimple Lie group and that
K is a compact connected Lie subgroup of G. Hence there are always cocompact

lattices of G/K, and Theorem 3.1.9 is valid.

NoTATION 3.2.1. Let go be a compact real form of g. We assume that & C go.
The complex Lie algebra g considered as a real Lie algebra is denoted by ggr. Let J
be the complex structure of g and let g~ be the Lie algebra gr equipped with the
complex structure —J. The complex conjugate on g with respect to go is denoted

by o, namely, o(X + JY) = X — JY for X,Y € go.

We will construct an isomorphism from H*(gg, ) to H*(Go x (Go/K)), where

Gy is a compact Lie group with Lie algebra gg.
DEFINITION 3.2.2. The complex conjugate of an element of w € A g* is denoted
by W € A g *. Their complexifications are denoted as follows:

WwCf=weCe (Ag:)®C,

Note that if w restricted to gy takes values in R (resp.v/—1R), then @ = o*w

(resp. W = —0*w).

DEFINITION 3.2.3. Let ko: go®go — goBV —1Jgo C gr®C be the isomorphism
of real Lie algebras defined by

Ko(X1, X2) = 3 (X1 — VILIX) + 5 (X + V1K),
Since go ® vV—1Jgo is a real form of gr ® C, k¢ induces an isomorphism
K:g®g— gr ®C by complexification. If XY, Z W € g, then
KX +JY, Z+ JW)
:é(X+JY+Z—JW)+\/—_1%(—JX+Y—|—JZ+W).

The following formulae are frequently used.
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LEMMA 3.2.4. If X € go, then we have
K HX) = (X, X), K HIX) = (JX,—JX),

kHV-1X) = (JX, JX), KHV-1JX) = (=X, X).
The following lemma can be easily shown from the above formulae.

LEMMA 3.2.5. Let k: gBg — gr®RC be as above and At the diagonal embedding
of £ into g®g. Then k™ *(8) = At and k' (E® C) = At ®@C = {(k, k) |k € €2 C}.

As Cis chosen as the coefficients, there is a natural isomorphism from H™* (gg, ¢; C)

to H* (gr ® C, £ ® C; C). Hence ~ induces an isomorphism

K*: H*(gr,t) > H* (g g, At @ C).

LEMMA 3.2.6. Let w € g*. If we set w' = (w,0) € g* ® g* and w? = (0,w) €
g* @ g*, then k*(W%) = w'. If wly, is R-valued, then x*(@°) = w?. If w|g, is

vV —1R-valued, then k*(@°) = —w?.

Proor. If X,Y, Z W € gp, then

K* (WX + Y, Z 4 JW)
= S@(X) +6(JY) +0(2) ~ 0(JW)) + S (@(X) + W(JY) ~ w(Z) + w(JWV))

= w(X + JY).
If we assume that w|y, is valued in R, then &w = oc*w. Hence
(@EONX +JTY, Z+ TW)
_ _ _ _ v—1, _ _ _ _
(W(X)+w(JY)+w(Z)—w(JW))+ T(—w(JX) +o(Y)+w(JZ)+w(W))

(WX)—w(JJY)+w(Z)+w(JW)) + = (—w(X)+w(JY) +w(Z) + w(JW))

€ IR~ X
DN | =

=W (X +JY, Z+JW).

If wlg, is valued in v/—1R, then the equation x*(@") = —w? follows from similar

calculations. O
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Since go is a real form of g, there are isomorphisms as follows:
H*(g@ g, A(t®C)) =H"((90 ® C) & (9o ® C), At © C)
=H"((go ® go) ® C,At @ C)
= H"((Go x Go)/K),
where K acts on Gy x G diagonally on the right. The diffeomorphism 7: G x
(Go/K) — (Gg x Gg)/K given by 7(g1, [92]) = [9192, g2] induces an isomorphism
T H*((90 @ 90) ® C,At® C) = H*(g90 ® C) ® H*(go ® C,t® C)

given by 7 ([o, 8) = (la], [ + 8]). Note that H*(go ® C) @ H*(go & C,® C) =
H*(Gy x (Go/K)). Summing up, we obtained the following

PROPOSITION 3.2.7. Let k and T be as above. Then
7'k H' (g, t) — H"(g0) ® H(go,t) = H"(Go x (Go/K))
is an isomorphism such that
TR (W) = (w,w),

(@) (0,w),  ifwlg, is valued in R,
TR (W) =
(0, —w), ifwlg, is valued in v/ —1R,

where w € g*.

3.3. Examples

This is the main section of the first half of this monograph. We will construct ex-
amples of transversely holomorphic foliations with non-trivial Godbillon—Vey class.
We will also compare some of examples to show that they are not cobordant even
as real foliations. Recall that G is a complex semisimple Lie group, H is a com-
plex closed Lie subgroup and K is a compact connected Lie subgroup contained
in H. Inwhat follows, transversely (G, G/ H )-foliations are called (G, G/ H)-foliations

for short.
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NoTATION 3.3.1. Cochains in WOy, are regarded as cochains in WU, via the
mapping A in Theorem 2.1. If « € H*(WUj), then the image of o under x 7, as an
element of H*(gg,t) is denoted by «(K).

The following lemma shows that it is preferable to verify the non-triviality of

GVy,(K) for small K.

LEMMA 3.3.2. Suppose that a(K) is non-trivial in H*(gr, ). If K' is a compact
subgroup such that K C K' C H, then a(K'") is non-trivial in H*(gg, ).

PROOF. We have a natural mapping 7: H*(gg,¥) — H*(gg,t). By the func-
toriality of the characteristic mapping, r(a(K")) = a(K). O
We have however the following

ProposITION 3.3.3. v;({e}) = ©;({e}) = 0 holds for all i. In particular,
GVy,({e}) =0.

PROOF. The bundle Q(F) admits a G-invariant trivialization because it is iso-
morphic to G x (g/h). Hence v;({e}) = T;({e}) = 0. The Godbillon-Vey class is
also trivial by Theorem 2.1. O

We recall the definition of several Lie algebras to fix notations. We denote by

I, the identity matrix in M (q;C) and set J, = <_OI %) € M(2¢;C).
q

DEFINITION 3.3.4.

1) sl(¢g+1;C) ={X € M(¢q+1;C) |[tr X = 0}.

2) 5u(q+1 ={X esl(¢g+1;C)| X +'X =0}.

3) so(q; F) ={X € M(¢;F)| X +'X =0}, where F=R or F =C.
4) sp(q;C) = {X € M(2¢;C)|'X J, + J,X = 0}.

5) 5P(Q) sp(g; R) = sp(g; C) N su(2g).

For more details including the topology of homogeneous spaces, we refer to [59].
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NoOTATION 3.3.5. In what follows, rows and columns of matrices are always
counted from zero. We denote by E;; (0 < 4,5 < ¢) the matrix such that the

(i,7)-entry is 1 and the other entries are 0.

EXAMPLE 3.3.6. We will construct an (SL(q + 1;C), CP?)-foliation. Let g =
sl(g+1;C) and go = su(g+1). Let T be the maximal torus of G realized as a subset
of diagonal matrices in the standard way, and let U,, SU, and H be subgroups of
G defined by

U, = {(g g) BeU(g),a= (detB)—l},

SUq:{<(1) g) BeSU(g)},
H:{(S ;) BEGL(q;(C),a:(detB)l}.

The subgroup U, is also denoted by T! x SU,. Let K be a compact connected

subgroup of G such that 79 C K C Uy,. Let {w;; }o<i j<n be the basis for gl(¢g+1; C)*

dual to {E;;}o<i j<n. We denote again by w;; the restriction of w;; to g. We have

q q
E wii = 0 and dw;; = — E wir AN wij. If we set w = t(wlo,wgo,...,wqo), then
i=0 k=0
h = kerw and dw = —0 A w, where
wll PR wlq
Q= . — LL)O(]Iq.
Wg1 " Weq

Let o: g/b — g be the splitting with the property o([E;o]) = Ejo for i > 0. Then, o
is Ady,-invariant and the restriction of § to o(g/h) is trivial. Hence 6 can be seen
as a Bott connection with respect to the basis {[F;o]}: for g/h by Corollary 3.1.12.
Let g be the Hermitian metric on g/h given by g([X],[Y]) = trlo([X])a([Y]) for
[X],[Y] € g/b. Then g is Ady, -invariant and {[E;o}; is an orthonormal basis.
Hence the connection form of the unitary connection 6%, given by Lemma 3.1.13,

with respect to {[E;o]}; is skew-Hermitian.
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We denote cochains in WOy, and WU, evaluated by the Bott connection 6 and

the unitary connection #* again by their own letters. Then we have
- +1 .
hy =vV—-1u, = q?(woo + @o0),
C1 = dhl = \/—1(2)1 —51)

q
== (woi Awio + @i AWio)-
i=0
It follows from Theorem 3.1.8 that

q
GVQq(K) = hlc%q =C (wOo + WQo) AN /\ (CU()Z' N wio N\ wWoi N\ UJZ‘())
=1

2¢+1
holds in H??"!(gg, £), where C' = (2¢)! ( ;Tl) )

We now set Xi; = E;; — Eji, Yij = V=1(Eij + Ej;) and Ky = V—=1(Eoo — ),
where 1 < k < ¢. Then {E;;}o<icj<q: {Yij}to<icj<q and {Kj}i<r<q form a basis
for go = su(q +1). Let au, Bij, vi; be the dual of K, X;;, Y;;, respectively. Note
that —3;; = Bi; and ~;; = 7;;. If we denote the extensions of ay, £;; and v;; to g
by complexification again by the same letters, then

woo = V—1(a1 + - + ay),
wij = Bij + \/—_1%j, where i # j.

The following equality holds by Lemma 3.2.6:
q
Ii* (/\ (wOi /\in /\w_m/\w_,o)>

i1

((Boi + V=178:) A (Bl + V—=1i0) A (B3 — V—=115:) A (Bl — V=170))

Il
>>-Q

=1

((/802 + \/_701) (BOZ \/_,YOZ) (BO@ \/_701) (601 + \/_’702))

Il
>~a

=1

Il
>m

(4ﬁ02 A 701 A BO@ A 701)

=1
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where the superscripts are as in Lemma 3.2.6. Hence the equality

K" (Gv2q (K))

q
=CV=1(ag —ag) A [\1(4551‘ AYoi A Bos A Vg:)

= (29)! (qi—1>2q+l vl

q
5 (ag — ag) A 4/\1(532‘ A Yoi A Bos A Vo)
1=

holds in H*(g ® g, At ® C) = H*(go ® go, At), where ag = a1 + -+ + a.

Finally, the following equality holds by Proposition 3.2.7:

7% (GVay(K))
2q+1 —
= (29)! (q : 1> \/2_104(1) A <Z\1(ﬁéi + B5:) A (voi + 'Y(i’)) A (Z\1 Bi A 'Ygi)

= (2¢)! (%)ml \/2__1

q
The non-triviality of GVa,(K) is shown as follows. First, ag A ( A Béj A 'yéj> and
7=1

q q
o (A sbinad ) n (A sinst).
1= 1=

A/q\ /5(2)]» A 73]. are non-zero multiples of the volume forms of $?¢™! = SU(¢q + 1)/SU,
;;il CP? = SU(qg+1)/(T" x SU,), respectively. As the natural mappings 7 : SU(qg+
1) — 8%t = SU(¢ + 1)/SU, and 72: SU(q + 1)/T? — CP? = SU(q + 1)/(T"* x
SU,) induce injective mappings on the cohomology, GV, (7'%) is non-trivial in the
cohomology. By Lemma 3.3.2, GV,(K) is non-trivial so far as T C K C U,,.

On the other hand, GVq,(K) is trivial if K C SU,. If K = SU,, then the
characteristic mapping is factored through H*(SU(q + 1)) ® H*(SU(q + 1)/SU,),
which is trivial in degree 2. Therefore GV, (K) is trivial by Theorem 2.1 because
ch; (K) is trivial. By Lemma 3.3.2, GVq,(K) is trivial if K C SU,,.

Several remarks are in order. We retain the notations in Example 3.3.6.
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REMARK 3.3.7. The relation between £, and GVy, in Theorem 2.1 is verified

as follows. We have

v = — QW\/—ZWOz/\WZOa

q
_ qg+1 __
U1 = E Wo; N\ Wig-

21/ —1 Py

Hence
q

. q+1 1
KU =— Z Boi +V=175;) A (=Bo; + V—=175;)

q+1
= 2601/\ Yois

%*61 q 1 Z BOZ \/_701) ( BO@ \/_F)IO’L)

g1 Z
- 501 /\ 02
It follows that
- g+1
'K chl(K)q:q!< - > /\(50@/\%1)

=1

in H*!(SU(q + 1) x (SU(g + 1)/K)). On the other hand,
£Q(K) =V —lﬂl(v‘f —|—'Ui171§1 + - +6(11)
_og(ett +1
B <q > !<_q7r ) OA/\(@“A%Z +szAﬁoMm

i=1 =1

2
for some w;, i = 1,...,q. Hence the equality GVg,(K) = %@(K} chy (K)?

certainly holds. Note that £,(K) is non-trivial even if K = {e}.

REMARK 3.3.8. Real secondary classes other than the Godbillon—Vey class also
can be computed. As an example, consider the case where ¢ = 2. Since these
classes can be realized as classes in H*(SU(3)) ® H*(SU(3)/(T" x SUs)), it suffices
to compute the classes of degree 4¢ + 1 = 9 by 2) of Theorem 3.1.5 due to Pittie
[63]. Indeed, if hycy(T* x SUy) is non-trivial, then 4; 4 |.J| = 2¢+ 1 = 5. Hence the
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degree of hyc (Tt x SU,) is 9 + (2ig — 1) + -+ + (2@, — 1), where I = {i1,... 0},
so that the only possibility is I = {i;} because iy > 3.
The classes of degree 9 are hlc‘f, hlcfc% hicicg, hicg, hlcg and hscy. By

Theorem 2.1, the following formulae hold for ¢, ¢3, ¢4 and hgz:

co =—(va — 101 +T2), 3= —V—1(—v201 +1102), ¢4 = V20,
hs = —g(—@(vl +71) + Uy (vg + T2)).
Hence
hict = 6v/—=11103202, hiccy = V=111 (V3T5 + 20305 + vaT2),
hicics = V=11 (vViTs 4+ v2T3), hics = V—1U1 0973,
hica = V=111 (20975 + viT7),
and
hsca = T_(—%(Ul +T1) + a1 (vg + v2))(ve — 0101 + v2)

-1 -
(—uz(—vfﬂ + v1U2 + V2V — Uﬁ%) + 2u1v973)

(—ﬂg(vl — @1)(1}% —+ Uy — Vg — 5%) + 261@252)

(—ﬂl(vg — 52)(?)% +52 — Vg — E%) + 2%1’[)252)

171 (Ug@? + 'U%EQ),

Jn<fiefa

where ‘=" means that the equality holds in H*(WUy).

On the other hand, the curvature matrix of € is given by

dd+0 N0
_ dwi1 — dwoo + w12 A way dwiz + w11 A wi2 + w2 A wae
dwa1 + w1 A wit + waz A way dwaa — dwoo + w21 A wia

_ [ 2wo1 AN wio + wo2 A wao —w10 A Wo2
—wap A wWo1 wo1 A wio + 2wo2 A wag
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If we use 6, then v, v and u; are calculated as follows:

3
V] = ————=(wp1 N\ w1g + wo2 A wag),
1 271'\/—_1( 01 10 02 20)
1 2
Vg = | ——=— | 6wp1 Awig A woz A wa,
2 <27T\/—_1> 01 10 02 20
up = 5 (woo + @oo)
If we set
(gV) = (27‘_)5 (wO() +w00) /\w01 /\wlo/\wa/\wgo /\(.U()l /\wlo /\wog /\wz(),
then

GVy = hict =6-(2-3%)%(gv) = 2% - 3° (gv),
hicies = ((2-3%)-6+2(2-3%)+6-(2-3%)) (gv) = 2° - 3° (gv),
hicies = ((2-3%)-6+6-(2-3%)) (gv) = 2° - 3% (gv),
hicy = 6% (gv) = 2% - 3% (gv),
hics = (2-6°+(2-3%)%) (gv) = 2% 3% - 11 (gv),

haca = = (6-(2-3%) 4+ (2-3%) - 6) (gv) = 2% - 3%(gv).

DN | —

Hence

4 1
hlc%CQ(K) = § GV4(K), hlclcg(K) = § GV4(K),

1 11
hicy(K) = = GVy(K), hici(K)= o GV, (K),

1
thQ(K) = E GV4(K)
in H?(gg, & C) if K satisfies 7?7 C K C U,. There are the following relations:

1
haco = §h16103,

1 1
h104 = §h103 — Ehlcil,

1
2 4
h10103 = hlclcQ — ghlcl.

Note that these relations hold for any transversely holomorphic foliations by The-

orem 2.6.
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We can also compute some complex secondary classes. We still assume that ¢ =
_tg

2. The matrix valued 1-form induces a unitary connection by Lemma 3.1.13.
If we set w;; = w;; + Wj;, then

Uy = @((5554—51\1)/\ (wo1 A w1 — Wor A Wio)

+ (5000 + W22) A (woz A wao — Woz2 A W0)
+ (W11 — Waa) Awar A Wiz
— War A (w10 A woz — Wag A Wot) — Wiz A (w20 A wor — Wio A Woz))-
Hence
U uov vl (K) = W11 A waz A wor A wio A woz A wag A war A Wia
holds up to multiplications of constants. As the above differential form is a non-
zero multiple of the volume form of SU(3)/(T" x SUs), the class w1 upv{7?(K) is

non-trivial.

REMARK 3.3.9. The proof of the non-triviality of the Godbillon—Vey class in
Example 3.3.6 shows that the non-triviality of GVa,(7T) follows from the non-
triviality of GVa,(T" x SU,). On the other hand, GV,(SU,) is trivial. Let I" be
a cocompact lattice of SL(q + 1;C)/(T* x SU,) such that

p: I'\SL(q + 1;C)/SU, — I'\SL(¢ + 1;C) /(T* x SU,)
is an S'-bundle. The classes &,(T" x SU,), &,(SU,) = p*&,(T* x SU,) and chy (T x

SU,)? are non-trivial by Remark 3.3.7. On the other hand, ch; (SU,)? = p*(chy (T"* x
)

SU,))? is trivial. Since GV, (K) is decomposed into the product of &,(K) and
ch; (K)? by Theorem 2.1, it can be said that the triviality of GVa,(SUy) is a con-

sequence of the triviality of ch;(SU,). The commutative diagram

§2¢+1 — 3 I'\SL(q + 1;C)/SU, ——— I'\SL(q + 1;C)/SU(q + 1)

| | |

CP1 — I'\SL(q+ 1;C)/(T* x SU,) — I'\SL(g + 1;C)/SU(q + 1),
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where the first column is the Hopf fibration, indicates that the (non-)triviality of
the Godbillon—Vey class is closely related with the Hopf fibration.

We calculated secondary classes by using Theorem 3.1.8 because it enables us
to compute characteristic classes other than the Godbillon—Vey class. On the other
hand, there is a simpler way to obtain the non-triviality of the Godbillon—Vey class.

Suppose that ¢i(F) € H?(M;Z) is divisible by m € Z in the sense that there
exists an element o € H?(M;Z) such that ma = ¢;(F) holds in H*(M;Z). Let
then W,, be the principal S'-bundle over M associated with «, and let G,, = 7% F,
where m,,: W,, — M is the projection. By the construction, K¢, is trivial, and a
trivialization can be obtained as follows. We regard S! as the unit circle in C, and
let ¢ be the natural coordinates. Let {U; x S'} be a family of local trivializations
of W, such that F is given by dz; = --- = dzy = 0 on U; (we omit the indices
of zj concerning the covering). We may assume that the transition functions are
of the form ((z,z2),t) — ((¢(z,2),v(2)), h(2)t), where h(z)™ = %. Then,
the family {wy, ;}, where wy,; =t "dz A --- A dzg, gives a trivialization of Kg, ,
which we denote by w,,. Let e; = A -

821 82(1
e; and v; are the local trivialization of K;l and Kz on U, respectively. Note that

and v; = dz; A --- Adzy. Then,

Kg,, is locally trivialized by w; = t~"m) v;. Let {f;} be a family of positive real
functions such that vJ; f; = fi|Jv;il, where Jv;; = det Dv;;. Such a family exists
because F is transversally orientable. Let V® be a Bott connection on K;l and let

{a;} be the family of local connection forms of V° with respect to {fie;}. We have
dvji Ayl

— . Hence, if we set
Jvji |

* j—
V5% T Qi =

dt

*
T = m; + T,

on U; x S', then {r;} determines a globally well-defined 1-form 7, and dw,, =
—T N\ W,

With these preparations, we have the following;:
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THEOREM 3.3.10 ([8, Theorem 2.3]). Let (M, F) be a transversely holomorphic
foliation of complex codimension q. Let W,,, 7 and G, be as above. Then, we
have the following.

1) Botty(Gm) = u1v{(Gn) and u1v,5(Gm,wm), where |J| = q, are well-defined.
2) We have

T (W TV TR (G, W) = —m v Uk (F),

where |J| = |K| = q and m,,, denotes the integration along the fiber. In

particular,

Tt (V=1 Botty(Gum)Botty (Gm)) = — ¢'¢ GVay(F).

(The constant TL 4 missing in the original statement.)

(éQ)!

Proor. Since Kg,, is trivial by the construction, the classes of the form

U107 (Gmy wim ), Where |J| = ¢, are well-defined. Let V° be a Bott connection on

Q(F). We may assume that V® induces V* on Kz'. Then u1v,;(Gm,wnm) is locally
represented by

-1 ( . dt

MO+ Mm—

W " ) ATivg(VP).

Hence wiwiv0 K( my W) 1S locally represented by

dt
4772 <7r al/\m +mt AT, a)Aﬂ:le(Vb)/\W;EK(Vb)

dt
b * —
= 4772 * (o + @) AT (V0 AT T (VP )/\m7

On the other hand, uyv;(F)vk (F) is locally represented by
-1
271'— __1 (Oéi + OK_Z) N Uj(vb) VAN EK(vb)
The formula follows from these equalities. O

REMARK 3.3.11. The following equalities are known to hold [22]:

7rm!(ule(gm)Wm)) = '/Tm!(ﬂlﬁg](gmawm)) = _m’UJ(]:))

T (Botty (G )) = T (Botty(Gp)) = —mchy (F)2.

Theorem 3.3.10 can be seen as a foliation version of these formulae.
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By using Theorem 3.3.10, the Godbillon—Vey class can be calculated as follows.
First, the Bott class ujvi({e}) is well-defined (Definition 1.1.5) as an element of
H*(sl(q + 1;C)r) because the complex normal bundle of Fy.y is trivial. Indeed, it
is easy to show that the Bott class is well-defined and non-trivial if K is contained
in SU,. Note that GVg,({e}) = 0 by Proposition 3.3.3. By a similar but easier
calculation as in Example 3.3.6, one has

q+ 1 2q+2
wwvivi({e}) = <7> woo A @Woo A (dwoo)? A (dwoo ).

The mapping 77" is now an isomorphism from H*(sl(¢ + 1;C)r) to H*(SU(q +
1)) ® H*(SU(¢ + 1)). The image of uiu;v{v{({e}) under 7*£* is equal to
2q+2
dq (q+1 q g
T<—) aé/\a%/\(/\ﬁéj/\“ﬂ%j AOA B A | -
T j=1 j=1
By repeating a similar argument as in Example 3.3.6, one can show the non-triviality

of this class. See Chapter 5 for related constructions.

EXAMPLE 3.3.12. SO(m;R) and so(m;R) are denoted by SO(m) and so(m) in
this example. Let G = SO(¢ + 2;C), g = s0(q + 2;C) and gy = so(q + 2). If we set
(g+2)/2
rSO(2) @---®S0(2), if ¢ is even,
'] = (a+1)/2
SO(2) ® . ®S0O(2) &{1}, if ¢isodd,

then T[QTH] is a maximal torus. Let Ej;; be as in Notation 3.3.5, and X;; = E;; — Ej;.

Then {X;; |0 <i<j<g+ 1} is a basis for g. Note that {X;;} is also a basis for
go = s0(q + 2) over R.
Let h* be the Lie subalgebras of g defined by

b* = (Xo1, Xow £ V—1X15, Xij

2<k<q+1,2<i<j<q+1)c,

and let H* be the corresponding Lie subgroups. Let K be a connected compact
2] ¢ K ¢ T x SO(¢q) = SO(2) @ SO(q). We
will show that GV, (K) is non-trivial if and only if ¢ is odd. In what follows, the

Lie subgroup of G such that T [
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quadruplet (G,H™,K,TI") is considered and h* and H" are simply denoted by b
and H, respectively, because the argument for (G, H™, K, I') is completely parallel.

Let w;; be the dual of X;; (i # j). We have dw;; = — Z wik A wg;, where
0<k<g+1
w;j = —wj; and wy; = 0. It is easy to see that h = ker <w0i + v —1wi; |2 <i<qg+ 1>7
and one has
q+1

d(woi + V—1wi;) = V—1wer A (wo; + vV —1wi;) + Zwli A (wor + vV —1wyy).
=2

Let w = t(w02 +V—1lwig,...,woq+1 + V—1wi g4+1) and

V—lwer  —wez  —wag - —W2g4t1
p w23 vV—lwor —w3s - —Ww3 441
W2,g+1 W31 0 oo V—lwor
Then the above equality is written as dw = —0 A w.

On the other hand, if o: g/h — g is the splitting defined by o ([ X0, —V—1X4,]) =
Xoj — V—1Xy,, where j = 2,...,q + 1, then o is Adg14g0(q+2)-invariant. To see
this, note first that

(X5, Xut) = 056 Xir + 0uXjn — 0 X1 — 0 Xk,
where §;; = 1 if i = j, and d;; = 0 if i # j. Since the Lie algebra of 7" x SO(q)
is generated by Xo; and X;;, 2 < i < j < (¢+ 1), over R, it suffices to verify
that [Xo1, Xo — vV —1X1;] and [X;;, Xo; — v/—1X1;] belong to the image of o, where
l=2,...,q+1. If ] > 2, then

[Xo1, Xor — V=1X1] = =Xy — V-1Xo = —V-1(Xo; — V=1X1).
On the other hand,
(X, Xoo — V—=1X1] = (0aXjo — 0 Xi0) — V—1(6uXj1 — 6;,Xi1)
= —6u(Xoj — V=1X1;) + 6;(Xo;s — V-1X1,).

Thus o is Adp1xs0(g+2)-invariant.
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As the restriction of 6 to the image of ¢ is trivial, # can be used as a Bott
connection by Corollary 3.1.12. Moreover, if we define a Hermitian metric g on
g/b by g([X],[Y]) = itrtdm)m for [X],[Y] € g/b, then g is Adg1s0(4+2)-
invariant, and {[Xo; — v/—1X1,]} is an orthonormal basis with respect to g. Hence
we may use a unitary connection represented by a skew-Hermitian matrix.

By Theorem 3.1.8, one has the following equalities:

v—1
hi = g 5 (wo1 — Wo1),
v

q\/_—qurl

Q=5 Z(WOkAwlk_w_Ok/\w_lk).
k=2
Hence
q 2q+1 . g+1 -
GVQq(K) = \/—_1 (%) (wm — wm) A\ l/\z(OJQl A wip N\ Wor N wll)

in H*(gg, €). Since {X;;} is also a basis for gy over R, we have

K" GV (K) = V=T (5

by Lemma 3.2.6, where {w;;} is considered as the dual basis for gg.

why — wi) A N (Wi Awpy Awly Awy)

)2q+1 ( g+1
=2

Finally by Proposition 3.2.7,
q+1

TR GV (K) = V-1 (%)MH wor A 14\2(Wél Awiy Awgy Awiy).

Let SO, = {1}@&{1}®S0(q) C SO(g+2). Note that T xSO(q) = SO(2)®S0(q).
Let 7 : SO(g+2) — SO(g+2)/SO, and 72: SO(q+2)/K — SO(q+2)/(T* xSO(q))
be natural projections. We denote by volso(442)/s0, and volso@m+1)/(T1 xso@2m—1))
the natural volume forms of SO(q + 2)/SO, and SO(2m + 1)/(T* x SO(2m — 1)),
respectively. Then 77x" GVg,(K) is a non-zero multiple of (77volso(g+2)/50,) A
(m3vOlso(2m+1)/(T1 xSO(2m—1)))- 1t is classical that 77 (volso(g+2)/s0,) is non-trivial
if and only if ¢ is odd. On the other hand, it is easy to see that if ¢ is odd, then
5 (VOlgo(2m+1) /(71 xSO(2m—1))) is non-trivial even if pulled-back to H*(SO(2m +
1)/T™), where ¢ = 2m — 1. Therefore, 7*£*(GV24(K)) is non-trivial if ¢ is odd and
%) c Kk c 7' x SO(q), and 7" (GVg,(K")) is trivial for any closed subgroup
K’ of T x SO(q) if q is even.
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EXAMPLE 3.3.13. Let g = sp(n+1;C), G = Sp(n+1;C), and gp = sp(n+1;R) =
sp(n+ 1) Nsu(2n + 2). Note that

w10 ={ (5 7))
o im ={ (5 7))

(5 Dla--n-n)

Let X5 = Eij—FEjinitn, Yik = Bk ktny, Yo = Bk ign+E kyny iy = By g and

AB,CcM(n+1,C), B="B andC:tC},

tZ+A:0,B:tB,C:tCandBth@:o}

Zy = Erryny + Epgn g, where 0 < 4,5 <n,0< k<l <nand 0 < E <l <n.
Then {Xij>Ykla Zk’l’}OSi,jgn,ngglgn,OSk’Sl’gn is a basis for g over C. We regard

sp(n;C) as a Lie subalgebra of sp(n + 1; C) by realizing sp(n; C) as

sp(n; C) = (Xij, Y, Ziry

1<4,j<n, 1<k<I<n 1<K <I'<n)..
Then, sp(n;R) is also realized as a real Lie subalgebra of sp(n 4 1;C) via inclusion
to sp(n; C). Let T"! be the maximal torus generated by v —1Xy;, 0 < i < n, over
R, and let 7' x Sp(n;R) be the real subgroup of Sp(n + 1;C) whose Lie algebra
is generated over R by v/—1Xgo and sp(n;R). Note that 7" ¢ T! x Sp(n;R) C
Sp(n + 1;C).

In what follows, K is assumed to be a compact connected real Lie subgroup
such that 7' x Sp(n;R) D K D T™*. Let w;j;, mu and (i be the dual of X;;, Vi

and Zy;, respectively, where n;, = ni; and (i = (x;- Then
n n
dwij = — Zwis N Wsj — Zm’t A Gt
s=0 t=0
n n
digr = — Zwks Ansi+ ant N wit,
s=0 t=0

n n
dCrryr = — Z Chrs N wep + Zwtk/ NS
s=0

= t=0
Let b = ker(w;o, Coj)1<i<n, 0<j<n. Then b is a Lie subalgebra of g, and

b= (Xoo, Xij, Yir, Zer |1 <i<n, 0<j<n, 0<k<I<n, 1<K <l <n).

The foliation induced from b is of complex codimension ¢ = 2n + 1.
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Let o: g/h — g be a splitting defined by
o ([Xio]) = Xio.  0([Zo5]) = Zo;-
Then o is Adpi1ygp(n;r)-invariant. An Adgiygp(n;r)-invariant Hermitian metric g
on g/b is defined by g([X],[Y]) = tr‘o([X])o([Y]), and an orthonormal basis with
1
respect to g is {—[Xio], [Zoj]}.

V2
Let w= t(\/§w107 \/5(*}207 ey ﬂwnOv C007 COla LRI} COn) and set

w11 — Woo w12 cee Win ﬂnw \/57711 cee \/inm
w21 W22 — Woo cee Wan \67720 \/57/21 cee \/577271,
Wn1 ce Wnn—1 Wnn — W00 \/iﬂno \/577111 s \/5777171
52 1 1 1
ECOI ﬁ({)z e EC{)n —2woo —wi1o e —Wno
L L L
E— E—— e —— —Wj —Ww — W N —Ww
\/i 11 \/i 12 \/5 in 01 11 00 nl
1 1 1
Egnl ﬁgﬂ e ﬁ(nn —Won —Win o —Wnn — Woo
Then dw = —0 A w. By Definition 3.1.10 and Corollary 3.1.12, a Bott connection is
given by
w11 — Woo w12 cee Win \/§ﬁ10 \/57711 e \/§n1n
w21 W22 — Woo S Wan \/57720 \/57]21 . \/577271,
Wn1 ce Wnpn—1 Wnpn — Woo \/577710 \/57]71,1 ce \/ﬁnnn
0= 0 0 0 200 0 0
1 1 1
Egll ECIQ cee ﬁ(ln —Wwo1 —Wi1 —WwWoo - —Wnl
1 1 1
EQLI ﬁgﬁ R ﬁ(nn —Won —Win e —Wnn — Woo
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If we use 0, then hy and v, are calculated as follows:

2 2 1
hi = T;: (woo + Woo) = %(woo + Woo )
1
v, = deoo-

It follows that

2q+1
GV (K) = 2ot <ﬂ> (woo + @Woo) A (dwoo)? A (dang)?

q+ 1 2q+1 B n n
= (2q)' <7> (CU()O + Cdo()) A\ /\ woj A WjO AN 770]' A COj
. 0

j=1 J

A (/\w—ww—jo> A (/\ WA@)-
j=1 j=0

We adopt {vV—1Xii, Xjr — Xij, V-1 X1 + Xij), Yij — Zij, V—1(Yij + Zij)} as
a basis for sp(n + 1;R). If we denote by i, Bjk, Vjk, ik, Vik (0 < i < n,
0 < j < k < n) their respective dual forms, then the extensions of these forms to g
by complexification satisfy the following relations:
wii = V—1aui, wir =Bk + V=17, wWij = Bk +V—17jk,
My = pij +V—1vij, Gy = —pij + V—1vy;.

Hence

- g+1\*" 29—2 (0 | 1 A gl 1 Ao 1
TR GV (K) = o 2777(2q) o A '/\1 Boj Nvog | A '/\0 Hoj N\ Vo
j= j=

A (/\ 5gj/\73j> A (/\ ﬂ?)j/\Vgg) .
j=1 j=0
Finally, as in the previous examples, the mappings 71 : Sp(n+1) — Sp(n+1)/Sp(n) =
S0t and my: Sp(n + 1)/T" " — Sp(n +1)/(T* x Sp(n)) = CP? induce injective

maps on the cohomology, where ¢ = 2n + 1, and Sp(n;R) is simply denoted by
Sp(n). Hence GV, (K) is non-trivial.

Foliations with non-trivial Godbillon—Vey class can be also constructed by using

an exceptional Lie group.
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ExaMPLE 3.3.14. Let G be the exceptional complex simple Lie group Gs. Let

g2 be the Lie algebra of G2. Then as found in [29],
Zy =71+ 32y, Zy =279 + 372>,
92 =\ Zi, X3, Y, 1 <i<6|Z5 =21+ 2z, Zs = Z1 + 225,
(Xs,Yil = Zi, [Zi, Xi] = 2X5, [Z:,Yi] = =2V
Let v;, a;, B; be the dual of Z;, X;, Y;, respectively. Then they satisfy the following

relations, namely,

dy1=—a1 NP1 —a3 APz — 204 A By — a5 A\ B5 — ag A Bs,
dy2 = —ag A B2 — 3az A B3 — 3ag A By — a5 A\ B5 — 2a6 A [,
doy = =2v1 Nog +72 A + Ba Aoz + 283 Ao — Ba A as,
dog =371 Nag — 2y ANag — 3B1 Az — Bs A a,
dag = —ay Nag +y1 ANaz — v ANag — 2081 Aag — By A ag,
day = =201 Nas — 1 ANag + B1 A as + B3 A ag,
das = 3a1 Ay — 371 A as + 2 A as + B2 A ag,
dag = 3as N ayg + as AN as —¥2 N ag,
dBr =27 NP1 =72 AB1—az A B3 —2a3 A By + ag A Bs,
dfz = =371 A B2+ 272 A B2 + 3an A B3 + a5 A Bg,
dBs =P1 NP2 =71 A Bs+v2 A Bs+ 201 A Ba+ s A Bs,
dBy =21 N B3+ 71 A Bs— a1 A Bs —az AP,
dfs = =301 A Ba+ 311 A Bs — 72 A Bs — az A Be,
dfBs = —3B3 A\ Bs — B2 A Bs + 72 A Be-
It is well-known that the following real Lie subalgebra gg is a compact real form
of go, namely,
g0 = (V=12;, X; = V3, V=1(X; + Vi)
The compactness follows from the fact that the Killing form restricted to go is

negative definite.
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Let ¢;, A; and p; be the dual of vV—1Z;, (X; —Y;), vV—1(X; +Y;), respectively.
If we denote again by the same symbols their extensions to g, by complexification,
then v; = vV—1¢;, a; = A\ + V—1p;, and B; = —X; + V—1p;.

Let b1 and by be complex Lie subalgebras of go defined respectively by

b1 = ker(B2, B3, Ba, B5, Bs), b2 = ker(B1, B3, Ba, B5, Bs)-

Let ¢ be either 1 or 2, and let H; be the Lie subgroup with Lie algebra b;. Then
H; contains the maximal torus 72 generated by Z; and Z,. Let su(2); be a Lie
subalgebra defined by su(2); = (vV—1Z;, (X; — Y;), V—1(X; + Y;))g, and let dw;
be the inclusion of su(2); into ga. Then each dw; induces an embedding of SU(2)
into G, which we denote by w;. The image of w; is denoted by SU(2);. We repeat
the same construction after setting u(2); = (\/—_lZl, V=12, (X; = Y;), V—1(X; +
Y:))r. If we denote the image by U(2);, then U(2); is isomorphic to U(2). Note that
SU(2); € U(2); € G5, where G5 is the compact real form of Gy whose Lie algebra
is go. In what follows, K is assumed to be a compact connected Lie subgroup such
that T2 ¢ K; C U(2); when the foliation induced by b; is considered.

First we study the foliation induced by h1. In order to apply Theorem 3.1.8, let
o1: g2/b1 — g2 be the section defined by

o1 (lYi]) =Y, i=2,3,4,5,6.

Then oy is Ady(g),-invariant. The Hermitian metric g; with respect to which
{V3[Ya), [Ya], [Ya], V3[Ys), [Ys]} is an orthonormal basis is Ady(g),-invariant. This is

shown by direct calculations, for example,

g1([X1 — Y1, Y], Y3) + g1 (Y2, [ X1 — Y1,Y3]) = g1(Y3,Y3) + g1(Ya, —3Y2) = 0.

/1 1 ~
Let wy = <ﬁ52’ﬁ3’ﬂ4’ ﬁ&,&). We have dw; = —60; A wq, where
1
371 — 272 —V3a 0 0 ——a
ga! 72 1 73 5
N —V3B1 M- —2m 0 o
0 = 0 —251 -7 V3 ag
1
0 0 \/5/31 —3v1 + 72 %02

0 0 333 V3, —V2
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By Definition 3.1.10 and Lemma 3.1.11, the gl(5; C)-valued 1-form

1
371 — 2y, —V3a 0 0 ——a
ga! 72 1 73 5
—\/551 Y1 =72 —20q 0 —0y
0 = 0 =281 M V3o ag
1
0 0 V361 =371+ ﬁaz
0 0 0 0 Y

3
is a Bott connection. Hence h; = 2—(72 +72) and v = dyo. Since
T

3
2w/ —1
dys = —op N\ By — 3ag A\ B3 — 3o A By — a5 A Bs — 2a6 A B
and since GV = ——h1v777,

GVio(h1, K1)

3\ 1 6 6 B

~(2) e o0+ (Aans)n(Amas)

28 . 317 . 52 6 6 -
:(2—11(’72+%)A (/\ aiABz) N (/\ a_i/\/Bi> ;
) i=2 i=2

where GV1(h1, K1) denotes the Godbillon-Vey class of the foliation given by the
quadruplet (Go, Hy, K1, "), where I' is any cocompact lattice of Go/K;. By Prop-
osition 3.2.7,

218.317.52 6 6
’7'*/4}>|< GVlO(b17K1) = WV_]_C% VAN <_2)\% /\,Ule) VAN <_2)\Z2 /\,UZ2> .

It is clear that (3 A </6\ AL A ,u}) and 4/6\ M Ap} are the volume forms of G /SU(2);
and G5 /U(2)y, resp:a;iively, where Glgis the compact Lie group with Lie algebra
go. By Lemma 3.3.15 below, 7°k* GV1o(h1, K1) is non-trivial.

The foliation induced by hs can be studied in a similar way. We define a linear
mapping o2: g2/ha — g2 by setting oo([Y;]) = Yj, 7 = 1,3,4,5,6. Then oy is
Adyg),-invariant. Let g, be the Hermitian metric on ga/hs with respect to which

{[¥1], [Y3], [Ya], [Y5], [Y6]} is an orthonormal basis. Then go is Adys),-invariant.
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Let W = t(/81’/837547557/86) and

—2v1 + 72 Qo 203 —0y 0

- B2 M= 2o 0 —0Oy
Oy = 0 261 M ay as
0 0 301 =3ty

0 0 303 B2 —V2

Then dwy = —52 A wo. Hence

—2v1 + Y2 6% 2a3 —Qy 0

B2 1= 72 20 0 —ay

92 = 0 0 -7 a7 Qa3
0 0 0 =371 +72 o

0 0 0 B2 —2

induces a Bott connection. The characteristic homomorphism is calculated as fol-

lows. Firstly, one has

)
hi=—(m+

5
o/ 1

V1 =
= 27“5/_—1(—041/\51—OésAﬁ:s—2044/\54—015/\55—016/\56)-
Hence
5\ _
GVio(h2, K2) = <2—> (2-5D)%(y1 +71) A (/\ Q; /\@') A (/\ Oé_z'/\ﬁz)
g i#2 i#2
20.32.5Y e . . =T A A
- W(’yl +71) A (iQQQz A Bz) A (zQZ (67 AB%) .

By Proposition 3.2.7,

216 . 32 . 513
76" GVig(h2, K2) = V-1 —11711 A AMNApE )AL A MNAEE.
(2m) i#2 i#2
As in the previous case, this is the product of the volume forms of G /SU(2), and

GX/U(2)2. Hence 7*k* GV1o(ha, K3) is non-trivial by the following Lemma 3.3.15.

LEMMA 3.3.15. We retain the notations in Example 3.3.14.
1) The pull-back of the volume forms of Gy /SU(2);, i = 1,2, are non-trivial
in H*(GY).
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6
2) The classes represented by N\ (Ni A ;) and N\ (N A i) are non-trivial in
=2 i#2

(2

H*(G/T?).
ProOOF. First we show 2). The equality

dGr = =2 1 Ay — 203 Az — 4Xg A g — 205 A s — 206 A fig

implies that d¢; determines a class in H?(G5 /T?). The product d¢; A (/6\ Ai A ,ui>
is easily seen to be a non-zero multiple of the volume form of G5 /T2T:2Therefore
4/6\ i A i is non-trivial in H*(G% /T?). The non-triviality of A \; A j; is shown by
Z:T)ilsidering the product with the class represented by d(s. 7

In order to show 1), let wy and ws be

wi = (3-; A (/\ )\j/\Mj> ;
i

where i = 1,2. We will show that [0] U [w;] # 0 for some [0] € H?(go; R). First note
that we may work on g because H>(go; C) = H?(go; R)®C = H?(gy; C). If we define
o' € (g3)" by o(X,Y, Z) = tr(adx yjadz), then by the proof of Theorem 21.1 in [24],
o’ is a cocycle representing a non-trivial class in H>(gy;C). Up to multiplication of
a non-zero constant, o’ is of the form
o' ==912v1 — ) Aar AB1+3B71 —272) Aaa A Ba+9(y1 — v2) Aas A B3
=9 Aas ABs =33y —72) Aas A Bs —3v2 A A Bs
+ (terms not involving ~;).

On the other hand, the complexification of w; is a non-zero multiple of

Ya—i A N (o5 A Bj).
J#
Hence [¢'] U [w;] is represented by a non-zero multiple of

6
Y1 AY2 A ‘Al(aj A Bj). O
J:
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REMARK 3.3.16. By following [23], one can show that
o' =61 Adyr — 371 Adya — 3y Adyr + 272 Adye
4+ 3a1 AdBy + 381 Aday + as AdBs + B A das + 3as A dfBs + 3083 A das
+ 3ag ANdBy + 384 AN dag + as AdBs + Bs Adas + ag A dBs + B N dag

holds in the proof of Lemma 3.3.15. This follows from the fact that

37 — 37172 + 75 + 3181 + aafe + 3azB3 + 3auBs + asBs + asfs

is a primitive element of I(g), where I(g) is the set of left invariant symmetric
polynomials invariant also under the adjoint action. Note also that H3(go;C) is in

fact isomorphic to C.

REMARK 3.3.17. Some other foliations G4 with non-trivial Godbillon—Vey class
can be obtained by considering the action of the Weyl group. Let o7 be the auto-
morphism of G which maps (Z1, Z3) to (227 + 323, —Z1 — Z3), and let o5 be the
automorphism which maps (Z1, Z2) to (Z1, —Z1—Z3). Then they generate the Weyl
group. We set

w1 = "(B2, B3, Ba, Bs, Bs),  wi = "2, 3,04, 5, ),
w2 = t(517ﬁ3,ﬁ4”@5756), wé = t(a17a370447045, a6),
ws ="(B1, 02, B4, B5,86),  wh ="(1, B2, o4, 5, ),
wy = (b1, az, 3,85, 06), wy = "(u, B2, B3, 5, Bs),
ws = "(B1, a2, 03,04, a5),  wi = (1, B2, B3, Ba, Be),

:t(517a27a3754755)7 wé:t(a17/827637a47a5)7

and let h; = kerw; and f); = ker wg. Then they are Lie subalgebras of gs. First
consider the action of ¢1. From by, one obtains b/, b5, b1, ha, b3 and then h; again.
From by, one obtains s, by, b5, bs, hg and then hy again. On the other hand, under

the action of o3, one obtains b} from h; and b5 from bs, respectively.
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3.4. Comparison of Examples

It is well-known that SL(2; C) is a double (and the universal) covering of SO(3; C).

This is still true as foliated spaces, namely, we have the following

PROPOSITION 3.4.1. There is a covering map SL(2;C) to SO(3;C) which pre-
serves the foliations defined in Examples 3.53.6 and 3.3.12.

PROOF. First recall a description of a covering map by following [29] and [60].
Let {Xo, X1, X2} be a basis for sl(2; C), where

o= 1) 0=(0) = 0)
and denote by FT the foliation of SL(2;C) induced by X; and denote by F~ the
foliation induced by Xs. Let {X;; = E;; — Ej; |0 <4 < j < 2} be a basis for s0(3; C)
and denote by GF the foliation of SO(3; C) induced from h* given in Example 3.3.12.
Let ¢ be a linear isomorphism from s[(2; C) to C* given by ¢(aXo + bX1 + cX3) =

(L L For g = (@ P defi GL(3;C) b
(5550 0 50+ =a). Forg = (2 7)., we deine u(g) € GLEO) by

1(9)! (21, 22, 23) = p o Ady 0 o 1 (*(21, 29, 23)). Then

5 NEsT —V=1(af +~6)
u(g) = O‘2+f22\;_li—52 a2—522—72+52 B —
V—1(ay + 89) ay — 6 ad + By

It follows that ¢ is a homomorphism from SL(2;C) to SO(3;C). The differential
Ly 51(2;C) = 50(3; C) is given by 1, (Xo) = —2v—1X01, t(X1) = —vV—1X02 + X12
and 1. (Xs) = —vV/—=1Xy3 — X15. Hence ¢ is a local isomorphism which maps F* to
G*, respectively. Since ker:s = {£1I}, each leaf of G* is doubly covered by a leaf of

F*. Thus ¢ is certainly a required covering map. (]

The following proposition is obvious from the construction.

PROPOSITION 3.4.2. The foliation of Sp(n + 1;C) given by Ezample 3.3.13 is
the pull-back of the foliation of SL(2n+ 2;C) given by Example 3.3.6 by the natural

inclusion.
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Hence the foliations of Sp(n + 1;C) and SL(2n + 2; C) in Examples 3.3.12 and
3.3.13 are derived from the same I: écn 4 1-structure. In particular, the foliations we
constructed on Sp(1;C) and on SL(2;C) are isomorphic as foliated spaces. Conse-
quently, there is also a double covering map from Sp(1;C) to SO(3;C) as foliated
spaces.

On the other hand, the foliations obtained by using SL(¢+1; C) and SO(g+2; C)
are non-cobordant even as real foliations if ¢ is an odd integer greater than 1. This
can be seen as follows. We denote by V5 the second Chern character of the complex

normal bundle. Then V5 = v% — 2vs, and we have the following

PROPOSITION 3.4.3. If ¢ > 1, then V and v} are related as follows:

1
1) Vo = n 11)% for the foliations constructed using SL(q + 1;C) in Ez-
q
ample 3.8.6,
q—2 5

2) Vo = —5—vy for the foliations constructed using SO(q + 2;C) in Ex-
q

ample 3.8.12,
when evaluated by the Bott connections as in Fxamples 3.3.6 and 3.3.12.

PROOF. Let #; be the Bott connection in Example 3.3.6 for SL(q + 1;C), and
let Ry = dfy + 01 A 01 be the curvature form of ;. We have

w11 ‘e wlq
0, = : : —wooly,
wa .. wqq
and
—dwop — w10 A wo1 —w10 A\ Wo2 e —w10 A\ Wogq
—wa0 A Wo1 —dwoo — w20 Awo2 - —w20 A\ Woq
R =
—wqo VAN wo1 —wqo N wo2 s —dwoo - wqo VAN qu
Hence
-1 (g+1)
v = tr Ry = dw
HED YW/ S S
—1 —1
Vo= — trR? = —(q+1)(dwgo)?.
27 42 1= g2 (g ) (dwoo)

1
Thus Vo = ——v7.
qg+1
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On the other hand, if 6, is the Bott connection in Example 3.3.12 for
SO(g + 2;C), then

V—lwor  —wa23  —wog - —W2g41
p w23 V—lwor —w3s - —w3441
9= — )
W2,g+1 W3,q+1 T o V=lwo
The curvature matrix Ry of 05 is given by
—V/ =1 dwo a3 —Pa(gh)
P23 —V—=ldwor -+ —p3,(q+1)
R2 — . . . )
©2,(q+1) P3q+1) 0 —V—ldwn

where ¢;; = wio A wo; +win Awij. Hence

q
V] = ——— tr Ry = — dw 5
1 o /—_1 2 o 01
-1 2 q—2 2
V2 = m tI'RQ = W(dwm) .
-2
It follows that V5 = q—v%. g

2
COROLLARY 3.4.4. The foliations obtained by using SL(g+1; C) and SO(q+2;C)

are non-cobordant even as real foliations if q is an odd integer greater than 1.

ProOF. By Theorem 2.1, ¢ = —v2 + v17; — U2 holds in WU,. In the both

1
cases, v‘f_QVg = kv{ holds when evaluated by a Bott connection, where k = P
q
-2
for SL(¢+ 1;C) and k = qq2 for SO(¢q + 2;C). We have
Gng —2h10?q_202 = (\/ _1)2q—1ﬁ1 (U1 - Ul)zq_z(’l}% - 2’[)2 + ﬁ% - 2@2)
2 -2)! _ 42, _ - —
= VTP 20t - )+ 008 - 20
(2 =2)! o1\~ o
\/—1q! @~ 2) (2k)uy viv]
k(g —1)
= g—1 OV

from which the corollary follows. O
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To be more precise, these foliations are non-cobordant even as I5,-structures.
Corollary 3.4.4 also implies that the foliation obtained by using Sp(2;C) in Ex-
ample 3.3.13 is not isomorphic to the pull-back of the foliation obtained by using
SO(5; C) in Example 3.3.12 although there is a double covering Sp(2; C) — SO(5; C).

Other classes are also compared as follows when ¢ = 3.

ExaMPLE 3.4.5. We compare the previous examples constructed by using
SL(4;C), SO(5;C) and Sp(2;C) by examining the secondary classes of degree 13.
The Vey basis for H'3(WOg) is

{ hic® = GVg, hicica, hicics, hicicy, hicics, h10105,}

3 2 2
hicicacs, hicacy, hicy, hics, hice, hca, hacy

and the image of the subfamily
{h1c3, hicicacs, hicies, hicica, hicics, hicl, hacl}

by [A] is a basis for the image of H'3(WOg) in H'3*(WUs) by Theorem 2.7. On the
other hand, there are relations of the form v1vy = aw?, v3 = Bv? as differential forms
when calculated by Bott connections. The values (a, () are respectively (273-3,274),
(22-372,2.373), (273-3,27%) for SL(4; C), SO(5; C) and Sp(2; C). Hence the ratio of
elements of H'?(WOg) to the Godbillon-Vey class in H'*(WU3) can be calculated
as in the proof of Corollary 3.4.4. The result is shown in Table 3.4.1, where the
values in the table are the ratio to GVg, for example, hw%cz =272.32. 5_1hlc? for
SL(4;C).

Note that the ratios are identical for SL(4;C) and Sp(2;C). Indeed, the ratios
to GVg are already determined on the Lie algebra level by the construction. On the
other hand, the foliations of SL(4;C) and that of Sp(2;C) are essentially the same

at least on the Lie algebra level by Proposition 3.4.2.

REMARK 3.4.6. It can be seen that if w is a member of the Vey basis for
H™(WOg) as above, then the ratio of w(F) to GVg(F) = hicS(F) is always less
than 1 except the ratio to GVg(F) itself by Table 3.4.1 and formulae in Theorem 2.7,

where F is the one of the above foliations. It follows that if we introduce a metric on
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SL(4;C) SO(5;C) Sp(2;C)
hycS 1 1 1
hicics 272.32.571 27137257143 | 27232571
hicies 275.571.19 373.571.19 27%.571.19
hicicl 276.13 27137437 276.13
hicicaes | 278.3.571.23 2-37°.571.41 278.3.571.23
hic 279.571.37 2.376.571.37 279.571.37
hsca |27 't.57t11.23 | 27137757709 | 2715711123

TABLE 3.4.1. Ratio of real secondary classes to GVg.

H'(WOg) for which the Vey basis is a orthonormal basis, then the characteristic
mapping is bounded by GVg(F) on the unit ball and attains the maximal value
GV (F) precisely at GVg. We do not know if this fact has any meaning, and we do

not have any explanation for this fact, either.

We now compare foliations in Example 3.3.14 obtained by using G2, and show

that those foliations are non-cobordant even as I'jp-structures. If we denote by R(0)

the curvature form of @, then v — 2vy = tr R(0)?. Hence

1 \?
2my/—1
1
vt (vf = 202) (b1, K1) = 520t (b, Ka),
3
Ui (V) = 202) (0, Kz) = 5207 (ba, Ka).
We can show these relations as follows by using the curvature matrices R(6;) and

R(03) (Tables 3.4.2 and 3.4.3). We set [i,],k] = o A Bi Aoy A Bj Aoy A By, and
define the symbols [i, j] and [i, j, k, I, m] in the same way. If § = 6;, one has
tr R(01) = 3aa A B2 + 9ais A B3 + 9y A By + 3as A Bs + 6ag A Be,
(tr R(61))® =3 -6(9[2,3,4] + 3[2,3,5] + 6[2,3,6] + 3[2,4, 5] + 6[2, 4, 6]
+2[2,5,6] +9[3,4,5] + 18[3, 4, 6] + 6[3,5, 6] + 6[4, 5,6]),
(tr R(61))° = 3°-5!-2-3%[2,3,4,5,6] = 2* - 3% . 5[2,3,4, 5, 6].



3. NON-TRIVIALITY OF THE GODBILLON-VEY CLASS

64

mA%Hv =df, + 61 N by

209 A B2 + 33 A B3
—as A Bs +as A Bs

V3(as A B3
+2a3 A By
—ay A Bs)

—V3(B2 Nag
|.|me A\ Oy
—B4 N as)

g A PBo + 203 A B3
+ou A By + s A B

2(az A B3
+2a3 A By
—ay A Bs)

—2(B2 N
+2083 A g
—B4 A as)

ag A PBs +2a4 A By
+Qm>\®m+Q®>\®v@

—V3(az A Bs
+2a3 A B4
—ay A Bs)

V3(B2 A as
4283 A ay
—fBaNas)

—Q2 >\Qw AT..wD& >\Qg
n_lem >Em + ag >\Qm

b
V3

B2 A ag

—B3 A ag

—B1 N ag

1
——=Bs Nag

V3

Qm>\®m+w9w>\mw

+3a4 A Ba+as A Bs
+2a6 A s

TABLE 3.4.2. The curvature form of 0;.
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mmmwv =dfy + 05 N Oy

200 A1 —az A fB3
+Q%>\®g+0«m>\%m

3ai A Bz +as A Bs

=381 ANaz — 5 A ag

—a1 A B1+ 203 A B3
+ag A Bs+ ag A Bs

—4f1 Aoy —2B4 N ag

—4Bs Ao + 284 N as

ap AP+ a3z A s
F2a4 A Ba+ a5 A Bs
+ag A Bs

—B1ANas— B3N\ ag

283 Ny — By N as

wﬁs >QH erQ» >Q»
n_lem >\Qm + g >Qa

3ay A Bz +as A B

—B1Nas — P3N ag

—2B1 Ny — Pa N ag

=381 ANaz — 5 A ag

3ag A B3+ 3ay A Pa
+as A Bs + 2a6 A B

TABLE 3.4.3. The curvature form of 6.
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Let tr’ R(6;)? be the terms of tr R(A;)? which contain [I,m]. Then
(tr R(61))” tr R(01)* = (tr R(61))° tr" R(61)*.

We have

tr’ R(01)? =2[2,3] + 2[2,4] — 6]2,5] + 8[2,6] — 54[3, 4]

+ 2[3, 5] + 24[3, 6] + 2[4, 5] + 24[4, 6] + 8[5, 6].
Hence
(tr R(61))3tr R(A1)? = 2* - 3% -5[2,3,4,5,6] = 373 (tr R(6,))°.
If 6 = 65, then one can show that
(tr R(02))° tr R(02)? = 3 - 572(tx R(02))".

Hence the normal bundles of the foliations induced by h; and ho are not isomorphic

as complex vector bundles. Moreover, they are non-cobordant as [Ijg-structures.

Indeed, by repeating the proof of Corollary 3.4.4, one can show that
hici®(h1, K1) — 2hiciea(by, K1) = 2% - 37°h1c1% (b1, K1),
hici®(b2, Ka) — 2hictea(be, K2) = 2% - 371 - 572h1c1%(h2, K>).
It follows that
hiciea(hy, K1) =271+ 377239 GVyg(hy, K1),
hic3ea(ho, Ko) =2 -37 1. 572,71 GVig(ha, Ko).
Note that the foliation induced by b is neither cobordant to the foliations of

SL(6;C) nor that of SO(7;C) in Examples 3.3.6 and 3.3.12 by Proposition 3.4.3
and Corollary 3.4.4, because

h10§02 = 2_1 . 3_3 -5 GV10 for SL(6, C),
hicdea =2 -371.572.71 GVyy  for SO(7;C).

On the other hand, the foliation induced by ho is obtained from the foliation of
SO(7;C) at least at the Lie algebra level. Indeed, let i: go — s0(7;C) be the
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inclusion of Lie algebras determined by requiring
i(Z1) = —vV—1(Xo1 — 2X23 + Xus),
i(Z2) = —v—1(Xa3 — X45),

i(X1) = %((Xos + X14 — 2X36) — V—1(Xo4 — X15 + 2X26)),
i(Y1) = %(—(X% + X4 — 2X36) — V—1(Xoa — X15 + 2X26)),
i(X2) = %(—(Xzs — X34) — V—1(Xo4 + X35)),

1

i(Ys) = 2((X25 — X34) — V—1(Xo4 + X35)).

Then i*(h) = b, where hT and X;; are as in Example 3.3.12.

The examples constructed using A, = SL(¢ + 1;C), B,, = SO(2m + 1;C)
(g =2m—1), Chy1 = Sp(n+ 1;C) (¢ = 2n+ 1) and G2 (¢ = 5) have certain
common properties. Let X,, be one of these groups. If X,irf is the compact real

form of X,,, and T is the maximal torus as in Section 3.3, then
TCKcCcT' x X% cT' xX,_, c HcC X,

where the inclusion of X, 1 into X,, is realized by considering the inclusion of
corresponding Dynkin diagrams. Hence we regard G; = SL(2;C).

Let 1, be the Lie algebra of X,, and let T,_1 = t' @ r,_1. Then there is a
splitting r,, = r,_1®a as complex vector spaces so that one can find a decomposition
a = a” @ a~ such that the both T,_; @ a® are complex Lie subalgebras. These

subalgebras are h appeared in the examples in Section 3.3. The Godbillon—Vey

crf

class is realized as the pull-back of the product of the volume forms of X /X<,

and X1 /(T1 x X&),
The Godbillon—Vey classes of foliations constructed using SO(g + 2;C) in Ex-

ample 3.3.12 are trivial if ¢ is even. In fact, we have the following

PROPOSITION 3.4.7. Assume that T* x SO(2n — 2;C) and the mazimal torus
T" are realized as in Example 8.3.12. If n > 2, then there is no Lie subalgebra b of
50(2n; C) with the following properties:
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1) b contains t* @ so(2n — 2;C).
2) The Godbillon—Vey class of the foliation of I'\SO(2n;C)/T" defined by b

is non-trivial as an element of H**(s0(2n; C),"; C).

PROOF. We retain the notations in Example 3.3.12. Set Yy, = Xo; + v —1X1;
and Zy; = Xoi — V—1X3; for i > 2. Let ¢ be the Lie subalgebra t* @ s0(2n — 2;C)
and b a Lie subalgebra having the properties 1) and 2). Then h/¢ is invariant under

the action of ade. It we define linear subspaces a® of /¢ by
= ((Yo2, Y03, - -+, Yo2n—1) + £) /%,
a” = ({(Zoz2; Zos, - - -, Zo,2n—1) + ¥) /8,

then h/€ = at ®a”. Let i* be the inclusions of a® to h/t, and let pT be the
projections from b /€ to a® which correspond to the direct sum decomposition of b /.
Since adx,, Yo; = V/=1Yy; and adx,, Zoi = —/—1Zy;, we have b/t = itpT(h/€) @
i~p~(h/¢). Hence it suffices to study invariant subspaces of a*.

We denote for a while a® by a, and assume that a’ is an invariant subspace of
a. Let 4,5 be integers such that 2 < ¢ < 5 < 2n, and let V»j.E =Yy + \/—_1Y0j.
If we set bi- = (CV-i- and 3;; = (Yor |k #14,7), then a = bJr ® b;; &3, Let
+

t;; and ¢;; be the inclusions from b;; and 3;; to a, and let 7TZ

i and m;; be the

J
projections from a to b and 3;; determined by the direct sum decomposition. Then
a = L;;ﬂ'jj_( a) @ L”ﬂ'w( a') @ vimig(a’). If L” ZJ( a’) = {0} for any pair (4,7), then

a’ = {0}. On the contrary, if LU Z]( a’) # {0} for a pair (4, j), then Lj;w;;( a) = CV+
and Yy, + \/—_1Yoj € a/. Since n > 2, we can choose an integer k other than 4, j and
such that 2 < k < 2n — 1. For such a k, adx,, (adx,, Yo; + \/—_lYoj) = —Y,; and
therefore Yy, € a’. Since adx,, Yo; = —Yor for k > 2, k # i, and adx,, Yo; = — Y1,
this implies that a’ = a.

By the same argument, (h/€) Na~ is either {0} or a~. Hence b is either t' x
50(2n —2; C), s0(2n; C) or the Lie algebras h* defined in Example 3.3.12. It is easy
to show that the Godbillon-Vey class of the foliation induced by t* x s0(2n — 2;C)

is trivial. O
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REMARK 3.4.8. Tt is well-known that s0(4; C) = s((2; C)®sl(2; C) and s0(6;C) =
s[(4; C). Hence it is possible, despite Proposition 3.4.7, to construct foliations with

non-trivial Godbillon—Vey classes at least at the Lie algebra level.

The Godbillon—Vey classes of examples in Section 3.3 are realized by pulling-
back the product of volume forms of X< /(T? x X ) and X/ XS to X&T x
(XS /T™), where T™ is a maximal torus. We call this property (V). Note that
the pull-back of the volume form of X /X to XS remains non-trivial if the

Godbillon—Vey class is non-trivial. In this line, we have the following.

ProproSITION 3.4.9. Consider X,,—1 as a subgroup of X, via the inclusion of
corresponding Dynkin diagrams. The mapping n*: H*( XS /X ) — H* (X&) an-
nihilates the volume if the pair (X,, X,—1) is either (Fy,Sp(3;C)), (Fy,SO(7;C)),
(Fs,SL(6;C)), (E¢,S0(10;C)), (E7,E¢) or (Es,Er7). Hence examples with the

above property (V) do not exist for these pairs.

PROOF. It is known the cohomology of these groups are as follows [23]:

where e; denotes the generators of degree i. The dimensions of Sp(3; C) (or SO(7;C))
and Fj are 21 and 52, respectively. However, H*'(f4) = {0}. In order to prove the
claim for Fj, first consider E5 = SL(6;C). Then H*(s((6;C)) = Ales, es, €7, €9, €11]-
Since the embedding is induced from the inclusion of corresponding Dynkin dia-
grams, we may assume that the image of e; under =, is again e; if and only if e;
is non-trivial in the image. If 7* does not annihilate the volume form, there is a

non-trivial class in H 43(e6) written in terms of e15 and eos3. It is clearly impossible.
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If E5 is considered as SO(10; C), the proof is done simply by counting dimension as

in the case of Fy. The claim for other groups are also shown in this way. ([

More systematic treatment seems appropriate for examining all possible pairs

(X, Xpn—1). We will not pursue it here.





